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Two-qubit non-Markovianity induced by a common environment
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We study non-Markovianity as backflow of information in two-qubit systems. We consider a setting where,
by changing the distance between the qubits, one can interpolate between independent reservoir and common
reservoir scenarios. We demonstrate that non-Markovianity can be induced by the common reservoir and single
out the physical origin of this phenomenon. We show that two-qubit non-Markovianity coincides with instances
of nondivisibility of the corresponding dynamical map, and we discuss the pair of states maximizing information
flowback. We also discuss the issue of additivity for the measure we use and in doing so give an indication of its
usefulness as a resource for multipartite quantum systems.
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I. INTRODUCTION

Exploiting quantum correlations, such as entanglement, as
resources for quantum information revolves around the major
obstacle of preserving them from the detrimental interaction
with the environment [1,2]. Efficient schemes for the pro-
tection of correlations generally require detailed knowledge of
the microscopic processes that induce environmental noise. To
this aim we consider a simple bipartite system of two spatially
separated qubits immersed in a non-Markovian structured
environment. In such an environment memory effects exist
as a result of complex system-environment coupling, and
consequently quantum properties can be temporarily restored.
Motivated by the future prospect of scalable quantum devices
requiring multipartite systems, and in view of the fact that
non-Markovianity is a resource for quantum technologies [3],
we study how environment-mediated interactions enhance
memory-keeping properties and affect the behavior of non-
Markovianity in two-qubit channels. Our main focus is on
correlated noise induced by the common environment. By
changing the separation between the qubits we are able to
interpolate between local and common reservoir scenarios and
explicitly study the effect of environment-mediated correla-
tions on the degree of non-Markovianity of the two-qubit
dynamical process.

In order to systematically investigate the ability of an
open system to regain quantum properties, it is important to
unambiguously define and quantify non-Markovian dynamical
behavior. Here we consider two measures of non-Markovianity
recently introduced by Breuer, Laine, and Piilo (BLP) [4] and
Rivas, Huelga, and Plenio (RHP) [5]. These measures are based
on similar but subtly different definitions of non-Markovianity,
i.e., backflow of information from the environment to the
system and nondivisibility of the dynamical process, respec-
tively. The definitions agree for some dynamical processes;
however, this is generally not the case [6–8]. The origin and
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extent of differences of these measures are active areas of
research, albeit with most current studies focusing on single-
qubit dynamical processes. The present study, comparing and
contrasting the measures for a two-qubit system, is therefore
also of fundamental interest.

Non-Markovianity measures characterize and quantify cer-
tain properties of quantum dynamical maps and, therefore, do
not depend on the initial state of the open quantum system.
In practice this means that they are defined via optimization
over all possible initial states. As a consequence they are
increasingly difficult to calculate for multiqubit systems.
Moreover, these measures are in general not additive; hence, it
is not possible to reduce the calculation of non-Markovianity
of an n-qubit channel to the one of a single-qubit channel even
when the qubits are subjected to identical local uncorrelated
reservoirs [9]. All previous studies on non-Markovianity as
information flow in two-qubit systems focus on the simpler
case of local environments [9–12]. The model considered here
studies BLP and RHP non-Markovianity in a common envi-
ronment scenario in order to demonstrate how environment-
mediated correlations create non-Markovian dynamics via
correlated noise.

This article is organized as follows. In Sec. II we introduce
our model and the master equation describing the dynamical
evolution of the system. In Secs. III and IV we study the
two non-Markovianity measures mentioned above in relation
to relevant system parameters, commenting on the optimizing
pair and the additivity property of the BLP measure. Finally, in
Sec. V we summarize our results and present our conclusions.

II. THE MODEL

We consider a system of two qubits, spatially separated by
distance 2D and dephasing under the influence of a bosonic
reservoir with a nontrivial spectral density function. The model
was introduced originally in Refs. [13,14]; however, we will
later specify our calculations on a physically realistic system
with a more complex spectral density function [15]. When
D → ∞ the dynamical map factorizes into the product of
the dynamical maps of the individual qubits, �(t) = �A(t) ⊗
�B(t), where subscript A refers to the first qubit and B refers
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to the second one. For finite distances D, however, this is not
the case and the qubits are subjected to correlated noise, i.e.,
to environment-mediated interactions. On the one hand, the
conditions for this system to induce non-Markovian dynamics
on a single qubit have been recently studied in Refs. [16,17].
On the other hand, a link between the dynamical evolution of
the qubits and their spatial separation has been considered
in Refs. [18,19], even if not in connection with reservoir
memory effects. Our goal is to study the interplay between the
environmental spectrum and the spatial separation in creating
non-Markovian dynamics for this two-qubit model, focusing
especially on the ability of correlated quantum noise to induce
a backflow of information.

We have derived the master equation describing the dy-
namics of the two qubits starting from the exact analytical
expression of the density matrix of two qubits at all times
given in Refs. [13,14]. For the model here studied it is
possible to solve the dynamics of the total closed system
exactly and obtain the reduced system dynamics by taking
the partial trace. Following straightforward calculations, the
master equation can be recast in the following Lindblad-type
form with time-dependent coefficients:
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where the decay rates are given as the sum and the difference
of

γ1(t) = 1

2

d�0(t)

dt
, γ2(t) = 1

4

dδ(t)

dt
. (2)

Here �0(t) is the decoherence function describing individual
dephasing of each qubit and δ(t) encapsulates the corrections to
the single-qubit dephasing arising from environment-mediated
interactions. In the limit of the qubit separation going to infinity
the latter vanishes and the master equation reduces to a sum of
two Lindblad-type terms describing the individual dephasing
of each qubit with decay rate γ1(t). We note that the single-
qubit decoherence function �0(t) and the correction term δ(t)
are connected to the collective decoherence functions,

�±(t) = 2�0(t) ± δ(t), (3)

of [13]. Physically �+(t) and �−(t) describe the decay of the
super- and subdecoherent two-qubit states, |�±〉 = 1√

2
(|10〉 ±

|01〉) and |�±〉 = 1√
2
(|00〉 ± |11〉), respectively. Decay of the

superdecoherent state is enhanced by environment-mediated
interaction, whereas the decay of the subdecoherent state is
suppressed by it. It should be noted that the explicit form and
physical meaning of the decay rates �±(t) appearing in the
two-qubit channel remain general while their functional form
is dependent on the specific model studied.

Initially the two qubits dephase individually as if coupled
to independent environments. At some later time, if the qubits

are sufficiently close together, they are able to “see” each
other via correlations arising through an interaction mediated
between them by the environment, formally contained in δ(t).
This interaction becomes increasingly weak as the separation
between the qubits increases, effectively approaching zero
at sufficiently large distances [15]. This model is therefore
particularly interesting because it allows insight into these
two possible physical scenarios through simply changing the
separation between the qubits. In the following sections we
study the dynamics of the decay rates, connecting them to two
prevailing definitions of non-Markovianity.

III. DECAY RATES AND DIVISIBILITY

Useful information on the dynamical properties of the two-
qubit system is contained in the specific time dependence of
the decoherence rates appearing in the master equation Eq. (1).
A completely positive trace preserving (CPT) map �(t,0) :
ρ(0) �→ ρ(t) is called divisible if �(t,0) = �(t,t ′)�(t ′,0),
where �(t,t ′) and �(t ′,0) are CPT maps ∀t ′. For master
equations in the diagonal form, such as the one of Eq. (1),
the divisibility property is reflected in the coefficients of the
master equation. Divisibility, in turn, is crucially related to
non-Markovianity. For all known non-Markovianity measures
N a finite value N 
= 0 implies that the dynamical map
is nondivisible. In particular, the RHP measure explicitly
quantifies nondivisibility of the dynamical map, NRHP 
= 0
if and only if the dynamical map is nondivisible [5].

For time-local master equations in Lindblad-type form the
map is divisible whenever all time-dependent decoherence
rates, i.e., γ1(t) ± γ2(t) in the case of our model, are positive
at all times. Conversely, if at least one of the time-dependent
coefficients temporarily takes negative values, then the dynam-
ical map is not divisible.

Since the negativity of the decay rates depends crucially
on the spectral density function characterizing the properties
of the environment and the qubit-environment coupling, in
the following, for the sake of concreteness, we will focus
on a specific experimentally realizable physical system. The
setup we consider comprises two impurity atoms dephasing
due to an interaction with an ultracold bosonic rubidium
gas in a Bose-Einstein condensed (BEC) state, introduced in
detail in the Appendix. Each atom is trapped in double-well
potential, forming a qubit system where the two-qubit states
are represented by the occupation of the atom in either the
left or the right well. The two impurity atoms are separated
by distance 2D � 8L, with 2L being the distance between the
two minima for the double-well potential, i.e., the “size” of
the qubit. It has been shown in Refs. [16,17] that this qubit
system is particularly sensitive to non-Markovian effects. The
properties of the bosonic gas can be controlled by modifying
its trapping potential (in this way one may change the effective
dimensionality of the BEC) and/or changing the boson-boson
scattering length aB from its natural value aRb via Feshbach
resonances (allowing interpolation from a free to an interacting
background gas). The dynamics of a single impurity immersed
in the BEC gas was studied in Ref. [16], where it was reported
that the dynamics of the single dephasing qubit is sensitive
to the scattering length aB of the BEC. A critical value
of the scattering length, denoted acrit

B and depending on the
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FIG. 1. (Color online) (a) The independent reservoir, D = 200L.
(b) The common reservoir case, D = 4L. Time-dependent coeffi-
cients γ1(t) (blue dashed line) and γ2(t) (blue solid line) are shown in
the first column, with γ1(t) + γ2(t) (red dashed line) and γ1(t) − γ2(t)
(red solid line) in the second column. The scattering length is chosen
to be 0.02aRb < acrit

B to ensure the one-qubit channel is Markovian
for all times t and aRb is the natural scattering length of a rubidium
condensate; see the Appendix. Insets: zoom on small values of the
decay rates.

dimensionality of the BEC, was found to specify where the
crossover between Markovian and non-Markovian behavior
occurred. If the background gas is noninteracting or very
weakly interacting, i.e., 0 � aB � acrit

B , the qubit dynamics is
Markovian. If the background gas has stronger interactions,
i.e., aB > acrit

B , qubit dynamics has signatures of reservoir
memory effects.

We now study the nondivisibility of the two-qubit dy-
namical map, signalled by temporarily negative decay rates.
Choosing the BEC scattering length and the distance between
the two qubits appropriately, we can consider the cases when
the single-qubit dynamics is Markovian or non-Markovian and
the cases when the qubits are effectively in local or common
environments.

We begin by looking at the case in which D/L � 1, i.e.,
the qubits are subjected to uncorrelated noise and values of
the scattering length such that each one-qubit dynamical map
is Markovian, i.e., γ1(t) is always positive (see Fig. 1, upper
row). We note that, while γ2(t) ≈ 0 at all times as expected,
γ1(t) increases initially but, after a certain time, decreases
to zero, meaning that the dephasing of the individual qubits
stops.

Keeping all other parameters fixed, we now decrease the
distance between the qubits, and we see that, after a short time
interval, the cross-talk term γ2(t) begins taking negative values
(see Fig. 1, lower row). More precisely, the maximum negative
value of γ2(t) is reached when γ1(t) is already significantly
small. As a consequence the decoherence rate γ1(t) + γ2(t)
takes negative values, indicating that the two-qubit dynamical
map is nondivisible. This feature is not specific to the values
of parameters chosen in Fig. 1 but occurs for any initial values
of aB such that, when D/L � 1, the map is Markovian.
Therefore we can uniquely link the presence of correlated

noise to the violation of divisibility and, hence, to a nonzero
value of the RHP non-Markovianity measure.

To conclude, the presence of the “cross-talk” term γ2(t)
is sufficient to break divisibility in the combined system
regardless of the fact that the individual qubit dynamics is
divisible. More generally, whenever the qubits are subjected
to Markovian local dynamics, i.e., γ1(t) (a term independent
of qubit separation) is always positive, nondivisible nonlocal
dynamics of the two qubits can result only from the action of
correlated noise.

In order to gain further insight in the microscopic physical
processes of the composite system, we will look in the next
section to the behavior of information flux. Our aim is to see
whether the cross-talk term acts as the reservoir memory, i.e.,
if it is responsible for backflow of information. To answer this
question we need to study the BLP non-Markovianity measure,
which, as we mentioned in the Introduction, does not always
coincide with the RHP measure.

IV. INFORMATION FLUX AND
NON-MARKOVIANITY MEASURE

The BLP measure of non-Markovianity is based on the
behavior of information flux between system and environment
[4]. According to this definition, a system is non-Markovian
when part of the information that was lost into the environment
due to decoherence and/or dissipation is temporarily restored
in the system. To quantify this process one can use the
trace distance between two states as a measure of their
distinguishability and equate decrease of distinguishability
with loss of information about the system. Hence, the rate of
change in trace distance D(ρ1(t),ρ2(t)) = 1

2 Tr|ρ1(t) − ρ2(t)|,
where ρ1,2(t) = �(t,0)ρ1,2(0) are two initial states evolving
under the dynamical map �(t,0), can be interpreted as an
information flux σ :

σ (t,ρ1,2(0)) = d

dt
D(ρ1(t),ρ2(t)). (4)

A decrease in the trace distance represents information flowing
from the system into the environment, and an increase
represents a backflow of information from the environment
to the system. The total increase of distinguishability over the
whole time evolution quantifies the total amount of information
flowing from the environment back into the system and
therefore is defined as a measure for non-Markovianity:

NBLP = max
ρ1,ρ2

∫
σ>0

ds σ (s). (5)

The time integration is extended over all time intervals for
which σ is positive, and the maximum is taken over all pairs of
initial states, ρ1,2. Therefore the non-Markovianity is defined
as the maximal amount of information that the system can
possibly recover from its environment. A dynamical map
which is divisible always describes Markovian dynamics in
terms of information flow; however, the converse is generally
not always true [6–8].

The maximization in Eq. (5) complicates the calculation
of the BLP measure of non-Markovianity. In Ref. [20] the
mathematical and physical properties of the optimal pairs
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FIG. 2. (Color online) Non-Markovianity measureNBLP (the largest value in each column of the plot) as a function of distance D/L between
qubits, for scattering lengths (a) 0.02aRb

B < acrit
B (locally Markovian dynamics) and (b) 0.50aRb

B > acrit
B (locally non-Markovian dynamics). The

graph shows 20 000 randomly drawn pairs of initial states. The pairs are classified into different categories and color coded accordingly as
elaborated in the key on the right. The layers of dense points are given in order (starting from the bottom): separable, mixed, pure and mixed,
pure states, and maximally entangled states.

corresponding to the maximal backflow of information from
the environment to the system are characterized, simplifying
the maximization, but finding the optimal pair for a two-qubit
dynamical process still remains a difficult task. To this aim,
we calculate the measure by randomly generating pairs of
states and classifying them into pure, mixed, separable, and
maximally entangled states, including the Bell states.

A. Non-Markovianity dependence on qubit separation

We will now study how NBLP changes with the distance
between the qubits. We first consider the case of a weakly
interacting BEC reservoir inducing local Markovian dephasing
of the single qubits (Fig. 2, left plot). The plot clearly shows
that the non-Markovianity measure decreases as the qubits
become further and further apart and vanishes for a long
enough spatial separation between the qubits. This is consistent
with the previous results (see Fig. 1, first row): when the qubits
are very far apart, D/L � 30, they effectively interact with
independent environments, and since each qubit individually
dephases in a Markovian way the combined dynamics is
also Markovian. For shorter qubit separations, the measure
is nonzero, and therefore the dynamics is not only indivisible
(see Fig. 1, second row) but also non-Markovian in terms of
backflow of information: more precisely, NBLP 
= 0 whenever
NRHP 
= 0. We can therefore identify the reservoir memory
inducing the information backflow with the correlated noise
and, in particular, with the cross-talk term.

When the BEC interactions are stronger, i.e., for larger
values of the scattering length aB , the local dephasing is always
non-Markovian as the backaction of the reservoir on the system
is non-negligible also when the qubits are far apart. In this case
the BLP measure tends to a constant nonzero value at the point
where environment-mediated interactions vanish (D/L ≈ 30).
The value of non-Markovianity saturates and NBLP does not
change for greater distances between the qubits.

B. Non-Markovianity dependence on scattering length

In order to fully characterize the behavior of information
flux, we now study how this quantity changes when, for

fixed distances, we vary the scattering length of the ultracold
reservoir gas. It is worth mentioning that, while a change
in the distance between the qubits can be seen as a change
in the effective cutoff frequency of the reservoir spectrum,
changing aB modifies the form of the spectrum itself and, in
particular, its Ohmicity character [16]. It has been shown that
for purely dephasing qubits the form of the spectrum, and more
precisely its low-frequency component, has a strong effect
on the presence of information backflow [21]. Therefore we
expect NBLP to be sensitive to changes in aB , as can be already
seen from Fig. 2.

In Fig. 3 we plot the BLP measure as a function of the
scattering length aB for two values of qubit separations D/L =
200 and 4, representing an independent (uncorrelated noise)
and a common (correlated noise) environment, respectively.
For D/L = 200, if aB > acrit

B , we expect non-Markovian
behavior originating purely from the dynamics of the single
qubit. There exists a crossover between Markovian and
non-Markovian processes, as found in Ref. [16], due to the
single-qubit dynamical dependence on the scattering length.
Only in the presence of environment-mediated interactions
between the two qubits (Fig. 3, D/L = 4), the combined
system can exhibit non-Markovian dynamics for aB < acrit

B .
Indeed, we see that even for very weakly interacting gases
we can have NBLP 
= 0. Hence, the presence of correlated
noise makes the system non-Markovian for all values of the
scattering length.

Generally, for aB > acrit
B , both single-qubit non-

Markovianity and environment-mediated non-Markovianity
contribute to the total values of NBLP in a nontrivial way.
While the single-qubit local non-Markovianity, governed by
the negativity of γ1(t), monotonically increases with aB

after the threshold value corresponding to Markovian to
non-Markovian crossover, non-Markovianity of the composite
two-qubit system in the presence of correlated noise initially
increases, reaches a maximum value, and then decreases with
aB (Fig. 3, D/L = 200). This can be traced back to the
behavior of the time-dependent coefficients. In particular,
for increasing scattering length, the environment-mediated
interactions become weaker [γ2(t) is smaller], and hence the
contribution of this term to NBLP decreases.
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FIG. 3. (Color online) Non-Markovianity measure NBLP (the largest value in each column of the plot) as a function of scattering length aB

between qubits for separation (a) D = 200L (independent reservoir) and (b) D = 4L (common reservoir). The graph shows 20 000 randomly
drawn pairs of initial states. The pairs are classified into different categories and color coded accordingly as elaborated in the key on the right. The
layers of dense points are given in order (starting from the bottom): separable, mixed, pure and mixed, pure states, and maximally entangled states.

C. Optimizing pair

In this section we examine the optimization procedure on
which the BLP measure is based by studying numerically
the pair of states for which the backflow of information is
maximized. This is arguably the most complicated system for
which the optimizing pair has been studied in full detail. Our
analysis shows that the optimizing pair is extremely sensitive
to even small variations in the values of the open system
parameters. More specifically, the pair optimizing the BLP
measure alternates between two different pairs of states when
changing both the scattering length and the distance between
the qubits. This underlines the practical difficulties in using
the BLP measure for increasing number of qubits.

We have compelling numerical evidence that there are two
candidates for the pair maximizing the measure. The first
pair (�+,�−) corresponds to the subdecoherent Bell states
[decohering with rate �−(t)], while the second pair (�+,�−)
comprises the superdecoherent Bell states [decohering with
rate �+(t)]. The analytical expression for the BLP measure is
then

NBLP = max{N�,N�}, (6)

where N� = ∑
i e

−�−(bi ) − e−�−(ai ) is the measure if the
subdecoherent Bell states form the maximizing pair andN� =∑

i e
−�+(bi ) − e−�+(ai ) is the measure if the superdecoherent

Bell states form the maximizing pair. Time intervals t ∈ [ai,bi]
indicate the periods of information backflow, manifested as
d�±(t)/dt ∼ γ1 ± γ2 < 0.

We demonstrate the sensitivity of the maximizing pair
on the model parameters in Fig. 4 by plotting N� and
N� as a function of the qubit separation. When the qubits
share a common environment, corresponding to D/L � 30,
the pair maximizing the measure depends strongly on the
distance between the two qubits, alternating between the two
subdecoherent and the superdecoherent pairs. This can be
traced back to the dynamical behavior of γ2(t) and its absolute
value in relation to the value of γ1(t). Due to the complex
evolution of γ2(t) the relative values of the two decoherence
functions �±(t) oscillate with increasing distance, which is
directly reflected in the relative values of N� and N� . For
large qubit separations, the decoherence factors converge in
the absence of environment-mediated interactions, �±(t) →

2�0(t). Consequently for D/L � 30, the differences between
N� and N� diminish until in the case of effectively local
environments both pairs maximize the measure.

Equation (6) also demonstrates the qualitative agreement of
the BLP and RHP measures of non-Markovianity. Recall that
the latter is nonzero if either of the decay rates γ1(t) ± γ2(t)
takes temporarily negative values. This immediately implies
that either N� or N� is nonzero, therefore proving that for the
model considered here nondivisibility of the two-qubit map
exactly coincides with information backflow.

D. Additivity issues for the non-Markovianity measure

One of the ultimate goals of the theory of non-Markovian
open systems is to contribute to better quantum technologies.
A typical task in quantum information processing must
eventually extend to larger multipartite systems consisting of
n qubits, and therefore it is of great importance to understand
the scaling properties of non-Markovianity measures. Thus,
as a final step to complete the picture on two-qubit non-
Markovianity we study the relationship between the degrees
of non-Markovianity of the two-qubit channel, denoted N2,
and the local single-qubit channel denoted by N1.

When a given measure requires optimization over ini-
tial states, the task of calculating non-Markovianty quickly
becomes impractical for a larger number of qubits. It is
therefore desirable to find links between the amount of

FIG. 4. (Color online) Maximizing states: non-Markovianity
measure NBLP = max{N�,N�} (the highest value at each instance)
as a function of distance between qubits, D, for scattering lengths
(a) 0.02aRb

B < acrit
B (locally Markovian dynamics) and (b) 0.50aRb

B >

acrit
B (locally non-Markovian dynamics). The red solid line represents
N� and the blue dashed line represents N� .

052109-5



C. ADDIS et al. PHYSICAL REVIEW A 87, 052109 (2013)

FIG. 5. (Color online) Additivity of the non-Markovianity measure:N� (red solid line),N� (blue dashed line), and 2N1 (black solid line) as a
function of scattering length aB , for qubit separations of (a) D = 200L, (b) D = 20L, and (c) D = 4L. Recall thatN2 = NBLP = max{N�,N�}.

non-Markovianity in multiqubit channels and single-qubit
channels. We present here a study of additivity of the BLP
measure and show how this can vary greatly depending on the
factorizability of the map.

When the two-qubit map factorizes in the limit of large
qubit separation, �(t) = �A(t) ⊗ �B(t), we discover a simple
connection between the single-qubit non-Markovianity and the
two-qubit non-Markovianity for the pure dephasing model:

N2 = (e−�0(b) + e−�0(a))N1. (7)

Recall that �0(t) is the single-qubit decoherence factor, and
the corresponding decay rate has at most a single period of
negativity in the ultracold realization of the dephasing model
considered: γ1(t) < 0 when t ∈ [a,b]. Naturally for aB < acrit

B

we have N1 = 0 leading to N2 = 0: the two-qubit map is
Markovian in the absence of single-qubit non-Markovianity
and environment-mediated interactions. When aB > acrit

B , i.e.,
the single-qubit channel is non-Markovian, e−�0(b) + e−�0(a) �
2, demonstrating that even in the simple case when the
two-qubit channel factorizes into two identical single-qubit
channels the BLP measure is not additive. Instead, in this case,
N2 < 2N1, i.e., the measure is subadditive.

Interestingly, in the case when the qubits share a common
environment the situation is reversed and the BLP measure
is superadditive, N2 > 2N1. The additivity properties of the
full dynamical map have been assessed numerically, and two
instances are shown in Fig. 5. The figures also show that the
closer the qubits are to each other the larger is the difference
|2 N1 − N2|. This clearly demonstrates the ability of the
shared environment to enhance memory-keeping properties
of the two-qubit map.

Depending on whether one wants to enhance or suppress
non-Markovianity in a register of qubits, the pure dephasing
model can be engineered by decreasing or increasing the dis-
tance between qubits, respectively, allowing for an additional
degree of control of the register dynamics.

It is an interesting open question if the subadditivity of
the BLP measure in the local environment scenario and
superadditivity in the common environment case extend
beyond the two-qubit case. An affirmative answer would imply
that non-Markovianity scales more favorably in the common
environment case. Understanding the additivity properties of
non-Markovianity measures is significant when using memory
as a resource, and our results highlight the importance of a
suitable physical realization of a qubit register: the scaling

of the non-Markovianity measure can crucially depend on
whether the qubits share the same environment or not.

V. CONCLUSIONS

We have studied a system of two qubits dephasing in a
structured environment. By explicitly taking into account the
spatial separation between the qubits we are able to interpolate
between a common environment scenario, with the qubits
close to each other, and an independent environment case,
when the qubits are too far apart to influence each other. In
the former case the dynamics is characterized by correlated
noise, arising from environment-mediated correlations. Our
focus was on the degree of non-Markovianity of the two-qubit
map, quantified either in terms of nondivisibility of the
map or by the amount of information that the system can
recover from the environment. These two characterizations of
non-Markovianity, which generally do not agree, were shown
to coincide qualitatively for the model considered here.

Specifying our study to a physical realization of this model
using optically trapped ultracold gases, we singled out the
microscopic origin of memory effects. In this case non-
Markovianity emerges from the interplay of correlated noise
and single-qubit memory effects due to a nontrivial structure of
the reservoir. When the local single-qubit dynamics is Marko-
vian, two-qubit non-Markovianity can only emerge from corre-
lated noise. More generally, the degree of non-Markovianity is
amplified when the qubits share an environment, highlighting
the key role of correlated noise in non-Markovian systems.
Moreover, the effect of the common environment is also
reflected in the global behavior of the non-Markovianity
measured based on information flux. Actually, when the two
qubits are very close to each other, the non-Markovianity
measure is superadditive. Interestingly, when the qubits are in
local environments the situation is reversed and the measure
is subadditive. Additivity properties affect the scaling of non-
Markovianity measures for large qubit registers, potentially
influencing the use of non-Markovianity as a resource for quan-
tum technologies in a crucial way. We also discussed the pair of
states optimizing the BLP measure and demonstrated the ex-
treme sensitivity of the optimal pair on the system parameters.
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APPENDIX: PHYSICAL MODEL

In this work we consider a specific physical realization of
the dephasing two-qubit model in order to explicitly explore
the dynamics. The qubit takes physical form as an impurity
atom occupying a double-well potential with an optical

superlattice of wavelength λ. The distance between lattice
sites, i.e., the size of the qubit, is L = λ/4. The minimum
distance between qubits, where the two qubits occupy four
consecutive lattice sites, is 2Dmin = 8L. The superlattice is
immersed in a Bose-Einstein condensed (BEC) environment.
We assume the condensate is trapped in a shallow potential and
can be consider to be homogeneous. We also assume the gas
to be weakly interacting, justifying the Bogoliubov approach.
The specific forms of γ1(t) and γ2(t) for this system, originally
derived in Ref. [15], are

γ1(t) = g2
SEn0

h̄π2

∫ ∞

0
dkk2e−k2σ 2/2 sin

(
Ek

2h̄ t
)

cos
(

Ek

2h̄ t
)

(εk + 2gEn0)

[
1 − sin(2kL)

2kL

]
,

γ2(t) = g2
SEn0

2h̄π2

∫ ∞

0
dkk2e−k2σ 2/2 sin

(
Ek

2h̄ t
)

cos
(

Ek

2h̄ t
)

(εk + 2gEn0)

{
sin[2k(D + L)]

2k(D + L)
+ sin[2k(D − L)]

2k(D − L)
− 2

sin(2kD)

2kD

}
,

where gE = 4πh̄2aE/mE is the boson-boson coupling con-
stant for a BEC environment with scattering length aE

and mass mE and gSE = 2πh̄2aSE/mSE is the coupling
between the condensate (environment) and the impurity atom
(system) with scattering length aSE and reduced mass mSE =
mSmE/(mS + mE). Ek =

√
2εkn0gE + ε2

k is the energy of the

kth Bogoliubov mode, where n0 is the condensate density
and εk = h̄2k2/(2mE). Finally, σ is the variance parameter
of the lattice site. We consider specifically 23Na impurity
atoms immersed in a 87Rb condensate, with λ = 600 nm and
n0 = 1020 m−3. The natural scattering length of the rubidium
atoms is aRb = 99a0, where a0 is the Bohr radius, and we
further assume aSE = 55a0.
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