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Non-Markovian quantum state diffusion for an open quantum system in fermionic environments
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Non-Markovian quantum state diffusion (NMQSD) provides a powerful approach to the dynamics of an open
quantum system in bosonic environments. Here we develop a NMQSD method to study the open quantum system
in fermionic environments. This problem involves anticommutative noise functions (i.e., Grassmann variables)
that are intrinsically different from the noise functions of bosonic baths. We obtain the NMQSD equation for
quantum states of the system and the non-Markovian master equation. Moreover, we apply this NMQSD method
to single- and double-quantum-dot systems.
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I. INTRODUCTION

The theory of open quantum systems has become an
increasingly important topic in, e.g., quantum information
science, quantum measurement, and quantum optics. Tra-
ditionally, the dynamics of an open quantum system was
often investigated using a Markov master equation derived
by invoking the Born-Markov approximation. However, this
formalism fails for many solid-state systems (see, e.g., Ref. [1])
where the system-environment coupling is strong and the
environment is structured. Thus a non-Markovian master
equation is required when considering the memory effect and
back action of the environment. It is known that the derivation
of an exact non-Markovian master equation has long been a
challenging task. One of the breakthroughs is the exact non-
Markovian master equation for quantum Brownian motion
model derived by Hu et al. [2] using the Feynman-Vernon
influence functional path-integral method [3].

Of all the theoretical strategies used to deal with open
quantum systems, a non-Markovian quantum trajectory theory
known as non-Markovian quantum state diffusion (NMQSD)
[4,5] provides a powerful approach to the dynamics of an open
quantum system in bosonic environments. In this approach,
when the so-called O operator is obtained, the quantum
dynamics of an open system is determined by solving the
NMQSD equation (i.e., a diffusive stochastic Schrödinger
equation) and the non-Markovian master equation can also be
derived [6,7]. In contrast to the conventional master equation
under the Born approximation, this non-Markovian mater
equation is derived nonperturbatively, so it applies even for
a strong system-environment coupling. Indeed, some exact O

operators have been found in a variety of quantum models
[4–9], including multilevel models [10].

In addition to bosonic baths, fermionic baths are also
involved in many physical systems, particularly in solid-state
systems. The Feynman-Vernon influence functional path-
integral method can also be used to study the quantum
dynamics of an open system in a fermionic environment
(see, e.g., Ref. [11]). Recently, this path-integral method was
extended to derive non-Markovian master equations for nan-
odevices [12,13]. Also, there were other studies on quantum
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dynamics and transport of nanostructured systems, including
the rate-equation approach [14,15], and the Markovian (see,
e.g., Refs. [16,17]) and non-Markovian (see, e.g., Ref. [18])
master-equation approaches. In addition, the nonequilibrium
Green’s function method can be used to study the quantum
transport through the nanostructures (see, e.g., Ref. [19]).
Nevertheless, the extension of the NMQSD method to an
open quantum system in fermionic baths has been a long-
standing unsolved problem because this open system involves
anticommutative noise functions (i.e., Grassmann variables)
that are intrinsically different from the noise functions of
bosonic baths.

In this paper, we develop a NMQSD method to study
the open quantum system in fermionic baths. This NMQSD
approach is formulated in a nonperturbative manner and it
applies for both weak and strong system-environment cou-
plings. We not only obtain the NMQSD equation for quantum
states of the system, but also derive the non-Markovian master
equation. Moreover, as interesting examples, we apply this
NMQSD method to single- and double-quantum-dot systems.
Note that our NMQSD method belongs to the quantum trajec-
tory approach involving continuous time evolution. There is
another kind of quantum trajectory approach which involves
discontinuous time evolution, i.e., quantum jumps (see, e.g.,
Ref. [20]). The non-Markovian quantum trajectory approach
in Ref. [21] generalizes the Markovian quantum jump method
and can also apply to both bosonic and fermionic baths.

II. QUANTUM STATE DIFFUSION EQUATION

We consider a quantum system coupled to two fermionic
baths: H = Hsys + Henv + Hint, with (we set h̄ = 1)

Henv =
∑

k

(ωLka
†
LkaLk + ωRka

†
RkaRk), (1)

Hint =
∑

k

(gLkc
†
LaLk + gRkc

†
RaRk + H.c.). (2)

Here, Hsys denotes the Hamiltonian of the system, Henv is the
Hamiltonian of the two electric leads acting as fermionic baths,
and Hint models the interactions between the system and the
two baths. The spectral density function of each bath is

Jλ(ω) =
∑

k

|gλk|2δ(ω − ωλk), (3)
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where λ = L or R. In Eq. (1), a†
λk (aλk) is the fermionic creation

(annihilation) operator for a quantum state with wave vector k

in the left or right lead. We assume that the system of interest
couples to the two leads via single channels characterized by
the fermionic creation (annihilation) operators c

†
λk (cλk) [see

Eq. (2)]. Extension to a multichannel case is straightforward.
In a NMQSD approach, environments are required to be

initially at zero temperature so as to conveniently represent
the environmental degrees of freedom with the coherent-state
basis. As for environments initially with a nonzero tempera-
ture, one can map the nonzero-temperature density operator
to a zero-temperature density operator using a Bogoliubov
transformation [22]. In the case of fermionic baths, this
requires adding

∑
λk ωλkbλkb

†
λk to Eq. (1), corresponding to

the part involving holes in the electric leads. The Bogoliubov
transformation for fermionic operators can be introduced as

aλk =
√

1 − n̄λkdλk − √
n̄λke

†
λk,

(4)
bλk =

√
1 − n̄λkeλk + √

n̄λkd
†
λk,

where n̄λk = [e(ωλk−μλ)/kBT + 1]−1 is the average number of
electrons in the kth state of the left (right) electric lead
with chemical potential μλ. In Eq. (4), the coefficients are
determined by the requirement that the derived master equation
reduces to a Lindblad form in the Markovian limit. The
transformed Hamiltonian H is written as

H = Hsys +
∑
λk

[ωλk(d†
λkdλk + eλke

†
λk)

+ (
√

n̄λkg
∗
λkcλeλk +

√
1 − n̄λkgλkc

†
λdλk + H.c.)], (5)

where the new fermionic operator dλk (e†λk) corresponds to the
annihilation of electrons (holes) in the virtual fermionic baths.
Note that the effects of temperature are incorporated into the
transformed Hamiltonian and the fermionic baths with nonzero
initial temperatures are mapped to virtual fermionic baths with
zero initial temperature.

In the interaction picture with respect to the environmen-
tal Hamiltonian Henv = ∑

λk ωλk(d†
λkdλk + eλke

†
λk), the total

Hamiltonian reads

H(t) = Hsys +
∑
λk

(
√

n̄λkg
∗
λkcλeλke

iωλkt

+
√

1 − n̄λkgλkc
†
λdλke

−iωλk t + H.c.), (6)

and the quantum state of the total system satisfies the equation
of motion

∂t |�t 〉 = −iH(t)|�t 〉. (7)

We assume that the quantum state of the total system is
factorized at the initial time t = 0, so that |�0〉 = |ϕ0〉 ⊗ |0〉,
with the virtual fermionic baths initially in the ground state
(i.e., at zero temperature): |0〉 = ⊗

λ |0〉λd ⊗ |0〉λe, where
dλk|0〉 = 0, and eλk|0〉 = 0.

Define a fermionic coherent-state basis for the environmen-
tal degrees of freedom:

|zw〉 =
⊗

λ

|z〉λ ⊗ |w〉λ, (8)

with

|z〉λ =
⊗

k

|zk〉λ = e− ∑
k zλkd

†
λk |0〉,

(9)
|w〉λ =

⊗
k

|wk〉λ = e− ∑
k wλke

†
λk |0〉,

where zk and wk are Grassmann variables that obey the
anticommutation relation. With the completeness relation for
coherent states

∫
e−z∗z−w∗w|zw〉〈zw|d 2zd 2w = 1, the state

|�t 〉 can be expressed as

|�t 〉 =
∫

e−z∗z−w∗w|zw〉 ⊗ |ψt (z
∗,w∗)〉d 2zd 2w, (10)

where

z∗z ≡
∑
λk

z∗
λkzλk, w∗w ≡

∑
λk

w∗
λkwλk,

(11)
d 2z ≡

∏
λk

dz∗
λkdzλk, d 2w ≡

∏
λk

dw∗
λkdwλk.

The actions of annihilation (creation) operators dλk and eλk (d†
λk

and e
†
λk) on fermionic coherent states satisfy the relations [23]

dλk|z〉λ = zλk|z〉λ, d
†
λk|z〉λ = − ∂

∂zλk

|z〉λ,
(12)

eλk|w〉λ = wλk|w〉λ, e
†
λk|w〉λ = − ∂

∂wλk

|w〉λ.

When projecting onto the coherent-state basis, the equation of
motion (7) can be reduced to the NMQSD equation for a pure
state of the system |ψt (z∗,w∗)〉 ≡ 〈zw|�t 〉:

∂

∂t
|ψt 〉 = −iHsys|ψt 〉 −

∑
λ

[cλz
∗
λ(t)|ψt 〉 + c

†
λw

∗
λ(t)|ψt 〉]

−
∑

λ

c
†
λ

∫ t

0
αλ1(t − s)

δ

δz∗
λ(s)

|ψt 〉ds

−
∑

λ

cλ

∫ t

0
αλ2(t − s)

δ

δw∗
λ(s)

|ψt 〉ds, (13)

which initiates from |ψt=0(z∗,w∗)〉 = |ϕ0〉. Here the noise
functions z∗

λ(t) and w∗
λ(t) are defined as

z∗
λ(t) = −i

∑
k

√
1 − n̄λkg

∗
λkz

∗
λke

iωλkt ,

(14)
w∗

λ(t) = −i
∑

k

√
n̄λkgλkw

∗
λke

−iωλk t .

The temperature-dependent environment correlation functions
are

αλ1(t − s) ≡ M{zλ(t)z∗
λ(s)}

=
∫

dω[1 − n̄λ(ω)]Jλ(ω)e−iω(t−s),

(15)
αλ2(t − s) ≡ M{wλ(t)w∗

λ(s)}
=

∫
dωn̄λ(ω)Jλ(ω)eiω(t−s),

where M{·} denotes the statistical mean over all noise
variables: M{·} ≡ ∫

e−z∗z−w∗w{·}d 2zd 2w.
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Introducing O operators by

δ

δz∗
λ(s)

|ψt (z
∗,w∗)〉 = Oλ1(t,s,z∗,w∗)|ψt (z

∗,w∗)〉,
(16)

δ

δw∗
λ(s)

|ψt (z
∗,w∗)〉 = Oλ2(t,s,z∗,w∗)|ψt (z

∗,w∗)〉,

we can write the NMQSD equation in a time-local form:

∂

∂t
|ψt 〉 = −iHsys|ψt 〉 −

∑
λ

[cλz
∗
λ(t) + c

†
λw

∗
λ(t)

+ c
†
λŌλ1(t,z∗,w∗) + cλŌλ2(t,z∗,w∗)]|ψt 〉, (17)

where Ōλn ≡ ∫ t

0 dsαλn(t − s)Oλn(t,s,z∗,w∗), n = 1,2.
With the consistency conditions

∂

∂t

δ|ψt 〉
δz∗

λ(s)
= δ

δz∗
λ(s)

∂|ψt 〉
∂t

,
∂

∂t

δ|ψt 〉
δw∗

λ(s)
= δ

δw∗
λ(s)

∂|ψt 〉
∂t

,

(18)

as well as the initial conditions Oλ1(t,s,z∗,w∗)|t=s = cλ and
Oλ2(t,s,z∗,w∗)|t=s = c

†
λ, we obtain the equations of motion

for the O operators:

∂Oλn

∂t
=

[
−iHsys −

∑
λ′

(c†λ′Ōλ′1 + cλ′Ōλ′2), Oλn

]
+ Qn

+
∑
λ′

[{cλ′ ,Oλn}z∗
λ′(t) + {c†λ′ ,Oλn}w∗

λ′(t)], (19)

where the square and curly brackets denote the commutator
and anticommutator, respectively, and

Qn = c
†
L

δŌL1

δ
n

+ c
†
R

δŌR1

δ
n

+ cL

δŌL2

δ
n

+ cR

δŌR2

δ
n

, (20)

with 
1 = z∗
λ(s), and 
2 = w∗

λ(s).

III. MASTER EQUATION

The reduced density operator of an open quantum system
by tracing over the environmental degrees of freedom can be
obtained by taking the statistical mean for a density operator
related to the state |ψt (z∗,w∗)〉:

ρt = Trenv|�t 〉〈�t | = M{Pt }, (21)

where Pt ≡ |ψt (z∗,w∗)〉〈ψt (−z, − w)|.
Using the relation

∂Pt

∂t
= ∂|ψt (z∗,w∗)〉

∂t
〈ψt (−z, − w)|

+ |ψt (z
∗,w∗)〉∂〈ψt (−z, − w)|

∂t
, (22)

and Eq. (17), we derive the following non-Markovian master
equation:

∂ρt

∂t
= −i[Hsys,ρt ] +

∑
λ

([cλ,M{PtŌ
†
λ1(t, − z, − w)}]

− [c†λ,M{Ōλ1(t,z∗,w∗)Pt }]
− [cλ,M{Ōλ2(t,z∗,w∗)Pt }]
+ [c†λ,M{PtŌ

†
λ2(t, − z, − w)}]). (23)

This master equation is derived nonperturbatively, so it applies
even for a strong coupling between the system and the
environments. Moreover, in addition to trace preserving, it
also preserves the positivity and Hermiticity.

In the Markovian limit, there are

αλ1(t − s) → (1 − n̄λ)�λδ(t − s),
(24)

αλ2(t − s) → n̄λ�λδ(t − s),

where �λ = 2πρλ|gλ|2, with λ = L (R), is the electron
tunneling rate between the system and the left (right) lead.
Also, the time-integrated O operators become

Ōλ1 → 1
2�λ(1 − n̄λ)cλ, Ōλ2 → 1

2�λn̄λc
†
λ. (25)

Therefore, the master equation (23) is reduced to

∂ρt

∂t
= −i[Hsys,ρt ] +

∑
λ

�λ

2
[n̄λ(2c

†
λρtcλ − cλc

†
λρt − ρtcλc

†
λ)

+ (1 − nλ)(2cλρtc
†
λ − c

†
λcλρt − ρtc

†
λcλ)]. (26)

It is clear that this Markov master equation has a Lindblad
form.

IV. APPLICATION TO QUANTUM-DOT SYSTEMS

Below we apply our NMQSD approach to single- and
double-quantum-dot systems.

A. Single quantum dot

Suppose that the single quantum dot is in the strong
Coulomb blockade regime, so that only one electron is allowed
therein. The Hamiltonian of the system is written as

Hsys = ω0c
†c, (27)

and cL = cR = c for Hint in Eq. (2). The non-Markovian
master equation is exactly derived as (see Appendix A)

∂ρt

∂t
= −i[Hsys,ρt ] + �1(t)[c,ρtc

†] + �2(t)[c,c†ρt ]

+�∗
1 (t)[cρt ,c

†] + �∗
2 (t)[ρtc,c

†], (28)

with time-dependent rates

�j (t) =
∫ t

0
[α1(s − t)Aj (t,s) − α2(t − s)Bj (t,s)]ds, (29)

where αj (t) = αLj (t) + αRj (t); Aj (t,s) and Bj (t,s) are deter-
mined by the integro-differential equations:(

∂

∂s
− iω0

)
Aj (t,s) +

∫ s

0
β(s − s ′)Aj (t,s ′)ds ′ = U (t,s),

(
∂

∂s
− iω0

)
Bj (t,s) +

∫ s

0
β(s − s ′)Bj (t,s ′)ds ′ = V (t,s),

(30)

with

β(s − s ′) ≡ α1(s ′ − s) + α2(s − s ′),

U (t,s) ≡
∫ t

0
α2(s − s ′)h(t,s ′)ds ′, (31)

V (t,s) ≡
∫ t

0
α1(s ′ − s)h(t,s ′)ds ′,
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and the final conditions at s = t : A1(t,t) = B1(t,t) = 1, and
A2(t,t) = B2(t,t) = 0. Here h(t,s) satisfies the equation(

∂

∂s
− iω0

)
h(t,s) −

∫ t

s

β(s − s ′)h(t,s ′)ds ′ = 0, (32)

with the final condition h(t,t) = 1.
In the Markovian limit, there are

�1(t) → 1
2 [1 − n̄L(ω0)]�L + 1

2 [1 − n̄R(ω0)]�R,
(33)

�2(t) → − 1
2 n̄L(ω0)�L − 1

2 n̄R(ω0)�R.

Let us consider the zero-temperature case with n̄λ(ω0) →
θ (μλ − ω0), were θ is the Heaviside step function. If the single-
dot level ω0 lies within the energy window μL > ω0 > μR , the
master equation (28) reduces to

∂

∂t
ρt = −iω0[c†c,ρt ] + 1

2�L(2c†ρtc − cc†ρt − ρtcc
†)

+ 1
2�R(2cρtc

† − c†cρt − ρtc
†c). (34)

With the basis state |0〉 (|1〉) which denotes an empty
(occupied) dot, it follows that the density matrix elements
satisfy

ρ̇00 = −�Lρ00 + �Rρ11,

ρ̇11 = �Lρ00 − �Rρ11, (35)

ρ̇10 = −(iω0 + �L + �R)ρ10,

which are exactly the rate equations obtained by Gurvitz and
Prager [14].

Figure 1 presents both real and imaginary parts of the
time-dependent coefficients �1(t) in Eq. (28). For simplicity,
we consider the large-bias regime (i.e., μL 
 ω0 
 μR) and
zero temperature for fermionic environments. The tunneling
rates are chosen in the symmetric case of �L = �R = �,
so that �2(t) = −�1(t). Moreover, the noise is modeled as
the Ornstein-Uhlenbeck process, and the related correlation
functions are then given by

αL2(t,s) = αR1(t,s) = �d

2
e−d|t−s|,

(36)
αL1(t,s) = αR2(t,s) = 0,

(a) (b)

0/t t 0/t t

FIG. 1. (Color online) (a) Real and (b) imaginary parts of the
time-dependent coefficient �1(t) in the non-Markovian master equa-
tion of a single-quantum-dot system, where �L = �R = 100 μeV,
ω0 = 50 μeV, and t0 = 2π/ω0.

where 1/d characterizes the memory time of each envi-
ronment. In the Markovian limit with d → ∞, αL2(t,s) =
αR1(t,s) → �δ(t − s), and �1(t) becomes time-dependent.
Indeed, Fig. 1 shows that �1 oscillates with time t , but it
quickly decays to a constant for a large value of d.

B. Double quantum dot

Suppose that the double quantum dot (DQD) is in the strong
Coulomb blockade regime, so that at most one electron is
allowed in each dot. The Hamiltonian of the DQD can be
written as

Hsys = ω1c
†
1c1 + ω2c

†
2c2 + �0(c†2c1 + c

†
1c2), (37)

where �0 denotes the inderdot coupling. For Hint in Eq. (2),
cL = c1, and cR = c2. The exact non-Markovian master
equation is given by

∂ρt

∂t
= −i[Hsys,ρt ] + {(�L1(t)[c1,ρtc

†
1] + �L2(t)[c1,c

†
1ρt ]

+�L3(t)[c1,ρt c
†
2] + �L4(t)[c1,c

†
2ρt ]

+�R1(t)[c2,ρtc
†
1] + �R2(t)[c2,c

†
1ρt ]

+�R3(t)[c2,ρtc
†
2] + �R4(t)[c2,c

†
2ρt ]) + H.c.}, (38)

with time-dependent coefficients

�λj (t) =
∫ t

0
[αλ1(s − t)Aλj (t,s) − αλ2(t − s)Bλj (t,s)]ds,

(39)

where Aλj (t,s) and Bλj (t,s) satisfy a set of integro-
differential equations (see Appendix B), with the final con-
ditions: AL1(t,t) = AR3(t,t) = BL2(t,t) = BR4(t,t) = 1, and
Aλj (t,t) = 0, Bλj (t,t) = 0 for other λ and j . A sim-
ilar non-Markovian master equation was also obtained
using the Feynman-Vernon influence functional path-integral
method [12].

In the Markovian limit, there are

�L1(t) → 1
2 [1 − n̄L(ω1)]�L, �R1 → 0,

�L2(t) → − 1
2 n̄L(ω1)�L, �R2 → 0,

(40)
�L3(t) → 0, �R3 → 1

2 [1 − n̄R(ω2)]�R,

�L4(t) → 0, �R4 → − 1
2 n̄R(ω2)]�R.

We also consider the zero-temperature case with n̄λ(ωn) →
θ (μλ − ωn), and the two single-dot levels of the DQD all lie
within the energy window μL > ωn > μR , where n = 1,2. We
use |l〉, l = 0,1, 2, and 3, to denote the states with both dots
empty, the left dot occupied, the right dot occupied, and both
dots occupied, respectively. From Eq. (38), it follows that the
master equations for density matrix elements are reduced to

ρ̇00 = −�Lρ00 + �Rρ22, ρ̇33 = �Lρ22 − �Rρ33,

ρ̇11 = �Lρ00 + �Rρ33 + i�0(ρ12 − ρ21),
(41)

ρ̇22 = −(�L + �R)ρ22 − i�0(ρ12 − ρ21),

ρ̇12 = −i(ω1 − ω2)ρ12 + i�0(ρ11 − ρ22) − �L + �R

2
ρ12,

which are identical to the rate equations obtained in Ref. [14].
For a DQD, both intradot and interdot Coulomb repulsions can
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play an important role in the Coulomb-blockade effect (see,
e.g., Ref. [24]). Thus, if both intradot and interdot Coulomb
repulsions are so strong that only one electron is allowed in the
whole DQD, the master equations for density matrix elements
are reduced to

ρ̇00 = −�Lρ00 + �Rρ22,

ρ̇11 = �Lρ00 + i�0(ρ12 − ρ21),
(42)

ρ̇22 = −�Rρ22 − i�0(ρ12 − ρ21),

ρ̇12 = −i(ω1 − ω2)ρ12 + i�0(ρ11 − ρ22) − �R

2
ρ12,

which are exactly the rate equations obtained in Ref. [15].

V. CONCLUSION

We have developed a NMQSD method to study the
dynamics of an open quantum system in fermionic baths.
We not only obtain the NMQSD equation for quantum states
of the system, but also derive the non-Markovian master
equation. This non-Markovian approach is formulated in a
nonperturbative manner and applies even for a strong coupling
between the system and the fermionic baths. Moreover, as
useful examples, we have applied this NMQSD method to
single- and double-quantum-dot systems.

Note added. Recently, we became aware of a closely related
work in Ref. [25], which also investigated an open quantum
system in fermionic baths by using a quantum state diffusion
approach.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Program of China Grant No. 2009CB929302 and the National
Natural Science Foundation of China Grant No. 91121015.

APPENDIX A: NON-MARKOVIAN MASTER EQUATION
FOR A SINGLE-QUANTUM-DOT SYSTEM

In this Appendix, we show how to obtain the exact non-
Markovian master equation for a single-quantum-dot system
from the general non-Markovian master equation (23) in the
main text. In order to get a closed convolutionless master
equation, we need to know the explicit forms of the operator
functions

Q1(t,s) ≡ M{Oλ1(t,s,z∗,w∗)Pt },
(A1)

Q2(t,s) ≡ M{Oλ2(t,s,z∗,w∗)Pt },
and their Hermitian conjugates. Similar to the Heisenberg-
equation approach for quantum state diffusion in a bosonic
environment [7,22], we start by obtaining the evolution
equations for

C1(s) = 〈zw|Ut c(s)|0〉 = Oλ1(t,s,z∗,w∗)Gt (z
∗,w∗),

(A2)
C2(s) = 〈zw|Ut c

†(s)|0〉 = Oλ2(t,s,z∗,w∗)Gt (z
∗,w∗),

where Ut is the time evolution operator for the total system:
|�t 〉 = Ut |�0〉. The stochastic propagator of the open quantum
system can be expressed using the matrix element of the time
evolution operator: Gt (z∗,w∗) = 〈zw|Ut |0〉. Now we take the

operators Ci (i = 1,2) as functions of s and treat t only as
a parameter. With the Heisenberg equation of motion for the
fermionic operator c(s) of the single quantum dot:

∂

∂s
c(s) = −iU−1

s [c,H(s)]Us , (A3)

we have

∂

∂s
C1(s) = −iω0C1(s)

− i
∑
λk

√
1 − n̄λkgλke

−iωλks〈zw|Ut dλk(s)|0〉

+ i
∑
λk

√
n̄λkgλke

−iωλks〈zw|Ut e
†
λk(s)|0〉. (A4)

By integrating the Heisenberg equations of motion for both
dλk and e

†
λk , we can get

dλk(s) = dλk − i
√

1 − n̄λkg
∗
λk

∫ s

0
eiωλks

′
c(s ′)ds ′,

(A5)

e
†
λk(t) = e

†
λk(s) + i

√
n̄λkg

∗
λk

∫ t

s

eiωλks
′
c(s ′)ds ′.

Substituting Eq. (A5) into Eq.(A4), we derive the evolution
equation for C1(s) as

∂

∂s
C1(s) = −iω0C1(s)

−
∫ s

0
[αL1(s − s ′) + αR1(s − s ′)]C1(s ′)ds ′

+
∫ t

s

[αL2(s ′ − s) + αR2(s ′ − s)]C1(s ′)ds ′

− [w∗
L(s) + w∗

R(s)]〈zw|U(t)|0〉. (A6)

In the above calculations, we have used the relations
dλk|0〉= 0, and 〈zw|Ut e

†
λk(t)|0〉 = w∗

λk〈zw|Ut |0〉. Similarly,
we can also derive the evolution equation for C2(s) as

∂

∂s
C2(s) = iω0C2(s) +

∫ t

s

[αL1(s ′−s) + αR1(s ′−s)]C2(s ′)ds ′

−
∫ s

0
[αL2(s − s ′) + αR2(s − s ′)]C2(s ′)ds ′

− [z∗
L(s) + z∗

R(s)]〈zw|U(t)|0〉. (A7)

From Eq. (A2), we can thus obtain the evolution equation
for the O operators Oλ1(t,s,z∗,w∗) and Oλ2(t,s,z∗,w∗):

∂

∂s
Oλ1(t,s,z∗,w∗)

= −iω0Oλ1(t,s,z∗,w∗)

−
∫ s

0
[αL1(s − s ′) + αR1(s − s ′)]Oλ1(t,s ′,z∗,w∗)ds ′

+
∫ t

s

[αL2(s ′ − s) + αR2(s ′ − s)]Oλ1(t,s ′,z∗,w∗)ds ′

− [w∗
L(s) + w∗

R(s)], (A8)
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and

∂

∂s
Oλ2(t,s,z∗,w∗)

= iω0Oλ2(t,s,z∗,w∗)

+
∫ t

s

[αL1(s ′ − s) + αR1(s ′ − s)]Oλ2(t,s ′,z∗,w∗)ds ′

−
∫ s

0
[αL2(s − s ′) + αR2(s − s ′)]Oλ2(t,s ′,z∗,w∗)ds ′

− [z∗
L(s) + z∗

R(s)], (A9)

with final conditions at s = t :

Oλ1(t,t,z∗,w∗) = c, Oλ2(t,t,z∗,w∗) = c†. (A10)

By taking the mean M{· · ·Pt } on Eqs. (A8) and (A9) and
using the relations

M{w∗
λ(s)Pt } = −M{PtŌ

†
λ2(t, − z, − w)}

(A11)
M{z∗

λ(s)Pt } = −M{PtŌ
†
λ1(t, − z, − w)},

we derive the evolution equations for the operator functions
Qn(s)(n = 1,2) as

∂

∂s
Q1(t,s) = −iω0Q1(t,s)

−
∫ s

0
[αL1(s − s ′) + αR1(s − s ′)]Q1(t,s ′)ds ′

+
∫ t

s

[αL2(s ′ − s) + αR2(s ′ − s)]Q1(t,s ′)ds ′

+
∫ t

0
[α∗

L2(s − s ′) + α∗
R2(s − s ′)]Q†

2(t,s ′)ds ′,

(A12)

and

∂

∂s
Q2(t,s)

= iω0Q2(t,s) +
∫ t

s

[αL1(s ′ − s) + αR1(s ′ − s)]Q2(t,s ′)ds ′

−
∫ s

0
[αL2(s − s ′) + αR2(s − s ′)]R2(t,s ′)ds ′

+
∫ t

0
[α∗

L1(s − s ′) + α∗
R1(s − s ′)]Q†

1(t,s ′)ds ′, (A13)

with final conditions at s = t : Q1(t,t) = cρt , and Q2(t,t) =
c†ρt .

According to Eqs. (A12) and (A13) and the final conditions
of the operator functions Qn(t,s), n = 1,2, it can be seen that
Q1(t,s) and Q2(t,s) should have the forms

Q1(t,s) = A∗
1(t,s)cρt + A∗

2(t,s)ρtc,
(A14)

Q2(t,s) = B1(t,s)c†ρt + B2(t,s)ρtc
†.

Substituting Q1(t,s) and Q2(t,s) and their Hermitian conju-
gates into Eq. (23), we finally obtain the non-Markovian master
equation for a single-quantum-dot system:

∂

∂t
ρt = −iω0[c†c,ρt ] + �1(t)[c,ρtc

†] + �2(t)[c,c†ρt ]

+�∗
1 (t)[cρt ,c

†] + �∗
2 (t)[ρtc,c

†], (A15)

which is just Eq. (28) in the main text. Here the time-dependent
coefficients �j (t), j = 1 and 2, are given in Eq. (29).

APPENDIX B: NON-MARKOVIAN MASTER EQUATION
FOR A DOUBLE-QUANTUM-DOT SYSTEM

As in Appendix A, by the Heisenberg-equation approach, it
can be derived for the double-quantum-dot system that the O

operators satisfy the following integro-differential equations:

∂

∂s
OL1(t,s,z∗,w∗)

= −iω1OL1(t,s,z∗,w∗) − i�0OR1(t,s,z∗,w∗)

−
∫ s

0
αL1(s − s ′)OL1(t,s ′,z∗,w∗)ds ′

+
∫ t

s

αL2(s ′ − s)OL1(t,s ′,z∗,w∗)ds ′ − w∗
L(s),

(B1)
∂

∂s
OR1(t,s,z∗,w∗)

= −iω2OR1(t,s,z∗,w∗) − i�0OL1(t,s,z∗,w∗)

−
∫ s

0
αR1(s − s ′)OR1(t,s ′,z∗,w∗)ds ′

+
∫ t

s

αR2(s ′ − s)OR1(t,s ′,z∗,w∗)ds ′ − w∗
R(s),

and
∂

∂s
OL2(t,s,z∗,w∗)

= iω1OL2(t,s,z∗,w∗) + i�0OR2(t,s,z∗,w∗)

+
∫ t

s

αL1(s ′ − s)OL2(t,s ′,z∗,w∗)ds ′

−
∫ s

0
αL2(s − s ′)OL2(t,s,z∗,w∗)ds ′ − z∗

L(s),

(B2)
∂

∂s
OR2(t,s,z∗,w∗)

= iω2OR2(t,s,z∗,w∗) + i�0OL2(t,s,z∗,w∗)

+
∫ t

s

αR1(s ′ − s)OR2(t,s ′,z∗,w∗)ds ′

−
∫ s

0
αR2(s − s ′)OR2(t,s,z∗,w∗)ds ′ − z∗

R(s),

with final conditions at s = t : OL1(t,t,z∗,w∗) = c1,
OR1(t,t,z∗,w∗) = c2, OL2(t,t,z∗,w∗) = c

†
1, and OR2(t,t,z∗,

w∗) = c
†
2.

Define Qλn(t,s) ≡ M{Oλn(t,s,z∗,w∗)Pt }, where λ =
L,R, and n = 1,2. From Eqs. (B1) and (B2), the evolution
equations for the operator functions Qλn(t,s) can be derived as

∂

∂s
QL1(t,s) = −iω1QL1(t,s) − i�0QR1(t,s)

−
∫ s

0
αL1(s − s ′)QL1(t,s ′)ds ′

+
∫ t

s

αL2(s ′ − s)QL1(t,s ′)ds ′

+
∫ t

0
α∗

L2(s − s ′)Q†
L2(t,s ′)ds ′,
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∂

∂s
QR1(t,s) = −iω2QR1(t,s) − i�0QL1(t,s)

−
∫ s

0
αR1(s − s ′)QR1(t,s ′)ds ′

+
∫ t

s

αR2(s ′ − s)QR1(t,s ′)ds ′

+
∫ t

0
α∗

R2(s − s ′)Q†
R2(t,s ′)ds ′, (B3)

and

∂

∂s
QL2(t,s) = iω1QL2(t,s) + i�0QR2(t,s)

+
∫ t

s

αL1(s ′ − s)QL2(t,s ′)ds ′

−
∫ s

0
αL2(s − s ′)QL2(t,s ′)ds ′

+
∫ t

0
α∗

L1(s − s ′)Q†
L1(t,s ′)ds ′,

(B4)
∂

∂s
QR2(t,s) = iω2QR2(t,s) + i�0QL2(t,s)

+
∫ t

s

αR1(s ′ − s)QR2(t,s ′)ds ′

−
∫ s

0
αR2(s − s ′)QR2(t,s ′)ds ′

+
∫ t

0
α∗

R1(s − s ′)Q†
R1(t,s ′)ds ′.

Correspondingly, the final conditions of Qλn(t,s) at s = t are
given by QL1(t,t) = c1ρt , QL2(t,t) = c

†
1ρt , QR1(t,t) = c2ρt ,

and QR2(t,t) = c
†
2ρt .

According to Eqs. (B3) and (B4) and the final conditions
of the operator functions Qλn(t,s), Qλn(t,s) should take the
forms

Qλ1(t,s) = A∗
λ1(t,s)c1ρt + A∗

λ2(t,s)ρtc1 + A∗
λ3(t,s)c2ρt

+A∗
λ4(t,s)ρtc2,

Qλ2(t,s) = Bλ1(t,s)ρtc
†
1 + Bλ2(t,s)c†1ρt + Bλ3(t,s)ρtc

†
2

+Bλ4(t,s)c†2ρt , (B5)

where λ = L,R, and the final conditions of Aλj (t,s)
and Bλj (t,s) are given as follows: AL1(t,t) = AR3(t,t) =
BL2(t,t) = BR4(t,t) = 1, and Aλj (t,t) = 0, Bλj (t,t) = 0 for
other λ and j . Here Aλj (t,s) and Bλj (t,s) satisfy the following
integro-differential equations:

ULj (t,s) = ∂

∂s
ALj (t,s) − iω1ALj (t,s) − i�0ARj (t,s)

+
∫ s

0
βL(s − s ′)ALj (t,s ′)ds ′,

(B6)

URj (t,s) = ∂

∂s
ARj (t,s) − iω2ARj (t,s) − i�0ALj (t,s)

+
∫ s

0
βR(s − s ′)ARj (t,s ′)ds ′,

and

VLj (t,s) = ∂

∂s
BLj (t,s) − iω1BLj (t,s) − i�0BRj (t,s)

+
∫ s

0
βL(s ′ − s)BLj (t,s ′)ds ′,

(B7)

VRj (t,s) = ∂

∂s
BRj (t,s) − iω2BRj (t,s) − i�0BLj (t,s)

+
∫ s

0
βR(s ′ − s)BRj (t,s ′)ds ′,

with

ULj (t,s) =
∫ t

0
αL2(s − s ′)hL1(t,s ′)ds ′,

URj (t,s) =
∫ t

0
αR2(s − s ′)hR2(t,s ′)ds ′ for j = 1,2,

(B8)

ULj (t,s) =
∫ t

0
αL2(s − s ′)hL2(t,s ′)ds ′,

URj (t,s) =
∫ t

0
αR2(s − s ′)hR1(t,s ′)ds ′, for j = 3,4,

and

VLj (t,s) =
∫ t

0
αL1(s − s ′)hL1(t,s ′)ds ′,

VRj (t,s) =
∫ t

0
αL1(s − s ′)hR2(t,s ′)ds ′, for j = 1,2,

(B9)

VLj (t,s) =
∫ t

0
αL1(s − s ′)hL2(t,s ′)ds ′,

VRj (t,s) =
∫ t

0
αR1(s − s ′)hR1(t,s ′)ds ′, for j = 3,4.

In Eqs. (B8) and (B9), hLn(t,s) and hRn(t,s), with n = 1,2, are
solutions of the two coupled integro-differential equations:

∂

∂s
hLn(t,s) = iω1hLn(t,s) + i�0hRn(t,s)

+
∫ t

s

βL(s − s ′)hLn(t,s ′)ds ′,
(B10)

∂

∂s
hRn(t,s) = iω2hRn(t,s) + i�0hLn(t,s)

+
∫ t

s

βR(s − s ′)hRn(t,s ′)ds ′,

with final conditions at s = t : hL1(t,t) = hR1(t,t) = 1, and
hL2(t,t) = hR2(t,t) = 0. Here βλ(s − s ′) is defined by

βλ(s − s ′) ≡ αλ1(s ′ − s) + αλ2(s − s ′). (B11)
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Using the obtained Qλn(t,s) in Eqs. (B5), one can calculate

M{Ōλn(t,z∗,w∗)Pt } =
∫ t

0
dsαλn(t − s)Qλn(t,s), M{PtŌ

†
λn(t, − z, − w)} =

∫ t

0
dsαλn(t − s)Q†

λn(t,s). (B12)

Substituting Eq. (B12) into Eq. (23), we then obtain the exact master equation in Eq. (38) for the double-quantum-dot system.
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