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Absence of Floquet scattering in oscillating non-Hermitian potential wells
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Scattering of a quantum particle from an oscillating barrier or well does not generally conserve the particle
energy owing to energy exchange with the photon field, and an incoming particle-free state is scattered into a
set of outgoing (transmitted and reflected) free states according to Floquet scattering theory. Here we introduce
two families of oscillating non-Hermitian potential wells in which Floquet scattering is fully suppressed for any
energy of the incident particle. The scattering-free oscillating potentials are synthesized by application of the
Darboux transformation to the time-dependent Schrödinger equation. For one of the two families of scattering-free
potentials, the oscillating potential turns out to be fully invisible.
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I. INTRODUCTION

Scattering dynamics from periodic time-varying potentials
is of fundamental importance in different areas of physics,
involving fundamental aspects of quantum mechanics, such
as the problem of tunneling times [1–3], classical and
quantum chaos [4–8], and the quantum transport properties
of microscopic and mesoscopic systems [11–16]. Several
studies have investigated in detail the scattering properties of
time-varying potential barriers or wells based on the Floquet
formalism (see, e.g., [17]), with applications to problems such
as photon-assisted tunneling [11,18,19], quantum pumping
[20–23], electron scattering by intense laser-driven potentials
[24], and electron transport in graphene with modulated
barriers [14,15,23]. These systems can display a quite rich
quantum and classical dynamics, such as chaotic scattering and
chaos-assisted tunneling [9,10,25–27], coherent destruction of
tunneling [28,29], quantum interference [30], Fano resonances
[14,17], field-induced barrier transparency [31], and particle-
field entanglement in the second-quantization regime [32].
Noticeably, the scattering dynamics from a periodic time-
varying potential barrier or well is analogous, under certain
conditions, to Bragg scattering of monochromatic matter or
classical waves from a periodic (grating) potential [33–35].
For example, a quantum-optical analogy can be established
between the well-known problem of Bragg scattering of light
waves from a diffraction grating under grazing incidence
and the scattering dynamics of a nonrelativistic quantum
particle from a periodic time-varying potential well or
barrier [8,35].

In recent years, a great and increasing interest has been
devoted to study the properties of quantum systems described
by a non-Hermitian Hamiltonian [36], especially in the
context PT -symmetric quantum mechanics [37]. Scattering
in non-Hermitian potentials has been experimentally investi-
gated, for example, in the diffraction of matter waves from
complex optical potentials [38,39] and for light transport in
optical structures with tailored gain and loss regions [40–42].
Non-Hermiticity has been shown to strongly affect Bragg
scattering in imaginary periodic potentials, with important
effects such as the violation of the Friedel’s law [33,38] and
unidirectional invisibility [43–46]. The scattering properties

of static and non-Hermitian potential wells and barriers
have been investigated in several previous works as well
[47–52]. In particular, it was shown rather generally that,
as opposed to a Hermitian potential barrier or well, the
reflectance in a non-Hermitian potential barrier is generally
different for left and right incidence [47,49]. However, the
scattering properties of imaginary potential barriers or wells
periodically oscillating in time have not received attention to
date.

In this work we consider the scattering properties from
exactly solvable time-periodic complex potential wells, which
show the rather exceptional property to appear reflectionless
and to conserve the energy of the transmitted particle at
any energy of the incident particle [53]. This means that
the particle, in addition to not being reflected from the
potential well, does not exchange energy with the photon field,
regardless of the initial energy of the particle, i.e., the scattering
matrix elements to all the Floquet channels [17] vanish. In
the analogous problem of wave diffraction from a complex
grating potential [33–35] discussed above, this means the
entire absence of grating diffraction orders, both in reflection
and transmission [54], which are analogous to the Floquet
scattering channels in the time-periodic case. We note that the
existence of static reflectionless potentials is well known in
quantum physics (see, e.g., [55–58]), including the case of
non-Hermitian potential wells [50]; however, in our work we
report the existence of reflectionless and energy-conserving
potentials periodically oscillating in time, which provides a
nontrivial result in the basic scattering theory of oscillating
potentials.

The paper is organized as follows. In Sec. II the basic
principles of particle scattering from an oscillating potential
are briefly reviewed, and its connection to Bragg scattering
of matter or classical waves from a diffraction grating
is discussed. In Sec. III two exactly solvable families of
scattering-free non-Hermtian oscillating potentials are in-
troduced by application of the Darboux transformation for
the time-dependent Scrhödinger equation. The absence of
Floquet scattering is checked by numerical simulations of the
Schrödinger equation in Sec. IV. Finally, the main conclusions
and a brief discussion of open questions are presented in
Sec. V.
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II. FLOQUET SCATTERING FROM A TIME-PERIODIC
POTENTIAL

The scattering of a quantum particle from an oscillating
potential is described by the time-dependent Schrödinger
equation (with h̄ = m = 1):

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ V (x,t)ψ(x), (1)

where V (x,t + T ) = V (x,t) is the time-periodic potential
with period T = 2π/ω. We assume that the scattering potential
is localized at around x = 0 with V (x,t) → 0 as x → ±∞
[see Fig. 1(a)], so that far from x = 0 the asymptotic solutions
to Eq. (1) are free-particle (plane-wave) states. It is worth
mentioning that the scattering of a quantum particle from an os-
cillating potential with limited support, as described by Eq. (1),
is analogous to the Bragg scattering of a monochromatic matter
or optical wave from a two-dimensional diffraction grating, as
shown in Fig. 1(b) (see, for instance, [33–35]). For example,
let us consider the scattering of a monochromatic light wave at
wavelength (in vacuum) λ0 from a two-dimensional dielectric

FIG. 1. (Color online) (a) Schematic of Floquet scattering of a
quantum particle from a potential oscillating in time at frequency
ω. The energy of the incidence particle is E. The reflected and
transmitted particle states correspond to the various Floquet channels
at energies E + nω. (b) Schematic of Bragg diffraction of a light
or matter wave from a grating potential at grazing incidence.
The reflected and transmitted diffraction orders from the grating
correspond to the Floquet channels in (a).

grating with refractive index n(x,z) = n0 − �n(x,z), where
�n � n0 is the index change from the substrate refractive
index n0 and the grating potential �n(x,z) is periodic,
along the spatial direction z, with period � � λ0, i.e.,
�n(x,z + �) = �n(x,z). For a TE-polarized optical wave
(Ex = Ez = Hy = 0), the electric field Ey(x,z) satisfies the
Helmholtz equation (∂2

x + ∂2
z )Ey + k2

0n
2(x,z)Ey = 0, where

k0 = 2π/λ0. For grazing incidence, after setting Ey(x,z) =
ψ(x,z) exp(ik0n0z) the field envelope ψ(x,z) satisfies the
Schrödinger-like (paraxial) wave equation [35]:

i
∂ψ

∂z
= − 1

2n0k0

∂2ψ

∂x2
+ k0�n(x,z)ψ, (2)

which has the same form as Eq. (1), provided that the temporal
variable t is replaced by the spatial (paraxial) propagation
distance z and the potential V (x,t) is defined by the index
change �n(x,z). In the following, we will specifically refer
to the scattering problem of a quantum particle from an
oscillating potential in the framework of Eq. (1), however,
the same analysis holds for the Bragg scattering problem at
grazing incidence on a diffraction grating.

Let us consider a particle with momentum p and energy
E = p2/2 incident onto the scattering potential from the left
side. The solution to Eq. (1) has the form:

ψ(x,t) = ψin(x,t) + ψsc(x,t), (3)

where

ψin(x,t) = exp(ipx − Et) (4)

is the incident particle state and ψsc(x,t) is the scattered
state. According to Floquet theory, ψsc(x,t) has the following
asymptotic form:

ψsc(x,t) =
∞∑

n=−∞
t (left)
n (E) exp(ipnx − Ent), (5)

for x → +∞, and

ψsc(x,t) =
∞∑

n=−∞
r (left)
n (E) exp(−ipnx − Ent), (6)

for x → −∞, where En = E + nω, pn =
√

2(E + nω), and
Im(pn) � 0. The complex coefficients t (left)

n (E) and r (left)
n (E)

for the propagative modes (i.e., for indices n with E + nω > 0,
corresponding to a real-valued momentum pn) define the
transmission and reflection coefficients for the various Floquet
channels at energies E + nω for left-side incidence [17]. In
a similar way, one can introduce the Floquet reflection and
transmission coefficients t

(right)
n (E) and r

(right)
n (E) for right-side

particle incidence, which are formally obtained from Eq. (4)
by the change p → −p and by reversing +∞ and −∞ in the
asymptotic behavior Eqs. (5) and (6). Note that, as compared
to the scattering from a static potential, in addition to a
nonvanishing probability of the particle to be reflected from
the potential, the particle energy E is not conserved during
the interaction because of energy exchange (absorption and
emission) with the photon field. In the analogous problem
of Bragg scattering from a diffraction grating [Fig. 1(b)],
the reflection and transmission coefficients of the various
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Floquet channels correspond to the reflection and transmission
amplitudes of the various diffraction orders.

III. OSCILLATING QUANTUM WELLS WITHOUT
FLOQUET SCATTERING

Absence of Floquet scattering from an oscillating poten-
tial for left-side particle incidence can be defined by the
conditions r (left)

n (E) ≡ 0 for any n with En = E + nω > 0,
and t (left)

n (E) ≡ 0 for n �= 0, which imply the absence of
reflected waves and the conservation of the energy for the
transmitted particle. Such conditions extend to the time-
periodic case, the well-known case of reflectionless static
potentials (see, e.g., [55–58]), where only the reflection and
transmission coefficients r

(left)
0 (E) and t

(left)
0 (E) are involved.

Our goal is to synthesize an oscillating potential well which
does not show Floquet scattering. To this aim, we use
the method of the Darboux transformation, well known in
problems of reflectionless static potentials, extended to the
time-dependent Schrödinger equation [59,60]. Let us indicate
by Ĥ0 = −(1/2)∂2

x + V0(x,t) and Ĥ = −(1/2)∂2
x + V (x,t)

two time-dependent Hamiltonians with potentials V0(x,t) and
V (x,t), respectively. A linear differential operator D̂ of first
order in x, with time-dependent coefficients and satisfying the
intertwining relation,

D̂(i∂t − Ĥ0) = (i∂t − Ĥ)D̂, (7)

is called a first-order Darboux transformation operator. Its
explicit form is given by [59,60]

D̂ = L(t)

(
∂x − 1

u

∂u

∂x

)
, (8)

where L(t) is an arbitrary function of time t and u(x,t) is any
solution to the equation (i∂t − Ĥ0)u = 0. The intertwining
relation (7) holds provided that the two potentials V0(x,t) and
V (x,t) are connected by the relation,

V (x,t) = V0(x,t) − ∂2(ln u)

∂x2
− i

1

L

dL

dt
. (9)

Note that, if φ(x,t) is any solution to the time-dependent
Schrödinger equation i∂tφ = Ĥ0φ, then the Darboux trans-
form of φ(x,t), defined by

ψ(x,t) = D̂φ(x,t) = L(t)
∂φ

∂x
− L(t)

u

∂u

∂x
φ(x,t), (10)

is a solution to the time-dependent Schrödinger equation
i∂tψ = Ĥψ . This result readily follows from the intertwining
relation (7). Note that, for an initial real-valued potential
V0(x,t), the partner potential V (x,t) obtained from Eq. (9)
turns out to be real valued provided that the function u(x,t) =
|u(x,t)| exp[iθ (x,t)] has a phase θ (x,t) which is at most a
quadratic function of x, i.e., ∂xxxθ = 0; only under such a
constraint, after setting L(t) = exp[−∫ t

0 dt ′θxx(t ′)] the partner
potential V (x,t) turns out to be real valued [59,60]. This is a
rather severe constraint, and indeed the method of Darboux
transformation to the time-dependent Schrödinger equation
in the Hermitian case has been applied to rather few and
special cases [59–62]. In particular, the Hermitian constraint
does not allow one to synthesize an oscillating quantum well
with suppressed Floquet scattering, like for a static potential

well (see, for instance, [56]). Nevertheless, if we remove
the Hermiticity constraint, allowing the potential to become
imaginary, an oscillating quantum well with suppressed
Floquet scattering can be synthesized by the method of the
Darboux transformation.

To this aim, let us assume V0(x,t) = 0, and let us consider
the Darboux operatorD obtained by taking L(t) = 1 in Eq. (8).
We will consider specifically two distinct solvable cases. In the
former case the Floquet scattering is fully suppressed, however,
the potential well introduces an advancement of the transmitted
particle, i.e., there is a nonvanishing energy-dependent phase
of the transmission t0(E) like in the Hermitian reflectionless
potential well [56]. In the latter case the Floquet scattering is
fully suppressed and the oscillating potential well appears to
be fully invisible, i.e., t0(E) = 1.

The former case is obtained by assuming the following
solution u(x,t) to the equation (i∂t − Ĥ0)u = 0,

u(x,t) = α + βx + cosh(μx) exp(iωt), (11)

where μ > 0 is an arbitrary real-valued parameter, ω = μ2/2,
and α, β are two arbitrary complex-valued parameters, satis-
fying the constraint |α + βx| < cosh(μx) for −∞ < x < ∞.
For example, by taking β = 0 such a condition is satisfied
provided that |α| < 1. This constraint ensures that u(x,t) does
not vanish for any time t , thus avoiding singularities in the
partner potential V (x,t). Using Eqs. (9) and (11), the partner
potential V (x,t) associated with V0(x,t) = 0 via the Darboux
transformation can be readily calculated and reads explicitly,

V (x,t) = − μ2 cosh(μx) exp(iωt)

α + βx + cosh(μx) exp(iωt)

+
[

β + μ sinh(μx) exp(iωt)

α + βx + cosh(μx) exp(iωt)

]2

, (12)

which is periodic with period T = 2π/ω. A typical behavior
of the real and imaginary parts of V (x,t) over one oscillation
cycle is shown in Fig. 2(a). Note that, for α = β = 0,
the potential V (x,t) becomes stationary (time independent),
namely V (x,t) = −μ2 sech2(μx), which belongs to the well-
known class of Hermitian reflectionless potentials [56,57]. To
show the absence of Floquet scattering in the time-periodic
case, let us construct the solution to Eq. (1), with the potential
V (x,t) given by Eq. (12), corresponding to a free particle of
momentum p and energy E = p2/2 incident on the left side,
i.e., of the form defined by Eqs. (3)–(6). Such a solution is
simply given by the Daboux transformation of the free-particle
state φ(x,t) ∝ exp(ipx − iEt), i.e., [see Eq. (10)]

ψ(x,t) = 1

ip + μ

(
ip − β + μ sinh(μx) exp(iωt)

α + βx + cosh(μx) exp(iωt)

)

× exp(ipx − iEt). (13)

Note that since

ψ(x,t) ∼ exp(ipx − iEt), (14)

for x → −∞, and

ψ(x,t) ∼ ip − μ

ip + μ
exp(ipx − iEt), (15)

for x → +∞, a comparison of Eqs. (14) and (15) with
Eqs. (3)–(6) yields the following expression for the reflection
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FIG. 2. (Color online) (a) Behavior of the real and imaginary
parts of the potential (12) for α = 0.9, β = 0, μ = 1 at times t = 0,
t = T/4, t = 3T/8, t = T/2, and t = 3T/4. (b) Same as (a) but for
the potential (19) [α = β = 2, μ = 1].

and transmission coefficients of the various Floquet channels
for left-side particle incidence,

r (left)
n (E) = 0, t (left)

n (E) = 0 for n �= 0,
(16)

t
(left)
0 (E) = ip − μ

ip + μ
,

with p = √
2E. Equation (16) proves that in the oscillating

potential (12) the Floquet scattering is fully suppressed. Note
that |t (left)

0 (E)| = 1, i.e., the scattering matrix is unitary despite
that the potential is non-Hermitian. Note also that the phase
of the transmission amplitude t

(left)
0 (E) does not depend on

the frequency ω of the oscillating potential, and it is equal to
that of the static reflectionless potential obtained in the limit
α = β = 0 (see, for instance, [56]). The effect of this phase
term is to slightly advance and distort (narrow) a wave packet
that crosses the potential well, like in the Hermitian case [57].
The group delay (phase time) is given by

�τ = 1

p
Im

{
∂

∂p
ln

(
t

(left)
0

)} = − 2μ

p(μ2 + p2)
, (17)

which is negative, indicating an advancement of the wave
packet. The previous relations (16) and (17), derived for left-
side particle incidence, are also valid for a particle incident
from the right side of the oscillating potential well; this result
can be readily proven by considering the asymptotic behavior
of the Darboux transformation ψ(x,t) = D̂φ(x,t) of the free-
particle plane wave φ(x,t) = exp(−ipx − iEt), describing a
freely moving particle moving from the right to the left sides
with momentum p. Hence, like in the Hermitian case our non-
Hermitian potential well behaves symmetrically for left- and
right-side incidence, contrary to, e.g.,PT -symmetric potential
wells or barriers which show left and right handedness [47].

In fact, while in a PT -symmetric potential the imaginary part
of the potential is an odd function of space, in our case it is an
even function for spatial inversion x → −x, see, e.g., Fig. 2(a).

The second family of oscillating quantum wells without
Floquet scattering is synthesized by assuming the following
solution u(x,t) to the equation (i∂t − Ĥ0)u = 0,

u(x,t) = iα + βx + cos(μx) exp(−iωt), (18)

where μ > 0 is an arbitrary real-valued parameter, ω = μ2/2,
and α, β are two arbitrary real-valued parameters with |α| > 1.
Such a condition ensures that u(x,t) is a nonvanishing function,
and thus the partner potential V (x,t) is not singular. The
explicit form of the potential V (x), obtained from Eqs. (9)
and (18) with L(t) = 1 and V0(x,t) = 0, reads

V (x,t) = μ2 cos(μx) exp(−iωt)

iα + βx + cos(μx) exp(−iωt)

+
[

β − μ sin(μx) exp(−iωt)

iα + βx + cos(μx) exp(−iωt)

]2

. (19)

A typical behavior of the real and imaginary parts of the
potential V (x,t), defined by Eq. (19), is shown in Fig. 2(b). As
in the previous case, the solution to Eq. (1), with the potential
V (x,t) given by Eq. (19) and corresponding to a free particle of
momentum p and energy E = p2/2 incident on the left side, is
obtained from the Daboux transformation of the free-particle
state φ(x,t) = exp(ipx − iEt) and reads

ψ(x,t) =
(

1 − 1

ip

β − μ sin(μx) exp(−iωt)

iα + βx + cos(μx) exp(−iωt)

)

× exp(ipx − iEt). (20)

Note that, since

ψ(x,t) ∼ exp(ipx − iEt), (21)

for x → −∞ and x → +∞, the reflection and transmission
coefficients of the various Floquet channels for left-side
incidence are merely given by

r (left)
n (E) = 0, t (left)

n (E) = 0 for n �= 0, t
(left)
0 (E) = 1, (22)

with p = √
2E. Equation (22) shows that in the oscillating

potential (19) the Floquet scattering is fully suppressed. In
addition, since t

(left)
0 (E) = 1, the oscillating well is invisible,

i.e., it introduces no delay or advancement nor distortion of a
wave packet crossing the potential. The same result holds for
a particle incident onto the oscillating potential well from the
right side.

IV. WAVE-PACKET PROPAGATION: NUMERICAL
RESULTS

We have checked the absence of Floquet scattering in the
two families of oscillating potential wells, introduced in the
previous section and defined by Eqs. (12) and (19), by direct
numerical simulations of the time-dependent Schrödinger
equation using an accurate pseudospectral split-step method.
As an initial condition at time t = 0, we assumed a Gaussian
wave packet, of width w and localized at the position x0 < 0
far from the potential well, with a mean momentum p, i.e.,
ψ(x,0) = exp[−(x − x0)2/w2] exp(ipx). Figure 3(a) shows
the evolution of the amplitude probability |ψ(x,t)| of the
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FIG. 3. (Color online) Evolution of a Gaussian wave packet
(snapshot of |ψ(x,t)|) in (a) the oscillating complex potential well
V (x,t) defined by Eq. (12), and (b) in the associated Hermitian
potential well VHerm(x,t) = Re{V (x,t)}. Parameter values are given
in the text.

wave packet crossing the complex oscillating potential (12) for
parameter values α = 0.9, β = 0, μ = 1, w = 15, p = 1, and
x0 = −120. The figure clearly shows the absence of Floquet
scattering. For comparison, in Fig. 3(b) we show the evolu-
tion of the amplitude probability |ψ(x,t)| in the oscillating
Hermitian potential well VHerm(x) = Re{V (x)}, obtained by
taking the real part solely of V (x). In this case the wave
packet clearly undergoes Floquet scattering when crossing the
potential well. A similar behavior is found by considering
wave-packet scattering from the complex oscillating potential
defined by Eq. (19), which is shown in Fig. 4(a) for parameter
values α = 2, β = 2, μ = 1, w = 15, p = 1, and x0 = −120.
Figure 4(b) shows, for comparison, the wave-packet evolution
scattered off by the Hermitian potential VHerm(x) = Re{V (x)},
obtained by taking the real part solely of V (x). According to
the analysis of Sec. III, the oscillating potential (12) does not
scatter the wave packet, however, it introduces an advancement

FIG. 4. (Color online) Same as Fig. 3, but for the potential defined
by Eq. (19). Parameter values are given in the text.

FIG. 5. (Color online) Behavior of the wave-packet distribution
probability |ψ(x,t)|2 at time t = 300, after crossing the scattering
potential, corresponding to the free particle (thin solid curve), the
potential (12) (dotted curve), and the potential (19) (dashed curve).
The three distributions are almost overlapped. The inset depicts an
enlargement of the distribution tails, clearly showing the advancement
�x of the wave packet crossing the potential (12).

of the wave packet, given by Eq. (17). For parameter values
used in the simulations, the group delay is estimated to be
�τ = −1, which corresponds to a spatial advancement of
the wave packet, for a given time t , of �x = p|�τ | = 1.
Note that such an advancement is rather small as compared
to the width 2w = 30 of the initial wave packet. Conversely,
the oscillating potential (19) is fully invisible, i.e., no delay or
advancement nor distortion of the wave packet is introduced
after crossing the potential well. This is clearly shown in Fig. 5,
which depicts the spatial profile of |ψ(x,t)|2 at time t = 300,
after crossing the well, for the freely moving wave packet
(i.e., in the absence of the potential, thin solid line), for the
wave packet crossing the potential (12) (dotted curve), and
for the wave packet crossing the potential (19) (dashed line).
The three curves are almost overlapped. However, a closer
inspection of the wave-packet tails, shown in the inset of Fig. 5,
indicates that the potential (12) introduces a small advance-
ment, whereas the potential (19) does not, in agreement with
the theoretical analysis. The numerical simulations shown in
Figs. 3–5 refer to a wave packet propagating from the left
to the right side, however, the same results are obtained by
considering the scattering dynamics for a wave packet that
crosses the oscillating potential well from the right to the left
sides.

V. CONCLUSIONS AND DISCUSSION

A quantum particle crossing a potential barrier or well,
oscillating in time at frequency ω, undergoes rather generally
to Floquet scattering, with the particle being transmitted or
reflected with an energy E′ = E ± nω which can differ from
the energy E of the incident particle owing to the absorption or
emission of n quanta from the photon field. Floquet scattering
is of fundamental importance in different areas of physics and
plays a major role in quantum transport properties of ac-driven
microscopic and mesoscopic systems. It is also analogous to
the problem of Bragg scattering of monochromatic matter or
optical waves from a diffraction grating. On the other hand,
it is well known that for certain static potential wells, i.e., for
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the so-called reflectionless potentials, scattering can be absent
for any energy of the incidence particle. A natural question
arises whether Floquet scattering can be absent in a certain
class of oscillating potentials, an issue which has not been
investigated yet. In this work we have shown that families of
non-Hermitian oscillating potential wells can be synthesized
by application of the Darboux transformation to the time-
dependent Schrödinger equation. While with this technique
we could not synthesize scattering-free oscillating potentials of
the Hermitian type, by allowing the potential to become com-
plex valued, i.e., the Hamiltonian non-Hermitian, two families
of scattering-free and norm-conserving oscillating potentials
have been introduced, admitting the analytical expressions
defined by Eqs. (12) and (19). The latter family of oscillating
wells, in addition to suppressing Floquet scattering, is also
fully invisible. We note that, as compared to unidirectional sup-
pression of Bragg scattering recently predicted and observed
in the context of PT -symmetric non-Hermitian Hamiltonians
[41,43,44], in our complex potentials the absence of Floquet
scattering is bidirectional, i.e., it occurs for both left- and

right-side particle incidence. Our results provide new physical
insights into the basic problem of scattering from oscillating
potentials, and are expected to stimulate further theoretical and
experimental studies. On the experimental side, the realization
of complex potentials with tailored profiles, as predicted by
Eqs. (12) and (19), remains a challenging task. Synthetic
optical structures with controlled gain and loss regions might
be considered as potentially accessible systems to test Floquet
scattering in non-Hermitian potentials [42], however, the
search for simpler potentials could facilitate the experimental
realization of scattering-free potential. In particular, it remains
open the question whether Floquet scattering can be absent
in Hermitian oscillating potential wells, which could be of
interest in problems of quantum transport in mesoscopic
systems.
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