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Condition for macroscopic realism beyond the Leggett-Garg inequalities
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In 1985, Leggett and Garg put forward the concept of macroscopic realism (macrorealism) and, in analogy to
Bell’s theorem, derived a necessary condition in terms of inequalities, which are now known as the Leggett-Garg
inequalities. In this paper, we discuss another necessary condition called no-signaling in time. It solely bases
on comparing the probability distribution for a macrovariable at some time for the cases where previously a
measurement has or has not been performed. Although the concept is analogous to the no-signaling condition in
the case of Bell tests, it can be violated according to quantum mechanical predictions even in situations where
no violation of Leggett-Garg inequalities is possible.
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Bell’s theorem for local realism [1] is a highly developed
research field, not least because of its importance for quantum
information technologies [2]. Macroscopic realism (macrore-
alism) [3]—the world view in which the properties of macro-
scopic objects exist independent of and are not influenced by
measurement—has gained momentum only within the past few
years as experiments steadily approached the parameter regime
where experimental tests might become possible. Promising
candidates in the race towards an experimental violation of
macrorealism are large superconducting devices [4,5], heavy
molecules [6,7], and quantum-optical systems in combination
with atomic gases [8] or massive objects [9]. Still lacking a
decisive experiment, however, the physics community remains
to be split into two groups: adherents of the viewpoint that
macrorealism will eventually be falsified by the preparation
of Schrödinger catlike states [10], and adherents of one of
the hypothetical alternatives saving a classical world on the
macroscopic level [11–13].

Macrorealism is defined by the following postulates [14]:
“(1) Macrorealism per se. A macroscopic object which has
available to it two or more macroscopically distinct states is at
any given time in a definite one of those states. (2) Non-invasive
measurability. It is possible in principle to determine which
of these states the system is in without any effect on the state
itself or on the subsequent system dynamics. (3) Induction.
The properties of ensembles are determined exclusively by
initial conditions (and in particular not by final conditions).”

Since an observation of quantum interference between
macroscopically distinct states (QIMDS), as predicted by
quantum mechanics (QM), does not necessarily establish the
falsity of macrorealism, three stages of experiments should be
distinguished [14]: “Stage 1. One conducts circumstantial tests
to check whether the relevant macroscopic variable appears to
be obeying the prescriptions of QM. Stage 2. One looks for
direct evidence for QIMDS, in contexts where it does not
(necessarily) exclude macrorealism. Stage 3. One conducts
an experiment which is explicitly designed so that if the
results specified by QM are observed, macrorealism is thereby
excluded.” Leggett and Garg have put forward the structure
of such a stage 3 experiment [3]. It consists of measuring
temporal correlation functions and violation of the so-called
Leggett-Garg inequalities.

In this paper, we derive a necessary mathematical condition
for macrorealism as an alternative to the Leggett-Garg inequal-
ities, which we call no-signaling in time. A similar version of
this condition was already discussed in Refs. [15–17] and in-
dependently found in Ref. [18] in the context of coarse-grained
measurements of large spin systems. In Ref. [19] the strength of
signaling in a temporal Clauser-Horne-Shimony-Holt scenario
was discussed. However, in none of these references was it
recognized as being experimentally more applicable than the
Leggett-Garg inequalities. The condition bases solely on the
time evolution of the probability distribution associated with a
macroscopic quantity and can be viewed as a statistical version
of noninvasive measurability. Only two measurement times
are required, while any Leggett-Garg inequality necessarily in-
volves at least three of them, making a conclusive test of macro-
realism more feasible. We will apply the no-signaling in time
condition to the specific case of interferometric experiments.
Once quantum interference between macroscopically distinct
states is shown, it suffices to demonstrate that it disappears
when a prior measurement is made. Our work thus suggests
that the step from a stage 2 to a stage 3 experiment usually can
be done in a straightforward way. We start our analysis with a
comparison between local realism and macrorealism.

Two parties, Alice and Bob, perform measurements on
distant particles. Alice’s (Bob’s) setting choices are labeled
with a = a1, a2, . . . (b = b1, b2, . . .), and her (his) outcomes
for a given setting are denoted by A (B). The assumptions
for local realism can be formulated as follows: Realism is a
worldview “according to which external reality is assumed
to exist and have definite properties, whether or not they
are observed by someone” [20]. Locality demands that “if
two measurements are made at places remote from one
another the [setting of one measurement device] does not
influence the result obtained with the other” [1]. There is
also a third assumption, namely, the freedom of choosing
the settings independently of the particle properties. The joint
assumption is denoted as local realism (LR) and demands that
the probability for obtaining outcomes A and B under settings
a and b can be written as a convex combination of products
of probabilities which depend only on the local setting and
a shared (hidden) variable λ, which specifies the properties
of every individual particle pair and is generated with some
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probability distribution ρ(λ):1

LR: P (A,B|a,b) =
∑

λ
ρ(λ) P (A|a,λ) P (B|b,λ). (1)

A special case of local realism is local determinism, where
the outcome probabilities P (A|a,λ) and P (B|b,λ) are always
either 0 or 1.

Quantum mechanics, on the other hand, defines measure-
ment operators M̂a

A and M̂b
B for Alice’s and Bob’s outcomes

A and B under settings a and b, respectively. The outcome
probability for a given (bipartite) quantum state ρ̂ is

QM: P (A,B|a,b) = Tr
[
ρ̂ M̂a

A ⊗ M̂b
B

]
. (2)

In a basic scenario, there are only two setting choices for
each party, a = a1,a2, b = b1,b2, and dichotomic outcomes,
Aa = ±1, Bb = ±1. According to Bell’s theorem, local
realism puts a bound on certain combinations of correlation
functions Cab = 〈Aa Bb〉 for distant measurements. This leads
to Bell inequalities (BI), e.g., the version by Clauser, Horne,
Shimony, and Holt (CHSH) [21]:

BI: Ca1b1 + Ca2b1 + Ca2b2 − Ca1b2 � 2. (3)

Bell inequalities can be violated by entangled quantum states.
All theories in accordance with the principle of no-signaling

(NS) have to ensure that the outcome probabilities for one party
must not depend on the setting of the other party in case the
relevant events are spacelike separated:

NS: P (B|b) = P (B|a,b) =
∑

A
P (A,B|a,b), (4)

and vice versa for P (A|a). Here,
∑

A P (A,B|a,b) =∑
A P (A|a,b) P (B|A,a,b), and the sum is taken over all

possible results A.2

Local realism implies both the Bell inequalities and the
no-signaling condition. However, while all local realistic
correlations are no-signaling, the opposite does not neces-
sarily hold. For instance, quantum mechanical correlations
or Popescu-Rohrlich boxes [22] are no-signaling but violate
local realism, which means that the correlations cannot be
decomposed as in Eq. (1). Thus, no-signaling does not allow
one to derive Bell’s inequalities. As one cannot reasonably
hope to disproove local realism by observing a violation of the
no-signaling condition, it is indeed necessary to check multiple
correlation functions and violate Bell’s inequality.

Now we turn to macrorealism. We consider a macro-
scopic object which is described by a set of macrovariables
{Q,Q′, . . .}, whose values are considered to be macroscop-
ically distinct by some measure [14]. Examples are the
coarse-grained position and momentum for heavy particles
in phase space, the charge and trapped flux in a superconduct-
ing quantum interference device (SQUID), or the magnetic
moment along different directions of large biomolecules. In

1Equivalently to Eq. (1), local realism guarantees the existence of
a joint probability distribution P (Aa1 ,Aa2 , . . . ,Bb1 ,Bb2 , . . .) for the
results of all possible (mutually exclusive) measurement results. Here,
Aa1 denotes Alice’s outcome for setting a1 and so on. In particular,
due to locality, there is no need to distinguish local outcomes for
different distant settings.

2For uncountable outcomes, integrals instead of sums are used.

a series of runs, the object is prepared in the same initial
state, and each preparation defines a new origin of the time
axis t = 0. Let us consider the case where macrovariable A ∈
{Q,Q′, . . .} is measured at time tA (tA > 0) and macrovariable
B ∈ {Q,Q′, . . .} at later time tB (tB > tA). (One may of course
choose A = B and measure the same observable twice.) The
induction postulate is reflected by the freedom of choosing the
measurement times independently of the properties of the ini-
tially prepared objects. In analogy with Eq. (1), macrorealism
predicts that the probability for observing the outcomes A at tA
and B at tB can we written as a convex combination of products
of probabilities where the later measurement outcome does not
depend on the earlier measurement:3

MR: P
(
AtA,BtB

) =
∑

λ
ρ(λ) P

(
AtA

∣∣λ
)
P (BtB |λ). (5)

There are two possible ways to define λ. For every preparation,
it can represent a complete catalog specifying all properties
{Q,Q′, . . .} of the object either (i) for all times or (ii) only at
the initial time. In case (i), given λ, the probabilities P (AtA |λ)
and P (BtB |λ) have to be either 0 or 1. This is due to the
postulate that every macrovariable must always have a definite
value. Stochastic time evolutions are taken into account by
a nontrivial distribution ρ(λ), allowing different λ even for
identically prepared objects. In case (ii), a complete description
λt of the object at later times t is not determined by λ, if the
time evolution is stochastic even when ρ(λ) is nonzero only
for one λ. The time evolution of λ must not be influenced by
the measurements.4

In contrast to macrorealism, quantum mechanics predicts
the outcome probability

QM: P
(
AtA,BtB

) = Tr[ρ̂(tA) M̂A] Tr
[
ρ̂AtA

(tB) M̂B

]
. (6)

Here, ρ̂(tA) is the state at time tA, M̂A and M̂B are the
measurement operators for outcomes A and B, and ρ̂AtA

(tB)
is the (reduced) quantum state at time tB given that at time tA
result A was obtained.

In the simplest case, a single macrovariable Q may
only obtain two different values Q = ±1. Macrorealism
restricts the allowed temporal correlations CtAtB ≡ 〈QtA QtB 〉
for measurements at tA and tB and implies the Leggett-Garg
inequalities (LGI) [3], e.g., of the CHSH type (t1 < t2 < t3 <

t4):

LGI: Ct1t2 + Ct2t3 + Ct3t4 − Ct1t4 � 2. (7)

3Equivalently to Eq. (5), macrorealism guarantees the existence
of a joint probability distribution P (Qt1 ,Qt2 , . . . ,Q

′
t1
,Q′

t2
, . . .) for

all macrovariables at all times. In particular, due to noninvasive
measurability, there is no need to distinguish later outcomes for
different possible actions at earlier times.

4Note the two different levels of “deterministic versus stochastic”:
One level asks whether the complete description at a later time follows
deterministically from the one at an earlier time. The other one
asks whether an individual outcome is determined by the complete
description at the time of measurement. A local realist is free to
answer both questions negatively. As a macrorealist, one is also free
regarding the first question but one has to answer the second one
positively. (If you limit yourself to Newtonian physics, you also need
to answer the first question positively.)
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There is a one-to-one correspondence with the CHSH version
of Bell’s inequality (3). Alice’s and Bob’s setting choices
correspond to the measuring times of Q in the following way:
a1 ↔ t1, b1 ↔ t2, a2 ↔ t3, b2 ↔ t4. (For a discussion about
“entanglement in time” see Ref. [23].)

A violation of the Leggett-Garg inequality is ubiquitous in
the microscopic quantum world [18,24–29] . An experimental
demonstration of macrorealism with its reference to macro-
scopically distinct states is, as pointed out above, still missing.
This is due to the fact that one needs to engineer time evolutions
(Hamiltonians) which build up macroscopic superpositions
in time [18] and to perform multiple temporal correlation
measurements before the superpositions are destroyed by
decoherence. Whenever one talks about macroscopic or
classical measurements of quantum systems, one should have
in mind coarse-grained measurements which bunch together
those quantum levels to “reasonable” [30] observables that are
neighboring in the sense of classical physics.

Based on Refs. [15–19] we now make the following
definition: “No-signaling in time: A measurement does not
change the outcome statistics of a later measurement.” No-
signaling in time (NSIT) is obeyed by all macrorealistic
theories and demands that the probability for macrovariable
B at time tB without any earlier measurement, P (BtB ), must
be the same as P (BtB |tA ) where also an earlier measurement of
an arbitrary macrovariable A has been made at tA:

NSIT: P
(
BtB

) = P
(
BtB |tA

) =
∑

A
P

(
AtA,BtB

)
. (8)

Here,
∑

A P (AtA,BtB ) = ∑
A P (AtA ) P (BtB |AtA ), P (AtA ) is

the probability for result A at tA, and P (BtB |AtA ) is the
probability for outcome B at tB , given result A was ob-
tained at tA. If we denote the probability amplitudes for
the results A by aA [|aA|2 = P (AtA )] and the transition
probability amplitudes from A to B by aA→B [|aA→B |2 =
P (BtB |AtA )], then the difference between the left and right hand
side of (8) reads P (BtB ) − P (BtB |tA ) = |∑A aA aA→B |2 −∑

A P (AtA ) P (BtB |AtA ). This shows that the violation of no-
signaling in time5 is exactly given by the quantum mechanical
interference terms [31].

No-signaling in time is the analog of the no-signaling
condition (4) in the sense that both are operationally testable
and can be viewed as statistical versions of noninvasive
measurability and locality, respectively. The key difference is
that a violation of no-signaling in time is not at variance with
special relativity and can be achieved by quantum mechanics.

Macrorealism implies both the Leggett-Garg-inequalities
and no-signaling in time. But the latter does in general not
allow one to derive Leggett-Garg inequalities, which can be
seen from the following (thought) experiment: Consider an
ensemble, where initially, at time t = 0, half of the systems
are in the state Q = +1 and the other half in Q = −1. Let

5The overlap between the two measured probability distributions
is, for example, quantified by κ ≡ ∑

B

√
P (BtB )P (BtB |tA ) ∈ [0,1]. A

violation of (8) can be stated if identical distributions (κ = 1) are
ruled out in a statistically significant way. The issues of finite data
sets, measurement inaccuracies, and statistical significance also arise
in tests of Bell or Leggett-Garg inequalities.

TABLE I. Local realism and macrorealism are largely analo-
gous in their conceptual relationships. The Bell and Leggett-Garg
inequalities are both violated by quantum mechanics (QM). The
key difference (written in italics) is that quantum mechanics obeys
no-signaling while it can violate no-signaling in time.

Local Realism (LR) Macrorealism (MR)

Bell inequality (BI) Leggett-Garg inequality (LGI)
No-signaling (NS) No-signaling in time (NSIT)
LR ⇒ BI MR ⇒ LGI
LR ⇒ NS MR ⇒ NSIT
NS � BI NSIT � LGI
QM � BI QM � LGI
QM ⇒ NS QM �NSIT

the time evolution be the macroscopic analog of a precessing
spin- 1

2 particle with frequency ω [24]. Macroscopic quantum
superpositions are produced in time in such a way that the
temporal correlation function for measurements at times tA
and tB reads CtAtB ≡ 〈QtA QtB 〉 = cos[ω(tB −tA)]. Suitable
measurement times allow for a (maximal) violation of the
Leggett-Garg inequality (7), while no-signaling in time is still
fulfilled between any pair of measurements: P (QtB =+1) =
P (QtB |tA =+1) = 1

2 . Due to the mixedness of the initial state,
the violation of macrorealism can hide in the statistics of condi-
tion (8). However, if a given Hamiltonian permits one to violate
macrorealism, then any initial pure state allows one to find
time instances tA and tB such that no-signaling in time can be
violated. To show this, it is enough to notice that a violation of
macrorealism requires interference of superposition branches.
An intermediate measurement destroys the interference term
and thus makes itself detectable at a later time.

Table I sums up the conceptual relationships in local realism
and macrorealism. It is worth mentioning that in principle
there exist situations where no-signaling is violated although
no sufficient number of settings is involved to construct a
Bell inequality. This is the case when Bob has only one
possible setting, say b2, and his outcome B reveals Alice’s
setting choice. Such a model violates local realism (1) and
no-signaling (4), but no Bell inequality can be constructed
with only two correlation functions Ca1b2 and Ca2b2 . Similarly,
if only two temporal correlations Ct1t4 and Ct3t4 are allowed
to be measured, no Leggett-Garg inequality can be violated.
However, a violation of macrorealism (5) and no-signaling in
time (8) remains detectable.

To exemplify the usefulness of no-signaling in time, we
consider a double-slit experiment with large objects. Each
object is emitted at the time t0, passes a double slit at time t1,
and arrives at a detection screen at time t2. As the macrovari-
able we choose the lateral position variable denoted by x. We
assume that the slit distance d is large enough to qualify for
the term “macroscopically distinct.” Now three experiments
are performed, each with many runs: (I) Both slits are open.
(II) The left slit is blocked by a detector. Only objects passing
the right slit will reach the detection screen at t2. These are the
ones which, according to a macrorealist, cannot be influenced
by the measurement at t1 at the other slit (ideal negative result
measurements [3,32]). (III) This is the same as experiment (II)
but with the right slit blocked. No-signaling in time predicts
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that the distribution PI(xt2 ) found in experiment (I) must be the
same as the weighted mixture PII&III(xt2|xt1

) of the single-slit
distributions found in experiments (II) and (III). Quantum
mechanics, on the other hand, predicts interference between
macroscopically distinct states, and thus an interference
pattern for PI(xt2 ), but no interference fringes for PII&III(xt2|xt1

).
It is important to note that there seems to be no way to write
down a violable Leggett-Garg inequality for the double-slit
experiment.

For a Mach-Zehnder interferometer, a three-time Leggett-
Garg inequality of the Wigner form [33], Ct0t1 + Ct1t2 −
Ct0t2 � 1, can be employed. Before the first beam splitter
(time t0), inside the interferometer (time t1), and after
the second beam splitter (time t2), there are always two
possible paths (Qt0 ,Qt1 ,Qt2 =±1). Depending on the four
parameters—the initial probability distribution for Qt0 , two
reflectivities, and one phase shift in the interferometer—one
can find regimes where the Leggett-Garg inequality is obeyed
but, according to quantum mechanics, no-signaling in time
is violated and others where the opposite is the case. For
instance, if both beam splitters are balanced with reflectivi-
ties 1

2 , the Leggett-Garg inequality becomes −Ct0t2 � 1 and
cannot be violated. No-signaling in time, on the other hand,
demands P (Qt2 ) = P (Qt2|t1 ) and is violated by an intermediate
measurement inside the interferometer at t1 for all parameter
choices which allow interference. In contrast, for an initial
mixture P (Qt0 =±1) = 1

2 , no-signaling in time cannot be
violated, while the Leggett-Garg inequality can be violated
for a suitable choice of reflectivities and phase. (For more
details see the Appendix.) This demonstrates that neither the
violation of the three-time Leggett-Garg inequality nor the
violation of no-signaling in time is necessary for a violation of
macrorealism.

Neither realism nor macrorealism per se can be tested on
their own, which is why experimental tests have to be carefully
designed to avoid loopholes. The three main loopholes in
Bell experiments—locality, fair sampling, and freedom of
setting choice—have all been closed individually [34–39].
In macrorealism, the noninvasiveness loophole should be
closed by performing ideal negative result measurements
[3,32], which has been achieved already for microscopic
systems [29]. Closing the fair sampling and freedom-of-choice
loopholes will require high detection efficiency and statistical
independence between the measured macroscopic object and
the chosen measurement times just as in Bell tests.

Assume that one day a loophole-free experiment is
performed which violates the Leggett-Garg inequality (or
no-signaling in time) for macroscopic observables, thereby
ruling out objective collapse theories [11–13]. The Bohmian
interpretation of quantum mechanics [40] would still claim a
well-defined position for every object at all times and allow
for a description obeying macrorealism per se (as it would still
provide a realistic description of a loophole-free Bell test).
Ideal negative result measurements do not change the position
macrovariables themselves, but they alter their subsequent time
evolution due to an instant (nonlocal) change of the quantum
wave function which serves as a guiding potential, thus
violating the noninvasiveness condition. Bohmian mechanics
is realistic, nonlocal, and no-signaling in the language of Bell,
and it is macrorealistic per se, invasive, and signaling in time

in the language of Leggett-Garg and the present paper. Even
if, as the authors, one does not adhere to this interpretation,
this indicates a deeper connection between locality and
noninvasive measurability beyond their formal analogy.

Conclusion. We have identified “no-signaling in time” as
an alternative necessary condition for macrorealism which is
different from the Leggett-Garg inequalities. Both conditions,
no-signaling in time and the Leggett-Garg inequalities, are
implied by macrorealism, but in general neither implies the
other and neither violation is necessary for a violation of
macrorealism. However, there are two main advantages of no-
signaling in time, making it appealing for future experiments:
(1) While a Leggett-Garg test needs to involve at least three
possible measurement times, no-signaling in time requires
only two, allowing for tests in situations, where Leggett-Garg
inequalities cannot be used at all. (2) As no-signaling in time
can be violated by any nonvanishing interference term, it
usually can be violated for a much wider parameter regime
than the Leggett-Garg inequalities. Finally, one might argue
that a violation of no-signaling in time is a direct violation
of noninvasive measurability and that one is interested only
in those situations where no-signaling in time is obeyed but a
Leggett-Garg inequality is violated. However, we note that
a violation of no-signaling in time—just as a violation of
the Leggett-Garg inequality—can be achieved using ideal
negative measurements. Violating no-signaling in time is
thus no more a violation of noninvasive measurability (or
of macrorealism per se) than a violation of the Leggett-Garg
inequality itself. In summary, our paper has shown that the step
from a stage 2 experiment (showing quantum interference of
macroscopically distinct states) to a stage 3 experiment (stage 2
and simultaneously ruling out macrorealism) does not require
the complexity of the Leggett-Garg inequalities. It suffices to
test the simpler criterion of no-signaling in time.

Note added in proof. Recently, a related work [41] has been
submitted and published.

We acknowledge discussions with M. Aspelmeyer, J. I.
Cirac, B. Dakić, O. Romero-Isart, and A. J. Leggett.

APPENDIX

Let us consider in more detail the example of a Mach-
Zehnder interferometer (see Fig. 1). Because there are always
two possible paths before the first beam splitter (time t0), inside
the interferometer (time t1), and after the second beam splitter
(time t2), the macrovariable Q can always take one of two

t0 t1

R1

+1
q

1 q–

+1

+1

–1
–1

–1

R2

t2

FIG. 1. Schematic of the Mach-Zehnder interferometer.
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possible values: Qt0 ,Qt1 ,Qt2 = ± 1. The reflectivities of the
first and second beam splitter are denoted by R1 and R2, and
the phase shift in the lower arm is called ϕ. We choose an
arbitrary initial distribution P (Qt0 = + 1) = q, P (Qt0 = −
1) = 1 − q of incoming objects in a mixed quantum state
q|+1〉〈+1|+(1 − q)|−1〉〈−1| with |+1〉 and |−1〉 correspond-
ing to the macrovariable values +1 and −1, respectively.

Quantum mechanics predicts the following temporal corre-
lations Cti tj = ∑

k,l=±1 k l P (Qti = k,Qtj = l) between times
ti and tj :

Ct0t1 = 1 − 2 R1,

Ct1t2 = 2 R2 − 1, (A1)

Ct0t2 = −1 + 2 R1 + 2 R2 − 4 R1R2 + 4
√

R1T1R2T2 cos ϕ,

with the transmittances T1 = 1 − R1 and T2 = 1 − R2. The
correlation functions are independent of q because the first
measurement always acts as a preparation for the second.
The Leggett-Garg inequality K ≡ Ct0t1 + Ct1t2 − Ct0t2 � 1
reads

1 − 4 R1T2 − 4
√

R1T1R2T2 cos ϕ � 1. (A2)

The maximum violation of K = 1.5 is achieved for R1 = 1
4 ,

R2 = 3
4 , and ϕ = π . No violation is possible, e.g., if R1 =

R2 = 1
2 , because then Ct0t1 and Ct1t2 vanish and the remaining

inequality −Ct0t2 � 1 is always fulfilled.
No-signaling in time demands

P
(
Qt2 =+1

) =
∑

Qt1 =±1
P

(
Qt1 ,Qt2 =+1

)
. (A3)

The left hand side is the probability for outcome +1 at
time t2 without any prior measurements and is, according
to quantum mechanics, given by 1

2 + 1
2 (2q − 1) C02. The

right hand side is the same probability but taken in the case
of an intermediate measurement at time t1, and it is given
by 1

2 + (2q − 1) (− 1
2 + R1 + R2 − 2 R1R2). The difference

between left and right hand sides, which must vanish if
no-signaling in time holds, reads

2 (2q − 1)
√

R1T1R2T2 cos ϕ = 0. (A4)

This is violated whenever the parameters allow for interfer-
ence, i.e., when neither of the reflectivities is 0 or 1, the phase
is unequal to π

2 and q is unequal to 1
2 . The biggest violation

(largest interference) is achieved for R1 = R2 = 1
2 , q = 0 or

1, and ϕ = 0 or π .
For many parameter choices the Leggett-Garg inequality

and no-signaling in time are both violated or both fulfilled.
However, there are also parameter regimes (e.g., R1 = 1

4 ,
R2 = 3

4 , ϕ = π , and q = 1
2 ) for which quantum mechanics

violates the Leggett-Garg inequality while no-signaling in
time is fulfilled, and others (e.g., R1 = 1

2 , R2 = 1
2 , ϕ = π , and

q = 1) for which no-signaling in time is violated while the
Leggett-Garg inequality is satisfied. This demonstrates in gen-
eral that—although both the Leggett-Garg inequality and no-
signaling in time are a consequence of macrorealism—neither
of these two criteria implies the other. Therefore, neither the
violation of the Leggett-Garg inequality nor the violation of
no-signaling in time is a necessary condition for a violation of
macrorealism.
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