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Real-vector-space quantum theory with a universal quantum bit
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We explore a model of the world based on real-vector-space quantum theory. In our model the familiar
complex phase appearing in quantum states is replaced with a single binary object that we call the ubit, which is
not localized and which can interact with any object in the world. Ordinary complex-vector-space quantum theory
can be recovered from this model if we simply impose a certain restriction on the sets of allowed measurements
and transformations (Stueckelberg’s rule), but in this paper we try to obtain the standard theory, or a close
approximation to it, without invoking such a restriction. We look particularly at the effective theory that applies
to a subsystem when the ubit is interacting with a much larger environment. In a certain limit it turns out that
the ubit-environment interaction has the effect of enforcing Stueckelberg’s rule automatically, and we obtain a
one-parameter family of effective theories—modifications of standard quantum theory—that all satisfy this rule.
The one parameter is the ratio s/ω, where s quantifies the strength of the ubit’s interaction with the rest of the
world and ω is the ubit’s rotation rate. We find that when this parameter is small but not zero, the effective theory
is similar to standard quantum theory but is characterized by spontaneous decoherence of isolated systems.
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I. INTRODUCTION: REAL AND COMPLEX
QUANTUM THEORY

Standard quantum theory is based on a complex Hilbert
space: Density matrices, observables, and reversible trans-
formations are all represented by linear operators on such
a space. However, it has been known since the early days
of quantum mechanics that many features of the theory are
shared by two alternative, hypothetical theories, in which
the complex Hilbert space is replaced by either a real or a
quaternionic Hilbert space. For example, in their analysis of
the logical structure of quantum theory in 1936, Birkhoff and
von Neumann noted explicitly that their postulates, which were
intended to capture this logical structure, would be satisfied just
as well by the real and quaternionic models as by the standard
complex theory [1]. To be sure, from an empirical point of
view there has hardly been any contest among these three
theories: The complex version has survived every test, and no
experiment has been done that requires either the real theory
or the quaternionic theory for its explanation. Nevertheless,
over the years researchers have sought a more fundamental
understanding—not merely an empirical understanding—of
the origin of the complex structure [2–15].

One avenue of investigation along these lines was carried
out around 1960 by Stueckelberg [3,4]. He began with the
representation of probabilities as squares of real amplitudes,
treating this step as a natural generalization of ordinary
probability theory. He felt that one needed to explain the
complex structure somehow, starting from a real Hilbert space.
In order to provide such an explanation he imposed the
requirement that the theory admit an uncertainty principle of a
specific form. This requirement led him to introduce a special
operator J to be used in the expression of the uncertainty
principle. The operator J has the property that its square is
the negative of the identity operator [16], and the uncertainty
principle then holds if one requires every observable to
commute with J . With this restriction on the observables,

the theory becomes equivalent to standard complex quantum
theory, with Stueckelberg’s special operator playing the role
of the complex number i. We say that a real operator satisfies
“Stueckelberg’s rule” if it commutes with J .

In the present paper we take the real-vector-space theory
seriously as a potential theory of nature and, like Stueckelberg,
we consider the possibility that the complex structure is
somehow to be located or imbedded in the real theory [18].
However, we do not want simply to impose Stueckelberg’s rule.
Rather, we ask whether the complex structure might emerge
dynamically in a particular model. To get started we recall how
one can express in real-vector-space terms the basic structure
of quantum theory with a finite-dimensional state space. The
finite-dimensional case requires a step that is not needed in
the infinite-dimensional case: We have to double the Hilbert-
space dimension. That is, to model an ordinary quantum
system with a d-dimensional state space, we need a real Hilbert
space of 2d dimensions.

Suppose, for example, that one wants to describe only
the spin of a spin- 1

2 particle. A real state vector in a two-
dimensional state space is clearly inadequate. To get all the
allowed quantum states, one needs to double the dimensions
to four. However, a four-dimensional real vector space is not
the same as a two-dimensional complex space: One needs three
real numbers to specify a rank 1 projection operator (a pure
state) in the real space but only two real numbers to specify
such an operator in the complex space (these could be the two
angular coordinates of the Bloch sphere). In order to restrict
the set of states, one can impose a version of Stueckelberg’s
rule,1 namely, that all density matrices commute with the

1In Refs. [3] and [4], Stueckelberg did not explicitly restrict the set
of states but only the observables and transformations. However, his
prescription for expressing a complex inner product in terms of real
inner products (Ref. [4], p. 747) generates the same probabilities as
would be produced by a mixed state that commutes with J ⊗ I .

052106-11050-2947/2013/87(5)/052106(23) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.052106


ALEKSANDROVA, BORISH, AND WOOTTERS PHYSICAL REVIEW A 87, 052106 (2013)

matrix

J ⊗ I =
(

0 −1
1 0

)
⊗

(
1 0
0 1

)
=

⎛
⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎠ ,

(1)

which has the property that (J ⊗ I )2 = −I ⊗ I . (We find it
convenient to use the symbol J for the 2 × 2 matrix rather
than for the larger matrix as in Stueckelberg’s papers or in the
mathematical literature on complex structures.) As we see in
Sec. II, the theory that results from applying this restriction not
only to states but also to measurements and transformations
is equivalent to standard quantum theory for this system, and
a similar result holds for any other system, regardless of the
dimension of the state space. One always needs to double the
dimension in order for the real-vector-space theory to be able
to accommodate all the states and operations of the complex
theory, and then one needs to impose a restriction so as to limit
the sets of states and operations in the right way.

Now, doubling the dimensions corresponds to adding to
the system a single binary quantum object. So we can say
that the spin of a spin- 1

2 particle, that is, a qubit, is equivalent
to a binary real-vector-space object—a rebit—together
with an auxiliary rebit, such that the whole system obeys
Stueckelberg’s rule. One might initially think, then, that to
describe the spins of n spin- 1

2 particles, one would need, in
addition to the n basic rebits, another n auxiliary rebits to turn
them all into qubits. However, it is clear that this is not the
case; a single auxiliary rebit is sufficient for the whole system,
because it is all that is needed to double the dimension.
This fact has been noted by a number of authors [20–23].
For example, it has been shown how one could simulate an
n-qubit quantum computation by a real-vector-space quantum
computation involving only n + 1 rebits [20,21].

We are thus led to consider the following model. Every
system is to be described as a quantum object in a real vector
space, with the same dimension it would normally have in
the complex theory, and in addition, there is a single auxiliary
rebit. We call this auxiliary rebit the universal rebit, or ubit,
because in this model it needs to be able to interact with
every object in the world. By invoking Stueckelberg’s rule, we
could, not surprisingly, make our model equivalent to standard
quantum theory, as we show in Sec. II [24]. However, as we
have said, in this paper we want to take a different tack:
We ask whether we can arrive at ordinary quantum theory,
or an approximation to ordinary quantum theory, without
invoking Stueckelberg’s rule. If the ubit is interacting with
everything, then no local observer will be able to control its
interactions with distant objects. It is conceivable that this
uncontrollability could lead to an effective theory that approx-
imates ordinary quantum theory, even though the underlying
theory is the real-vector-space theory. Whether such an approx-
imation is possible is the question with which we begin our
investigation.

One finds that with no further assumptions, a random
interaction between the ubit and a large environment does not
reproduce standard quantum theory. Rather, the ubit quickly
factors out of the system and becomes irrelevant, and one
is left with ordinary real-vector-space quantum theory with

no ubit, a theory that is in serious conflict with experiment.
However, the results we present in this paper indicate that if the
ubit is rotating sufficiently rapidly in its two-dimensional real
vector space (rotation is the only internal dynamics possible
for this simple system), then one does recover an effective
theory that is very much like ordinary quantum theory. Our
main goal in this paper is to begin to discern the features of this
effective theory. One feature we might expect to see, and we do
indeed see, is that an isolated system can undergo spontaneous
decoherence with an associated increase in entropy, even when
no decoherence would be predicted by standard quantum
theory. One expects such decoherence because, although the
system may be isolated in the sense that it does not experience
any ordinary interactions, the ubit is never isolated and can
therefore serve as a conduit of information to the rest of the
world.

It may seem quite fanciful to imagine a special rebit
with no particular location, associated with the universe as
a whole. Indeed in this paper we are not prepared to offer
any interpretation of this object beyond what the mathematics
implies. However, we note that ordinary quantum theory
does have a feature that is something like the ubit. For a
quantum system with definite energy E, even if it is a spatially
extended system with many parts, the time dependence of
the Schrödinger wave function is expressed in an overall
factor e−iEt/h̄ multiplying the rest of the wave function. It
is interesting that there is only one such time-dependent phase
factor for the whole system, not one for each part. (Each
part may not have a definite energy of its own.) Moreover,
the phase factor does represent a rotation in a certain two-
dimensional real vector space, namely, the complex plane. In
our real-vector-space model there is no phase factor, but in
its place there is the ubit, with its own internal dynamics
(that is, the rotation) and its own interactions with other
systems.

One might worry that our model is immediately suspect
in that it seems to allow instantaneous communication over
an arbitrary distance: A sender Alice could allow her particle
A to interact with the ubit, which immediately interacts with
particle B in a distant galaxy, delivering Alice’s message to
Bob (who has somehow managed to be there). In this paper,
though, we focus particularly on a limiting case in which it
seems that such instantaneous communication cannot occur.
There are three relevant frequency scales in the model: (i) the
rotation rate of the ubit, (ii) the typical strength of interaction
between the ubit and the large environment, and (iii) the
typical frequency scale of the local dynamics. We focus our
attention on the case in which the first two of these frequency
scales approach infinity with a fixed ratio, while the third
remains finite. In this limit we use a heuristic argument to
obtain a reduced dynamics of the local system. Under our
reduced dynamics we automatically recover Stueckelberg’s
rule for the states and transformations, which we show prevents
instantaneous signaling through the ubit. The ratio between the
strength s of the ubit’s interaction with the environment and
the ubit’s rotation rate ω serves as a single parameter that
characterizes the effective theory. When that ratio is zero, our
results indicate that one recovers ordinary quantum theory.
Our primary interest in this paper is the case when the ratio is
small but not zero.
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Though our model does not allow instantaneous commu-
nication under the conditions we consider, the model itself is
manifestly nonlocal and quite contrary to the spirit of special
relativity (not to mention general relativity). At any given
value of the universal time coordinate, the ubit’s state changes
everywhere in the same way. One can imagine making the
interactions local by replacing the ubit with a “ubit field.” It is
interesting to ask whether such a change would ruin the partial
agreement we find with standard quantum theory. As we will
see, it is important in our model that the ubit be interacting with
a large environment. Over any short time interval, a ubit field at
a given location would interact with an environment of limited
extent, so the “beneficial” environmental effects that we rely
on would also be limited. We do not explore this question in
the present paper but confine our attention to the simple model
with a single, binary ubit. Despite the underlying nonlocality,
the fact that we can get an effective theory displaying only
local interactions makes it seem worth exploring the model to
see where it leads.

The paper is organized as follows. In Sec. II we spec-
ify what we mean by “real-vector-space quantum theory,”
and we demonstrate the equivalence with ordinary quantum
theory when Stueckelberg’s rule is imposed with no further
restrictions. (We do not impose Stueckelberg’s rule in the
later sections.) In Sec. III we investigate, numerically and
analytically, the dynamics of the ubit interacting randomly
with an environment. We find, among other things, that any
component of the ubit state that fails to commute with J

quickly decays. Our next step is to restrict our attention to
the limiting case described above in which this decay happens
instantaneously and continually. In Sec. IV we consider
one specific physical example, the spin of a spin- 1

2 particle
precessing in a magnetic field, and we explore its behavior
numerically when the problem is recast in the ubit model.
We identify three ways in which this behavior deviates from
standard quantum theory: (i) the frequency of precession is
reduced; (ii) there is a long-term dephasing (mentioned above);
(iii) there is a periodic variation in the purity of the spin state,
indicating that the spin is periodically becoming correlated and
then uncorrelated with the environment. In Sec. V we explain
all these effects analytically using perturbation theory, taking
the ratio s/ω as our small parameter. We find, though, that
at least to second order in this parameter we can eliminate
the strange oscillation in purity simply by reinterpreting the
theory. The reinterpretation—which does not eliminate either
the reduction in precession frequency or the decoherence—is
presented in Sec. VI. We consider in that section systems with
higher state-space dimension than a spin- 1

2 particle, but in
this paper we do not analyze the higher-dimensional case in
detail. Section VII focuses on the fact that in the ubit model
there is not a unique mapping from the complex theory to the
real theory. The choice of mapping amounts to an additional
specification of the dynamics beyond what is determined
by the Hamiltonian. It turns out that one particular choice
would render the retardation in the evolution unobservable—it
would slow all processes by the same factor—leaving only
the decoherence as a potentially observable effect of the
ubit model. We discuss our results and draw conclusions
in Sec. VIII.

II. REAL-VECTOR-SPACE QUANTUM THEORY
WITH FINITE DIMENSION

One can identify four main components of the basic
framework of standard quantum theory in a complex vector
space. (i) States are represented by positive semidefinite
operators with unit trace (density matrices). (ii) A reversible
evolution is represented by a unitary transformation. (iii)
An ideal repeatable measurement is represented by a set of
orthogonal projection operators �i , such that the probability
of the outcome i when the state is ρ is Tr(�iρ), and when
outcome i occurs, the final state of the system is proportional
to �iρ�i . (iv) The state space of a composite system is the
tensor product of the state spaces of the components. Other
kinds of evolution and measurement are certainly possible,
but they can be derived from the above kind by applying these
rules to a larger system and then considering the effects on a
subsystem.

The analogous statements for real-vector-space quantum
theory are exactly the same, except that all the operators are
real. In particular, this means that a reversible evolution is
represented by an orthogonal transformation, which is the real
version of a unitary transformation.

Let us now write the differential equation governing the
evolution of a state in real-vector-space quantum theory. In the
usual complex theory, we can write the equation of evolution
as

dρ

dt
= [−iH/h̄,ρ]. (2)

In the real-vector-space theory there is no direct analog of
the Hamiltonian H , but we can replace the anti-Hermitian
operator −iH/h̄ with an antisymmetric real operator S, so that
the evolution equation becomes

dρ

dt
= [S,ρ]. (3)

We call the operator S the “Stueckelbergian” of the system. If
the Stueckelbergian is constant, as we always assume in this
paper, then the general solution of Eq. (3) is

ρ(t) = eStρ(0)e−St . (4)

As S is antisymmetric, the operator eSt is orthogonal.
We now show how one can recover standard quantum theory

from the real-vector-space version by adding the ubit and
imposing Stueckelberg’s rule. Much of what follows in this
section (minus the interpretation in terms of a ubit) is similar
to the account given in Ref. [26].

Suppose the system we want to describe has a d-
dimensional (complex) Hilbert space. Then we start by con-
sidering a d-dimensional real-vector-space object A together
with the ubit U . Consider any matrix M that might apply to
the UA system, whether it be a density matrix, an orthogonal
evolution operator or antisymmetric Stueckelbergian, or the
projection operator associated with a measurement outcome.
The 2d × 2d matrix M can be written as

M =
(

M00 M01

M10 M11

)
, (5)
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where each Mjk is a real d × d matrix and the subscripts
“0” and “1” refer to a pair of orthogonal basis vectors in the
ubit’s two-dimensional space. We now impose Stueckelberg’s
rule: We insist that M commute with JU ⊗ IA, where JU is
the 2 × 2 matrix we mentioned in the Introduction and IA is
the d × d identity. (We include the alphabetic subscripts to
indicate which system the operator acts on.) That is, we insist
that(

M00 M01

M10 M11

)(
0 −IA

IA 0

)
=

(
0 −IA

IA 0

)(
M00 M01

M10 M11

)
,

(6)

which implies that M00 = M11 and M10 = −M01. Thus, we
can write

M =
(

M00 −M10

M10 M00

)
. (7)

We can map any such matrix into a smaller, d × d complex
matrix, such that under this mapping, the laws of real-vector-
space quantum theory become the laws of complex-vector-
space quantum theory. The mapping is this: For a matrix M

representing an orthogonal transformation, a Stueckelbergian,
or a projection operator, we have

M =
(

M00 −M10

M10 M00

)
→ M = M00 + iM10, (8)

and for a density matrix ρ, we have

ρ =
(

ρ00 −ρ10

ρ10 ρ00

)
→ σ = 2(ρ00 + iρ10). (9)

The special rule for density matrices is simply to make sure
every real or complex density matrix has unit trace. Note
that ρ10 must be an antisymmetric matrix in order that ρ

be symmetric. This implies that Tr ρ = Tr σ , since ρ10 is
traceless.

One can verify that Eq. (8) faithfully preserves matrix
multiplication: If M1 → M1 and M2 → M2, then M1M2 →
M1M2. Moreover, Eqs. (8) and (9) together preserve the trace
of a density matrix times a projection operator: If ρ → σ and
� → ϒ , then Tr �ρ = Tr ϒσ . These two facts guarantee that
the real-vector-space laws (restricted by Stueckelberg’s rule)
are equivalent to the complex-vector-space laws under this
mapping.

Equations (8) and (9) show how to convert real matrices
that satisfy Stueckelberg’s rule into complex matrices. One
can just as easily go the other way around. For example, given
a complex Hamiltonian H , we can write the corresponding
Stueckelbergian S as

S =
(

Re(−iH/h̄) −Im(−iH/h̄)
Im(−iH/h̄) Re(−iH/h̄)

)
= IU ⊗ Re(−iH/h̄) + JU ⊗ Im(−iH/h̄). (10)

Given a complex density matrix σ , one obtains the correspond-
ing real density matrix ρ by performing a similar operation
[27]:

ρ = 1

2

(
Re σ −Im σ

Im σ Re σ

)
= 1

2
(IU ⊗ Re σ + JU ⊗ Im σ ).

(11)

Note that in this real-vector-space setting, under the restriction
that ρ commute with JU ⊗ IA, no system is described by
a state vector. In fact, the purity Tr ρ2 cannot be greater
than 1/2: From Eq. (11), we have Tr ρ2 = (1/2)Tr[(Re σ )2 −
(Im σ )2] = (1/2)Tr σ 2 � 1/2. Thus, every state has to be
represented by a density matrix, even if it corresponds to a
pure state in standard quantum theory, and the minimum rank
of any density matrix is 2.

Of course, the requirement that operators commute with
JU ⊗ IA is crucial here. Without this restriction, one could
indeed have a state vector in the real-vector-space theory; in
a sense, such a state would be purer than any pure state in
standard quantum theory. Also note that a general orthogonal
matrix in 2d dimensions can be characterized by (2d2 − d) real
parameters, whereas a unitary matrix in d dimensions requires
only d2 real parameters. So hardly any of those orthogonal
matrices correspond to unitary matrices. This is one sense
in which the unrestricted real-vector-space theory allows too
many possibilities. In the following sections we do not impose
Stueckelberg’s rule but try to achieve its effects in another way.

It is useful to note that, in the absence of any restrictions,
every real matrix M acting on the UA system can be broken
uniquely into two parts Mc and Ma , which respectively
commute and anticommute with JU ⊗ IA. We can write the
two parts as

Mc = 1
2 [M − (JU ⊗ IA)M(JU ⊗ IA)] (12)

and

Ma = 1
2 [M + (JU ⊗ IA)M(JU ⊗ IA)]. (13)

In these terms one can see, for example, that if all observables
and transformations commute with JU ⊗ IA, then the anticom-
muting part of a density matrix, ρa , can have no observable
effects. Let an initial density matrix ρ be transformed by an
orthogonal transformation O and then tested for a property
represented by the projection operator �. If O and � commute
with JU ⊗ IA, then the contribution from ρa to the probability
of the “yes” outcome is

Tr(�OρaO
T )

= (1/2)Tr{�O[ρ + (JU ⊗ IA)ρ(JU ⊗ IA)]OT } = 0. (14)

(In the second term inside the trace, we can move one factor
of JU ⊗ IA through O, �, and OT so that it combines with
the other factor of JU ⊗ IA to yield −IU ⊗ IA. The two terms
then cancel.) Thus, if we impose Stueckelberg’s rule on all
observables and transformations, the physical predictions of
the theory will not depend on whether we also impose this
restriction on the set of allowed states.

III. THE UBIT INTERACTING WITH THE ENVIRONMENT

A. Specification of the model

Ultimately we want to consider a system A interacting with
the ubit U , which is also interacting with an environment
E (but there will be no direct interaction between A and the
environment). We take the Stueckelbergian of the entire system
to be of the form

Ŝ = −ωIE ⊗ JU ⊗ IA + sBEU ⊗ IA + IE ⊗ SUA, (15)
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where the subscripts again indicate the system on which each
operator acts and we use a hat (rather than the subscript EUA)
to distinguish those operators that act on the entire system.
The operator JU generates rotations of the ubit, so ω is the
ubit’s rotation rate. The operator BEU characterizes both the
interaction of the ubit with the environment and the internal
dynamics of the environment itself, and s determines the scale
of these interactions. Finally, the operator SUA is the local
Stueckelbergian, the one part of Ŝ that we imagine can be
controlled by an observer.

This last part deserves some discussion. The ubit is not
localized, but we are assuming that it is available to be
manipulated and measured by any observer. That is, our
local observer—whom we call Alice—can arrange for the
implementation of an arbitrary Stueckelbergian SUA involving
the ubit and the local real-vector-space object A and can
measure any observable on the UA system. One might worry
that different physical systems all over the universe will be
competing to achieve contradictory effects on the same ubit.
Indeed, we find that something along these lines does happen.
It turns out that the interaction of the ubit with the environment
severely limits what Alice will actually be able to do. However,
we do not impose any such restriction in the basic model.

We now describe our method of generating the matrix BEU .
One could reasonably model the environment as a collection
of, say, rebits or higher-dimensional objects, each having some
random interaction with the ubit but no interaction with each
other. However, when we do our numerical experiments, we
would like each run to be reasonably reproducible, as it would
be for a very large environment; so we want BEU to include as
many randomly chosen parameters as possible without having
to make the environment’s dimension intractably large. We
therefore model the environment as a single system, with the
matrix BEU simply chosen at random. More precisely, taking
N to be the Hilbert space dimension of the environment,
we create a 2N × 2N matrix R, each component chosen
uniformly between −1 and +1, which we then antisymmetrize
and multiply by

√
6/N . The factor 1/

√
N guarantees that the

typical size of an eigenvalue of BEU will not depend on N .
The factor

√
6 has been inserted for later convenience. Thus,

BEU = (
√

6/N )(R − RT )/2. We assume that this matrix is
written in a tensor-product basis of the environment and the
ubit, with the ubit basis being such that the JU of Eq. (15) has
the standard form given in Eq. (1). (A mere rotation of the
ubit basis does not change JU , but JU would pick up a minus
sign under a reflection.) For most of our numerical runs the
environment dimension N is 200.

To get some insight into how the EUA system will evolve,
in the following two sections we restrict our attention to the
simple case in which the system A has no dynamics of its
own and is not interacting with the ubit. That is, the local
Stueckelbergian SUA is zero, so that Ŝ = SEU ⊗ IA, where
SEU = −ωIE ⊗ JU + sBEU . We also assume that Alice has
prepared the UA system in an initial state that is uncorrelated
with the environment, so that the initial state of the whole
system is of the form

ρ̂(0) = ρE ⊗ ρUA. (16)

The state ρUA, which could be pure because we are not impos-
ing Stueckelberg’s rule and which may exhibit entanglement

between the ubit and the A system, can always be written as

ρUA = IU ⊗ a(I ) + JU ⊗ a(J ) + XU ⊗ a(X) + ZU ⊗ a(Z),

(17)

where XU and ZU are the usual Pauli matrices acting on the
ubit’s space and the a’s are operators on A’s space. With SUA

being zero, the matrices {a(I ),a(J ),a(X),a(Z)} will not change.
That is, at a later time t , when the state of the whole system is
ρ̂(t), the state of the UA system will be of the form

ρUA(t) = TrE ρ̂(t) = IU ⊗ a(I ) + u(J )(t) ⊗ a(J )

+u(X)(t) ⊗ a(X) + u(Z)(t) ⊗ a(Z). (18)

(The “IU ” part will not change, since IU commutes with the
Stueckelbergian.) Our aim here is to follow the evolution of
the ubit matrices u(J ),u(X), and u(Z).

The evolution of these matrices will depend to some extent
on the initial state ρE of the environment. Numerically we have
tried both a randomly chosen pure state and the completely
mixed state, and we have found that for a sufficiently large
dimension of the environment’s Hilbert space, the results are
almost the same in both cases, though they tend to be somewhat
smoother in the latter case. For simplicity, then, in all of our
calculations we choose the initial environment state to be the
completely mixed state ρE = IE/N .

Under these assumptions, our numerical results can be
summarized as follows. The function u(J ) is of the form
γ (t)JU , where γ (t) is an initially oscillating function that
finally approaches a constant value between zero and one.
Thus, the JU part of the state diminishes but does not disappear.
On the other hand, the functions u(X) and u(Z) both become
linear combinations of XU and ZU , whose coefficient vectors
rotate in the X-Z plane and finally decay to zero (at least to
a very good approximation, which we expect will be exact in
the limit of an infinite-dimensional environment). The rotation
of the coefficient vectors is simply a manifestation of the
rotation of the ubit in its two-dimensional real state space.
That u(X) and u(Z) decay to zero tells us that the state of
the UA system eventually obeys Stueckelberg’s rule, since
the remaining operators IU and JU commute with JU . These
results can be understood through perturbation theory, as we
now show.

B. The function γ (t)

The 2 × 2 matrix u(J ) can be written as

u(J )(t) = 1

N
TrE[eSEU t (IE ⊗ JU )e−SEU t ]. (19)

As we have said, this matrix remains proportional to JU —this
follows from the fact that J is antisymmetric while I , X,
and Z are symmetric—so that u(J )(t) = γ (t)JU for some real
function γ (t). Here we try to estimate γ (t). We can write it as

γ (t) = − 1

2N
Tr[eSEU t (IE ⊗ JU )e−SEU t (IE ⊗ JU )]. (20)

To apply perturbation theory, it is helpful to define a Hermitian
matrix G as follows:

G = iSEU

ω
= −iIE ⊗ JU + s

ω
(iBEU ). (21)
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We can think of G as

G = G0 + λV, (22)

where

G0 = −iIE ⊗ JU and V = iBEU , (23)

and λ = s/ω is our perturbation parameter. In terms of G, we
have

γ (t) = − 1

2N
Tr[e−iωGt (IE ⊗ JU )eiωGt (IE ⊗ JU )]. (24)

Note that G0, which is a 2N × 2N matrix, has only
two eigenvalues, +1 and −1, each associated with an N -
dimensional subspace. Let P+ and P− be the projection
operators on the subspaces corresponding to the eigenvalues
+1 and −1, respectively. We can write these operators
explicitly as

P+ = 1
2IE ⊗ (IU − iJU ) and P− = 1

2IE ⊗ (IU + iJU ).

(25)

To do degenerate perturbation theory, we choose a basis that
diagonalizes the matrix V in each of these two subspaces.
Let |	+

n 〉 and |	−
n 〉 be the elements of this basis. That is, the

vectors |	+
n 〉 are the eigenvectors of V + = P+V P+, and the

vectors |	−
n 〉 are the eigenvectors of V − = P−V P−. Thus,

〈	+
n |V |	+

m〉 is zero if m �= n but 〈	+
n |V |	−

m〉 is typically
nonzero.

Before proceeding, it is worth noting certain symmetries
that follow from the fact that any Stueckelbergian is a real,
antisymmetric matrix and that P− is the complex conjugate of
P+. First, the Hermitian matrix V − is the negative complex
conjugate of V +. From this it follows that we can take |	−

n 〉 to
be the complex conjugate of |	+

n 〉, and if vn is the eigenvalue
of V + associated with |	+

n 〉 then −vn is the eigenvalue
of V − associated with |	−

n 〉. Similarly, the eigenvectors of
the Hermitian matrix G can be written as |
+

n 〉 and |
−
n 〉,

corresponding to eigenvalues gn and −gn, respectively, where
|
−

n 〉 is the complex conjugate of |
+
n 〉.

In the expression (24) for γ (t), we make the substitution

eiωGt =
N∑

n=1

(eiωgnt |
+
n 〉〈
+

n | + e−iωgnt |
−
n 〉〈
−

n |). (26)

Leaving the eigenvalues unanalyzed for now, we use standard
time-independent perturbation theory to write the eigenvectors
in terms of the unperturbed eigenvectors |	+

n 〉 and |	−
n 〉.

Specifically, we expand |
+
n 〉 and |
−

n 〉 to second order in
λ [because there is no first-order contribution to γ (t)] and
insert this expansion into Eq. (26), which in turn is inserted
into Eq. (24). The second-order expansion of |
±

n 〉 is given in
Appendix A. The resulting expression for γ (t) comes out to
be

γ (t) = 1 − λ2

N

N∑
n,m=1

|〈	+
n |V |	−

m〉|2(1 − cos[(gn + gm)ωt]).

(27)

With a couple of assumptions about the matrix elements
〈	+

n |V |	−
m〉 and the distribution of values of gn, we can obtain

an explicit functional form for γ (t). First we assume that

because many random values are being summed to get the
squared matrix element |〈	+

n |V |	−
m〉|2, we can replace this

factor, for each value of m and n, with its ensemble average,
that is, the average over all possible matrices BEU generated by
the random procedure specified above. To find this ensemble
average, we begin with

〈|〈	+
n |V |	−

m〉|2〉 = 1

N2

N∑
n,m=1

〈|〈	+
n |V |	−

m〉|2〉

= 1

N2
〈Tr(P+V P−V )〉, (28)

where the angle brackets indicate the ensemble average.
Inserting the expressions (25) into Eq. (28) and writing V in
terms of the random matrix R, we find that each term involving
JU is zero because it is proportional to the ensemble average
of the product of two distinct elements of the random matrix
R. The remaining terms give us

〈|〈	+
n |V |	−

m〉|2〉 = 1

4N2
〈Tr(V 2)〉

= − 6

16N3
〈Tr[(RT − R)2]〉 ≈ 1

N
, (29)

where we have used the fact that the average square of a
component of R is 1/3, and we have neglected 〈Tr(R2)〉 and
〈Tr[(RT )2]〉 because they are of order N , whereas 〈Tr(RT R)〉
is of order N2. We use the value 1/N in place of |〈	+

n |V |	−
m〉|2

in Eq. (27).
We now turn to the eigenvalues ±gn of G. Recall that

the unperturbed eigenvalues, that is, the eigenvalues of G0, are
simply +1 and −1. To lowest nontrivial order in λ, we can write
gn = 1 + λvn. (Again, vn = 〈	+

n |V |	+
n 〉 is an eigenvalue

of V +.) Because V + comes from linearly transforming a
random matrix, for large N we expect its eigenvalues {vn}
to approximately exhibit a semicircular distribution. To write
this distribution explicitly, we find the ensemble average of
(1/N )

∑
v2

n, reasoning as above but now with a smaller matrix:〈
1

N

∑
n

v2
n

〉
= 1

N
〈Tr[(V +)2]〉 = 1

4N
〈Tr(V 2)〉 ≈ 1. (30)

Let η(v)dv be the expected number of eigenvalues of V + lying
between v and v + dv, so that the normalization of η is fixed by
the condition

∫ vmax

−vmax
η(v)dv = N , where vmax is the maximum

value of v. Then the unique semicircular distribution satisfying
〈v2〉 = 1 is given by

η(v) = (N/π )
√

1 − (v/2)2, (31)

so that vmax = 2. To get our analytic expression for γ (t), we
replace gn in Eq. (27) with 1 + λv and gm with 1 + λv′, and
we assume both v and v′ are distributed according to η.

With these approximations, we have

γ (t) = 1 − λ2 + λ2

N2

∫ 2

−2

∫ 2

−2
η(v)η(v′)

× cos[(2 + λv + λv′)ωt]dv dv′. (32)

The integral can be done exactly, and we obtain

γ (t) = 1 − λ2 +
[
J1(2st)

ωt

]2

cos(2ωt), (33)
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FIG. 1. (Color online) The evolution of the coefficient γ (t) of
JU under the influence of the environment. The initial value of γ is
set to unity, and the system is initially in a product state, with no
correlation between the ubit and the environment. The dots (blue)
show the numerical results, and the curve (red) shows our result from
perturbation theory [Eq. (33)]. Here N = 200, s = 10, and ω = 100.
(Time is measured in arbitrary units. If t is interpreted as being in zs,
for example, then s = 10 zs−1 and ω = 100 zs−1.) In this figure, as
in every figure in this paper, the numerical results are for a single run
of the simulation. The results from one run to the next are extremely
consistent.

where J1 is the Bessel function of order 1; that is,

J1(x) =
∞∑

n=0

(−1)n

n!(n + 1)!

(
x

2

)2n+1

. (34)

When t is large, γ (t) approaches the constant value 1 − λ2.
That is, the J part of the matrix ρUA is reduced but does
not vanish. This analytic expression is compared with our
numerical results in Fig. 1.

C. The matrix u(X)

We would now like to get an analytic expression for u(X),
which starts out as X at t = 0. The matrix u(X) can be written
as

u(X)(t) = 1

N
TrE[eSEU t (IE ⊗ XU )e−SEU t ]. (35)

We can always write a 2 × 2 matrix as a linear combination of
basis elements, so we can write u(X) as

u(X)(t) = β(I )(t)I + β(J )(t)J + β(X)(t)X + β(Z)(t)Z, (36)

where the β’s are real-valued functions. As X is symmetric,
β(J ) must equal zero since J is antisymmetric. We also know
that β(I ) equals zero since the identity commutes with eSEU t :

β(I ) = 1

2N
Tr[(IE ⊗ IU )eSEU t (IE ⊗ XU )e−SEU t ]

= 1

2N
Tr[IE ⊗ XU ] = 0. (37)

Thus, u(X)(t) = β(X)(t)X + β(Z)(t)Z.
To calculate β(X) and β(Z), we again apply perturbation

theory. We begin with the following expression for β(X):

β(X)(t) = 1

2N
Tr[(IE ⊗ XU )eSEU t (IE ⊗ XU )e−SEU t ]. (38)

When writing eSEU t in terms of the unperturbed eigenvectors,
it is convenient to factor each unperturbed eigenvector into
a tensor product of the environment and ubit parts. The
eigenvectors of −iJ (the ubit part of G0) are |+〉 = 1√

2
( 1

−i )

and |−〉 = 1√
2
( 1

i ), corresponding to the eigenvalues +1 and
−1. Thus,

|	+
n 〉 = |φ+

n 〉 ⊗ |+〉, (39)

|	−
n 〉 = |φ−

n 〉 ⊗ |−〉, (40)

for some environment states |φ±
n 〉 (where |φ−

n 〉 is the complex
conjugate of |φ+

n 〉). We now write X in terms of |+〉 and |−〉:

X =
(

0 1
1 0

)
= i(|+〉〈−| − |−〉〈+|). (41)

Inserting Eqs. (26) and (41) into Eq. (38), we find an expression
for β(X) to zeroth order in λ for the eigenstates. There are
no first-order terms, and the zeroth-order terms turn out to
be sufficient to give us good agreement with the numerical
calculations. The resulting expression comes out to be

β(X)(t) = 2
N∑

n,m=1

|〈φ+
n |φ−

m〉|2 cos[(gn + gm)ωt]. (42)

Using the same assumption as before about the distribution
of the values of gn, we can find an expression for β(X)

independent of the details of the eigenstates and eigenvalues
of G. We also assume that for a sufficiently large environment,
we can approximate each |〈φ+

n |φ−
m〉|2 by its ensemble average

1/N . Plugging this value back into Eq. (42) and assuming the
same semicircle distribution as before, we arrive at the final
expression:

β(X)(t) =
[
J1(2st)

st

]2

cos(2ωt). (43)

In a similar way, we find that

β(Z)(t) = 1

N

N∑
n,m=1

|〈φ+
n |φ−

m〉|2 sin[(gn + gm)ωt]

=
[
J1(2st)

st

]2

sin(2ωt). (44)

The functions β(X) and β(Z) together show what happens
as u(X) evolves over time. The X and Z parts of the ubit’s
matrix u(X) rotate into each other and eventually decay to
zero. Figure 2 compares our analytic expressions for both β(X)

and β(Z) to our numerical results.
Solving for u(Z) yields a similar result. The ubit matrix u(Z)

begins as Z, and the Z and X parts again rotate into each other
as they decay down to zero.

D. Projecting onto the space of matrices that commute with SEU

The above calculations show that γ (t), β(X)(t), and β(Z)(t)
all approach asymptotic values. We could have obtained these
asymptotic values more directly in the following way. First,
we can break ρ̂(0) into two parts: the part ρ̂‖ lying in the
space of matrices that commute with SEU ⊗ IA and the part
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FIG. 2. (Color online) Evolution of the matrix u(X)(t) = β (X)X + β (Z)Z, which begins as X. Here we plot β (X) and β (Z) as functions of
time. One can see that the vector (β (X),β (Z)) rotates in the plane and finally decays to zero. The dots (blue) show the numerical results, and the
curves (red) show the result of our perturbation theory calculation [Eqs. (43) and (44)]. Here N = 200, s = 10, and ω = 100. As in Fig. 1, the
time is in arbitrary units, with corresponding units for s and ω.

ρ̂⊥ perpendicular to this space [29]. Then the evolution (again
in the absence of any local Stueckelbergian SUA) becomes

ρ̂(t) = e(SEU ⊗IA)t (ρ̂‖ + ρ̂⊥)e−(SEU ⊗IA)t

= ρ̂‖ + e(SEU ⊗IA)t ρ̂⊥e−(SEU ⊗IA)t . (45)

The second term is what provides the oscillations we saw in the
graphs in the preceding sections. Asymptotically, the effect of
this second term on the UA system disappears as the oscillating
components tend to cancel each other out when we trace over
the environment. It is only ρ̂‖ that contributes to the final state
of UA; so in order to find that state we could have focused only
on ρ̂‖ (to which we could have applied perturbation theory as
in the above calculations).

For the remainder of this paper, in our analytical work we
adopt the following ansatz. First, we assume that both s and
ω, that is, the scales of the two terms in the EU part of the
Stueckelbergian, are much larger in magnitude than the spread
in eigenvalues of the local Stueckelbergian SUA. We imagine
taking the limit as s and ω both go to infinity while their
ratio remains fixed. As s and ω get larger, the oscillations and
decay we observed in the preceding sections simply proceed
at a faster rate without changing their form in any other way.
Consider, then, the evolution of ρ̂ over any short interval of
time. By the time SUA has had any appreciable effect, the
asymptotic value of ρUA due to the action of SEU will have
already been reached. Therefore, for the purpose of computing
ρUA we (i) ignore any initial ρ̂⊥ and (ii) assume that ρ̂‖, as it
evolves, is continually projected into the space of matrices
that commute with SEU ⊗ IA. That is, we use this continual
projection in place of the exact evolution due to SEU in all
our later analytical calculations. (However, in our numerical
work we follow the exact dynamics.) Note that this method
of continual projection does not necessarily provide a good
approximation to ρ̂ itself. The rapidly oscillating part ρ̂⊥ does
not go away, but it is irrelevant for computing ρUA. To remind
ourselves that we are dealing only with ρ̂‖ and not with the
full density matrix ρ̂, we keep the subscript “‖” when referring
to the state of the whole system. In the following paragraphs
we derive some general consequences of the assumption of
continual projection.

First we modify the equation of evolution, Eq. (3), so that
it does not allow ρ̂‖ to evolve away from the space of matrices

that commute with SEU ⊗ IA. The modified equation is

dρ̂‖
dt

= P([IE ⊗ SUA,P(ρ̂‖)]), (46)

where P projects onto this space. (The second P is unneces-
sary, since ρ̂‖ is already in the space into which P projects. We
include it only so that the equation would preserve the trace
of any density matrix.) Assuming that SEU is nondegenerate,
the only matrices that commute with it are linear combinations
of projections onto its eigenstates. Thus, we can express the
action of P on a generic matrix M as follows:

P(M) =
∑

j

|
j 〉〈
j | ⊗ TrEU [(|
j 〉〈
j | ⊗ IA)M]. (47)

Here we use the index j to stand for the combination of n and
± in |
±

n 〉. (Again, the vectors |
±
n 〉 are the eigenvectors of

SEU .) The most general form of ρ̂‖ as a function of time (still
assuming that SEU is nondegenerate) is

ρ̂‖(t) = 1

2N

∑
j

|
j 〉〈
j | ⊗ σj (t), (48)

where σj (t) is a matrix acting on the space of the A system.
Inserting Eqs. (47) and (48) into Eq. (46), we get the following
equation for the evolution of the σj ’s:

dσj

dt
= [〈
j |IE ⊗ SUA|
j 〉,σj ], (49)

where the quantity 〈
j |IE ⊗ SUA|
j 〉 is to be interpreted as
a “partial expectation value,” in which the EU vector |
j 〉
combines with the EU part of IE ⊗ SUA to leave a matrix that
acts on the space of the A system.

Now, the local Stueckelbergian SUA must be a linear
combination of the four ubit matrices IU , JU , XU , and ZU ,
each in a tensor product with some matrix of the A system.
Equation (49) thus calls on us to evaluate the quantities
〈
j |IE ⊗ IU |
j 〉, 〈
j |IE ⊗ JU |
j 〉, 〈
j |IE ⊗ XU |
j 〉, and
〈
j |IE ⊗ ZU |
j 〉. The first of these is clearly equal to unity.
If |
j 〉 were simply a random state, then the other three would
have typical values that diminish in magnitude proportional to
1/

√
N for large N [30]. However, |
j 〉 is not a random state.

Rather, it is an eigenstate of SEU = −ωIE ⊗ JU + sBEU ,
where BEU is random. The presence of ωIE ⊗ JU in this matrix
prevents 〈
j |IE ⊗ JU |
j 〉 from going to zero as N approaches
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infinity, but it does not similarly protect 〈
j |IE ⊗ XU |
j 〉
or 〈
j |IE ⊗ ZU |
j 〉. We find numerically that even with a
nonzero value of ω these last two quantities have typical
values that approach zero as 1/

√
N , while the typical size

of 〈
j |IE ⊗ JU |
j 〉 approaches a nonzero constant. Let us
define

νj = −i〈
j |IE ⊗ JU |
j 〉, (50)

in which the i has been inserted to make νj real. In Sec. V we
estimate νj , but for now we simply use it to rewrite our basic
equation (49). According to what we have just said, in the large
N limit we can ignore any part of SUA that is proportional to
XU or ZU , so that, in effect, the most general SUA has the form

SUA = IU ⊗ LA − JU ⊗ KA, (51)

where LA is an antisymmetric real matrix and KA is a
symmetric real matrix. Inserting this form into Eq. (49), we
get

dσj

dt
= −i[νjKA + iLA,σj ]. (52)

[The matrix σj can be complex, as long as the imaginary parts
cancel out when we do the sum in Eq. (48).] Evidently the
Hermitian matrix νjKA + iLA is playing a role like that of
H/h̄, except that because of the j dependence in νj , different
components σj can have different effective Hamiltonians. We
get a sense of what consequences this fact has as we consider
in Secs. IV and V the special case of a precessing spin.

The fact that 〈
j |IE ⊗ XU |
j 〉 and 〈
j |IE ⊗ ZU |
j 〉
become zero in the large N limit has another important
consequence. First, it means that when we expand |
j 〉〈
j |
as a linear combination of the ubit matrices IU , JU , XU ,
and ZU , the environment matrices multiplying XU and ZU

must have zero trace. Therefore, for any ρ̂‖ of the form given
in Eq. (48), the density matrix ρUA resulting from tracing
over the environment cannot include any term proportional
to XU or ZU (in the limit as N approaches infinity), so that
ρUA commutes with JU . Thus, both our local Stueckelbergian
SUA and our local density matrix ρUA commute with JU ,
and in this sense we have recovered Stueckelberg’s rule
through the interaction of the ubit with the large environ-
ment. We have not explicitly ruled out the possibility of a
measurement operator that does not commute with JU , but
if Alice were to manage to perform such a measurement,
represented by a projection operator PUA, the anticommuting
part (PUA)a = (1/2)[PUA + (JU ⊗ IA)PUA(JU ⊗ IA)] would
make no observable difference because Tr[ρUA(PUA)a] is
equal to zero for any ρUA that commutes with JU ⊗ IA. (In
principle, the measurement could, as a result of the projection
PUA, create a state ρUA that does not commute with JU ⊗ IA,
but in the limit we are considering the noncommuting part
would immediately decay to zero.) We hasten to add, though,
that this effective enforcement of Stueckelberg’s rule by our
projection hypothesis does not make our theory equivalent to
standard quantum mechanics. It eliminates unwanted states
and unwanted terms in the Stueckelbergian, but as we will see,
it is not equivalent to simply imposing Stueckelberg’s rule as in
Sec. II. The interaction with the environment yields a different
effective dynamics. Our main task in the rest of this paper is
to characterize the differences.

Finally, one might wonder whether it really makes sense to
assume, as we have done, that the parameter s, which is the size
of a typical eigenvalue of sBEU , is much larger in magnitude
than the spread in eigenvalues of the local Stueckelbergian.
After all, the idea underlying our model is that the ubit’s
interaction with each component of the rest of the world should
be similar to its interaction with the local system.

In fact, there is no contradiction here. In a more realistic
model of the environment, the size of a typical eigenvalue
of the ubit-environment Stueckelbergian would reflect not
just the strength of interaction between the ubit and a single
component of the environment. It would also reflect the size of
the environment. Suppose, for example, that the environment
consists of n rebits and that the ubit interacts with each one
via a simple 4 × 4 Stueckelbergian matrix with eigenvalues
{iξ,iξ, − iξ, − iξ}. Then, even if those individual rebits do
not interact with each other, the square root of the average
squared magnitude of an eigenvalue of the whole interaction
Stueckelbergian is equal to ξ

√
n. Thus, the typical size of

an eigenvalue grows with the size of the environment. That
is, if we were to write the ubit-environment Stueckelbergian
as sBEU , with BEU scaled so that the typical size of its
eigenvalues is independent of the size of the environment (as
in Sec. III A), then the value of s would have to grow with
the environment. To be sure, this model of the environment
as composed of independent systems is not the one we have
chosen for our numerical simulations, but this argument shows
that it is reasonable to assume that s is large: It is large by
virtue of the large size of the environment, even if the strength
of interaction between the ubit and any small component of
the environment is of limited magnitude.

E. No signaling

To summarize the last section, by imagining both s and ω

going to infinity with a fixed ratio, we were led to consider only
the part of the global density matrix that commutes with SEU ⊗
IA, and we assumed that during the evolution, this part is
continually projected onto the space of matrices that commute
with SEU ⊗ IA. This assumption led us to the form (48) of the
density matrix, which evolves according to Eq. (49). Next, we
considered the implications of the environment’s dimension
becoming infinitely large. (In our model, this means that the
number of independently chosen random parameters becomes
infinitely large.) In this limit, we concluded—admittedly on
the basis of numerical evidence—that certain terms of the
local Stueckelbergian will become inconsequential, because
the random nature of the matrix BEU causes the contributions
of these terms to Eq. (49) to vanish. The only terms in SEU that
can have any effects, then, are those that commute with JU .
In that case, Eq. (49) can be written in the specific form (52).
We now show that this form of the equation does not allow
signaling between two observers Alice and Bob if the systems
they hold, A and B, have no direct or indirect interaction
between them except through the ubit.

We first have to write down what it means that A and B are
not interacting except through the ubit. In standard quantum
theory, two isolated and therefore noninteracting systems A
and B have a Hamiltonian of the form

HAB = HA ⊗ IB + IA ⊗ HB. (53)
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(We use script letters to refer to complex-vector-space
systems.) Converting this Hamiltonian to real-vector-space
language as in Sec. II, we have that the Stueckelbergian
is

h̄SUAB = IU ⊗ Re(−iHA ⊗ IB − iIA ⊗ HB)

+ JU ⊗ Im(−iHA ⊗ IB − iIA ⊗ HB). (54)

We can write this operator in a form like that of Eq. (51):

SUAB = (IU ⊗ LA − JU ⊗ KA) ⊗ IB

+ IA ⊗ (IU ⊗ LB − JU ⊗ KB). (55)

Given that we are ruling out any terms proportional to XU

or ZU , the form given in Eq. (55) is the most general form
possible for a pair of isolated systems (that is, isolated except
for their interaction with the ubit).

For the pair AB, we can rewrite Eq. (48) as

ρ̂‖(t) = 1

2N

∑
j

|
j 〉〈
j | ⊗ τj (t), (56)

where τj is an operator on the space of the AB system, and the
hat here labels an operator on the whole EUAB system. With
a Stueckelbergian of the form (55), the equation of evolution
for τj is a modified form of Eq. (52):

dτj

dt
= −i[(νjKA + iLA) ⊗ IB + IA ⊗ (νjKB + iLB),τj ].

(57)

We are now in familiar territory. The matrix τj acts on the
space of A and B, but it evolves according to an effective
Hamiltonian that includes no interaction between the two
systems. Therefore, the partial trace of τj over either of the
two systems evolves under its own effective Hamiltonian, with
no influence from the other system. For example,

d

dt
TrB τj = −i[νjKA + iLA,TrB τj ]. (58)

It follows that ρUA, which is

ρUA = TrEB ρ̂‖ = 1

2N

∑
j

TrE(|
j 〉〈
j |)TrB(τj (t)), (59)

evolves independently of what happens to system B. That
is, Bob’s choice of local Stueckelbergian SUB = IU ⊗ LB −
JU ⊗ KB cannot affect what Alice sees. Now, Bob can perform
operations other than simply applying a Stueckelbergian to
the UB system for a period of time. He can allow system
B to interact with other systems (which by assumption
are not interacting with A) and in particular he can make
measurements. However, any such operation can be accounted
for simply by expanding the definition of system B. (Bob may
observe a definite outcome of a measurement, but he is not
allowed to convey to Alice any information about this outcome.
So to describe the state Alice observes we need to keep all the
outcomes, and we can do this by letting B become entangled
with the measuring device with no collapse.) We conclude that
in this model, in the limiting case we are considering, there
can be no signaling through the ubit.

N

FIG. 3. (Color online) A schematic diagram showing the limits
we consider in this paper. The axes are N (the dimension of the
environment) and λ = s/ω. (N = 1 corresponds to the case of no
environment at all.) Each point in the diagram corresponds to a
limiting case of infinite ω, but the limits are taken in different ways,
as we now explain. Most of our work in this paper addresses the
range corresponding to the vertical dotted line (red and purple). For
each of these points, s and ω have been taken to infinity with a fixed
ratio λ. In this regime Stueckelberg’s rule is satisfied and there is
no signaling, but the theory differs from standard quantum theory
except as one reaches the bottommost point. The three lowest dots
of that line (purple) are intended to indicate a small region in which
the theory—to the extent we have developed it—is consistent with
experiment (see Sec. VIII for a discussion). The horizontal dashed
line (blue) represents the range of cases considered in Appendix B,
in which ω approaches infinity with s and N held fixed. There the
evolution operator is equivalent to the standard quantum mechanical
evolution operator, but for those cases we have not proved that the
states and measurement operators must be equivalent to those of
standard quantum theory. Thus, the only route to standard quantum
theory that we claim on this diagram is to follow the vertical dotted
line to its lowest point.

To be sure, if s, ω, and N remain finite, then there can be
signaling through the ubit. It would be interesting to determine
quantitatively how the degree of signaling (suitably defined)
depends on s, ω, and N , but we leave this question for future
work. Here we focus on the limiting case.

Thus, for any fixed value of the ratio s/ω = λ, we should get
an effective theory that is a no-signaling theory. The effective
theory will typically not be the same as quantum mechanics—it
will be a modification of quantum mechanics. The results of
the next two sections indicate that for the special example
we consider there—a precessing spin—we recover standard
quantum theory when λ goes to zero but encounter deviations
from quantum theory whenever λ is nonzero. In Appendix B
we present a related argument that does not depend on taking
either s or N to be infinite and that applies to a general system.
There we show that with fixed s and N , the evolution operator
eŜt becomes equivalent to the standard quantum mechanical
operator when ω goes to infinity. However, the same argument
strongly suggests that there will be no such equivalence for any
finite value of ω. Note also that we consider in Appendix B
only the evolution operator; we have not shown that in the limit
ω → ∞ (with fixed s and N ), the states and measurement
operators of the ubit model become equivalent to those of
standard quantum theory. Figure 3 indicates schematically the
limits in which we recover various aspects of standard quantum
theory.
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IV. A PRECESSING SPIN: NUMERICAL SIMULATIONS

A. The Stueckelbergian and the initial state

In the numerical work of the preceding section we con-
sidered the interaction of the ubit with the environment, in
the absence of any interaction with the local system A. We
now add this interaction and study the simplest possible case,
a precessing qubit. For definiteness we take the qubit to be
the spin of a spin- 1

2 particle in the presence of a constant
magnetic field 
B. With 
B in the positive z direction and the
particle having a negative charge, the usual Hamiltonian can be
written as H = h̄(�/2)Z, where � is the angular precession
frequency, equal to B times the magnitude of the particle’s
gyromagnetic ratio, and Z is again the Pauli matrix for the z

axis. The precession will be in the right-hand sense around the
positive z axis.

We can use the correspondence given in Sec. II to reexpress
the same phenomenon in terms of a rebit A and the ubit. The
Stueckelbergian is obtained from H as in Eq. (10):

SUA = JU ⊗ Im(−iH/h̄) = −�

2
JU ⊗ ZA. (60)

Let the initial spin state be in the x direction; that is, the initial
density matrix of the qubit is ρ = (1/2)(I + X). To reexpress
this state in the ubit model, we use Eq. (11):

ρUA(0) = 1
4IU ⊗ (IA + XA). (61)

If we were to let the UA system evolve under the Stueckelber-
gian SUA from the starting state ρUA(0), it would exhibit the
standard precession simply reexpressed in real-vector-space
terms. That is, we would have

ρUA(t) = 1
4 [IU ⊗ IA+ cos(�t)IU ⊗ XA + sin(�t)JU ⊗ JA].

(62)

The combination JU ⊗ JA takes the place of the Pauli
matrix Y .

However, we are interested in the evolution of the state of
the whole system, with the initial state

ρ̂‖(0) = 1

4N
IE ⊗ IU ⊗ (IA + XA), (63)

under the full Stueckelbergian

Ŝ = −ωIE ⊗ JU ⊗ IA + sBEU ⊗ IA + IE ⊗ SUA. (64)

[As in Sec. III, we are taking the initial state of the environment
to be the completely mixed state. We make this choice as a
matter of simplicity. Note that Eq. (63) is a special case of
Eq. (48).] With this initial state and Stueckelbergian, we find
the state of the UA system at time t by computing

ρUA(t) = TrE[eŜt ρ̂‖(0)e−Ŝt ]. (65)

The results of Sec. III lead us to expect that any component of
ρUA(t) involving XU or ZU will be extremely small, and indeed
this is what we observe numerically; those components seem to
approach zero as N increases. This leaves four basic symmetric
matrices in which we can expand ρUA(t). The expansion can
be written as

ρUA(t) = 1
4 [IU ⊗ IA + bxIU ⊗ XA

+ byJU ⊗ JA + bzIU ⊗ ZA]. (66)

0.5 1.0 1.5 2.0
time

−1.0
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0.5

1.0

x component

FIG. 4. (Color online) The x component of the Bloch vector as
a function of time, compared to the standard quantum mechanical
prediction, for a spin initially in the x direction and precessing around
the z axis. The dots (red) show the numerical results, and the dashed
curve (blue) shows the standard quantum mechanical result. In this
plot N = 200, s = 30, and ω = 100—we have chosen λ = s/ω to be
relatively large to make the effect visible—and we have set � = 2π

so that time is measured in periods of the regular quantum mechanical
precession.

Thus, in our model we can still imagine the evolution of the
spin as a path through the Bloch sphere, with the Bloch vector
defined as 
b = (bx,by,bz). This vector must have a length no
greater than unity since ρUA(t) is positive semidefinite.

As we mentioned in the Introduction, our numerical simu-
lations indicate three distinct respects in which the evolution
of ρUA differs from the standard qubit evolution given in
Eq. (62). (i) The angular frequency of precession is reduced
relative to the standard quantum mechanical value �. (ii)
There is a long-term dephasing of the state. For the initial
state we focus on here, with the spin in the x direction,
this dephasing ultimately yields the completely mixed state.
(iii) The length of the Bloch vector, which would normally
maintain a constant value of unity, instead oscillates as the
spin precesses, achieving its smallest value whenever the
spin is directed along the y axis. The length of the Bloch
vector indicates the purity of the state; so we see the state
becoming mixed and then regaining its purity every half-cycle
(long before the purity is reduced permanently because of
the dephasing). Evidently, what is happening is that some
of the information in the state is being shared temporarily
with the environment and then returned to the UA system.
When we trace over the environment to get ρUA, this shared
component becomes invisible. We call this shared component
of the state “the ghost part.”

In the following three sections we present our numerical
results for each of these effects.

B. Reduced precession frequency

Perhaps the most obvious way in which the precessing
spin in our model departs from its behavior in standard
quantum theory is that the frequency of precession is reduced.
Numerically we find that the angular frequency depends on
the value of our parameter λ = s/ω, achieving the standard
quantum mechanical value � only as λ goes to zero. We show
an example of the reduced frequency in Fig. 4, which plots the
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FIG. 5. (Color online) For a spin initially directed at 45◦ between
the x and z axes and precessing around the z axis, the length of the
Bloch vector decays to 1/

√
2 as the vector spirals into the z axis. The

dots (red) show the numerical results, and the line (blue) is at the
level 1/

√
2. Here N = 1400, s = 30, ω = 300, and � = 2π , so that

time is measured in precession periods.

x component of the Bloch vector, bx , as a function of time for
a rather large value of λ.

C. Long-term decoherence

Over a sufficiently long time period, the precessing spin
in our simulations decays to a stationary mixed state. When
the initial state is given by Eq. (63), that is, when the spin is
initially in the positive x direction, and when the precession is
around the z axis, the Bloch vector eventually spirals into that
axis, so that the final state of the UA system is the completely
mixed state (1/4)IU ⊗ IA. If instead we take the initial state
to have a nonzero value of bz, we find that in the evolving
state ρUA(t) the value of bz remains constant, but the x and y

components of 
b again spiral into the z axis, so that the UA

system finally settles into the constant state (1/4)(IU ⊗ IA +
bzIU ⊗ ZA). That is, for any value of bz the phase coherence
is eventually lost. We find numerically that the decay time
depends on the environment dimension N , increasing with
increasing N before finally approaching a constant value when
N is large. We present an example in Fig. 5, for which the
initial Bloch vector is 
b = (1/

√
2,0,1/

√
2). We plot there the

length b =
√

b2
x + b2

y + b2
z of the Bloch vector, which seems

to approach the value 1/
√

2, consistent with the picture of the
vector spiraling into the z axis. In making the figure, we chose
a value of N that shows the large-environment limit.

D. The ghost part

There is also a periodic change in the length of the Bloch
vector as a function of time. Our numerical results for b as
a function of time are shown in Fig. 6, in which the spin
is initially in the positive x direction, and the time axis is
in units of the usual quantum mechanical precession period
2π/�. Notice that the length achieves its minimum value
twice in each cycle, corresponding to the times when the spin
is pointing in the positive or negative y direction. Indeed we
find that by never attains the value 1, while bz remains zero, as
expected. It is as if the Bloch sphere were somewhat flattened
along the y axis, so that the Bloch vector precesses along the
equator of the resulting oblate ellipsoid.

0.5 1.0 1.5 2.0
time

0.992
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FIG. 6. (Color online) The length of the Bloch vector varies
periodically with a frequency equal to twice the precession frequency.
The dots (red) show the numerical results when the spin is initially
in the positive x direction. Here N = 200, s = 30, ω = 300, and
� = 2π , so that time is measured in precession periods. The minima
correspond to the times when the Bloch vector points in either the
positive or the negative y direction. Notice that with these values of
the parameters, the effect is small, with a reduction in length of about
half a percent.

The shortened Bloch vector associated with the y axis
indicates an increased entropy: Some information has been
lost. However, it has been lost only temporarily, as it comes
back in the next quarter cycle. Again, it appears that some
kind of correlation has been temporarily set up between the
UA system and the environment. While it may be unusual for
a correlation to automatically reverse itself, one can certainly
find instances of such reversal in standard physics. While
a light pulse is reflecting off a mirror, for example, it is
temporarily correlated with electrons in the mirror’s silver
coating, but once the reflection is complete the correlation
has been undone and the pulse’s state is, in the ideal case, as
pure as it was before the reflection. (The effect we are seeing is
similar to the phenomenon of “false decoherence” as described
in Refs. [31–34].)

One might wonder whether under some circumstances the
correlation between the UA system and the environment might
become so thoroughly mixed up within the environment that
it could never be undone, in which case the entropy of the UA

system would have increased permanently. This seems to be
what happens after many cycles of precession; we eventually
get the decoherence observed in Sec. IV C. However, can the
information get lost even when the spin is not precessing? To
investigate this question, we have run simulations in which,
after a quarter cycle of precession, we turned off the local
Stueckelbergian SUA and allowed the ubit and environment
to continue to evolve according to SEU for thousands of
precession periods while the UA system remained “frozen”
along the y axis. We then turned SUA back on and let
the system evolve for another quarter cycle to see whether
the Bloch vector would regain its full length. Indeed it did; the
information had not been permanently lost. Similar numerical
experiments, in which the precession axis was changed for
the final part of the evolution, yielded similar results. Now, it
is certainly possible to cause the correlation to be lost in the
environment while the spin is not precessing. It is sufficient to
change BEU itself in the middle of the numerical run. However,
normally we can understand a time-dependent Hamiltonian
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as arising from a stationary Hamiltonian acting on a larger
system. (We include in the system whatever is causing the
Hamiltonian to change.) So it does not seem unreasonable to
assume a time-independent operator BEU as we do here, in
which case it seems that the ghost part can be made to return
to the UA system, at least in the short term.

E. A second special axis

In the example of a precessing spin, it is clear that the
precession axis, that is, the axis along which the magnetic
field vector lies, plays a special role. In the ubit model, it turns
out that there is a second special axis: It is the axis that in the
complex theory is associated with the purely imaginary Pauli
matrix. (The standard convention, which we are using, is to
call this axis the y axis.) The specialness of this second axis
has not been evident in the numerical experiments described
above, because in those experiments the precession axis has
always been the z axis, whose Pauli matrix Z is purely real.
In fact, the results of those experiments would be essentially
unchanged if we were to choose any precession axis in the
xz plane, since any real linear combination of X and Z is
also real. However, when the precession axis is the y axis,
all of the above effects disappear. There is neither a periodic
nor a long-term change in the length of the Bloch vector, and
there is no reduction in the frequency of precession relative
to standard quantum mechanics. Moreover, for a precession
axis intermediate between the xz plane and the y axis, the
above effects all appear but are not as large as when the
precession axis is in the xz plane. Consider the decoherence,
for example. For an intermediate precession axis, we observe
that the Bloch vector again spirals into the axis of precession
without changing its component along that axis. That is, we
observe what in the complex theory would be called a loss of
phase coherence in the energy basis. However, the coherence
time becomes longer as the precession axis becomes more
parallel to the y axis. In this way, the y axis plays a special
role.

There is, in addition, one effect pertaining to the y axis
that has nothing to do with precession. Suppose we have no
magnetic field—that is, we set SUA to zero—and we choose
the initial state ρUA(0) to be (1/4)(IU ⊗ IA + JU ⊗ JA). That
is, we try to start the spin in the positive y direction. Then
one finds that over an extremely short time, the Bloch vector
shrinks to a shorter length (still in the same direction). This is
what one expects from Sec. III: The coefficient of JU quickly
decreases by the factor 1 − λ2. A Bloch vector of this length
is, in fact, even shorter than what we would get by starting
the spin in the x direction and letting it precess for a quarter
cycle. As we see in the next section, the length in the latter case
is 1 − λ2/2. In either case, a literal reading of the ubit model
would seem to say that it is impossible to prepare a pure state of
spin in the y direction. Instead, we can prepare only a mixed
state in that direction. If we accept this reading, the Bloch
sphere really is flattened into an oblate ellipsoid. States that lie
beyond the boundary of this ellipsoid are simply inaccessible.
In Sec. VI we introduce an alternative interpretation in which
a pure state in the y direction is possible, but even in this
reinterpretation the predicted physics depends on which axis
in space we associate with the imaginary Pauli matrix Y .

Evidently, in the ubit model, in order to completely describe
the dynamical situation of a spin- 1

2 particle, one needs to
specify not only the direction and strength of the magnetic
field, but also the direction of the “y axis,” which now becomes
physically important. Conceivably the experimenter would
have control over this second axis, just as she has control
over the magnetic field. Or possibly the second axis would be
beyond the experimenter’s independent control; for example,
a law of nature could force a relationship between this second
axis and the magnetic field axis.

In the case of spin precession, the second special axis is
an axis in space. However, for other physical realizations of
a qubit, e.g., a two-level atom, the “direction” one associates
with the imaginary Pauli matrix Y is not a direction in space;
usually it is associated with a particular equal-magnitude
superposition of the ground and excited states. Moreover, we
normally have a unitary symmetry that allows us to freely
reexpress any problem in whatever basis we choose—the
choice of basis has no physical significance. However, the
ubit model forces us to treat separately the real and imaginary
parts of a Hamiltonian or a density matrix, and this separation
between real and imaginary parts could be changed simply
by changing the basis. To put it in other words, for any
given Hamiltonian there are many distinct Stueckelbergians,
depending on the basis in which the Hamiltonian is written.
Section VII explores this question further in the case of higher
dimensions. For now, though, we try to explain analytically
the three effects described in the preceding subsections.

V. A PRECESSING SPIN: ANALYTICAL TREATMENT

We begin our analysis with Eqs. (48) and (52), in which
we have already assumed that the state ρ̂‖ is continually being
projected onto the space of matrices that commute with SEU .
We write those equations again here:

ρ̂‖(t) = 1

2N

∑
j

|
j 〉〈
j | ⊗ σj (t); (67)

dσj

dt
= −i[νjKA + iLA,σj ]. (68)

For the particular case we are considering now, the local
Stueckelbergian is

SUA = IU ⊗ LA − JU ⊗ KA = −�

2
JU ⊗ ZA, (69)

so that KA = (�/2)ZA and LA = 0. Inserting this expression
into Eq. (68) gives us

dσj

dt
= − iνj�

2
(Zσj − σjZ), (70)

where again νj = −i〈
j |IE ⊗ JU |
j 〉. We can solve Eq. (70)
to get

σj (t) = e−i(νj �/2)Ztσj (0)ei(νj �/2)Zt . (71)

We are assuming an initial state given by Eq. (63), in which
each σj (0) is equal to (1/2)(IA + XA). In that case we have

σj (t) = 1
2 [IA + cos(νj�t)XA + sin(νj�t)YA], (72)

where YA = iJA is the usual imaginary Pauli matrix. (Again
σj can have a nonzero imaginary part. However, in ρ̂‖ all
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imaginary contributions will cancel.) The effective density
matrix of the whole system is

ρ̂‖(t) = 1

4N

∑
j

|
j 〉〈
j | ⊗ [IA + cos(νj�t)XA

+ sin(νj�t)YA]. (73)

Our strategy is to try to isolate each of the three effects
described above by considering different terms of the per-
turbation expansion of Eq. (73). (i) To see the frequency
reduction, we expand νj to second order while approximating
|
j 〉〈
j | in Eq. (73) with its unperturbed value. (ii) A spread
in the values of νj would lead to interference when we do
the sum in Eq. (73), which would appear as decoherence.
However, the νj ’s begin to diverge from each other only in
third order. Therefore, to isolate the long-term decoherence,
we expand νj to third order while continuing to treat |
j 〉〈
j |
as unperturbed. (iii) The ghost part represents a correlation
between the ubit and the environment. So to see the ghost
part, we expand |
j 〉〈
j | in Eq. (73) out to lowest nontrivial
order (it will be first order) while restricting our approximation
for νj to second order so as to avoid the complications of
decoherence.

A. Reduced precession frequency

We begin with Eq. (50) for νj and expand each |
+
j 〉 in

that equation out to second order in λ = s/ω. Starting with the
expansion of |
j 〉 given in Appendix A, we find that

νj = ν±
n = −i〈
±

n |IE ⊗ JU |
±
n 〉

= ±
(

1 − λ2

2

∑
k

|〈	+
n |V |	−

k 〉|2
)

, (74)

where we have replaced the single index j with the pair
of indices n and ±. The + and − refer to the subspaces
in which the operator G takes positive and negative values,
respectively. As we have done before, for each value of n and
k we replace |〈	+

n |V |	−
k 〉|2 with its ensemble average, 1/N ,

thereby arriving at

ν±
n = ±

[
1 − λ2

2

]
= ν±. (75)

At this order of perturbation theory there is no dependence on
n. The factor |
j 〉〈
j | in Eq. (73) we treat as unperturbed, so
that

∑ |
±
n 〉〈
±

n | can be replaced with
∑ |	±

n 〉〈	±
n | = P± =

(1/2)iIE ⊗ (IU ∓ JU ). With these substitutions, one finds that

ρ̂‖(t) = 1

4N

{
IEIUIA + cos

[(
1 − λ2

2

)
�t

]
IEIUXA

+ sin

[(
1 − λ2

2

)
�t

]
IEJUJA

}
, (76)

where we have left out the tensor product symbols. Tracing
over the environment, we get that the density matrix of the UA

system is

ρUA(t) = 1

4

{
IUIA + cos

[(
1 − λ2

2

)
�t

]
IUXA

+ sin

[(
1 − λ2

2

)
�t

]
JUJA

}
. (77)
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FIG. 7. (Color online) Comparison of the numerical data with
our analytic result for the x component of the Bloch vector, when
the spin is initially in the x direction and is precessing around the
z axis. The dots (red) are the numerical results and the continuous
curve (purple) shows our analytic prediction. Again the dashed curve
(blue) represents the standard quantum mechanical precession. Here
N = 200, s = 30, ω = 100, and � = 2π , so that time is measured in
precession periods.

That is, with these approximations the spin precesses as usual
but with its frequency reduced by the factor 1 − λ2/2. In Fig. 7
we compare this theoretical prediction with the numerically
observed evolution.

B. Long-term decoherence

In Eq. (73), both the EU factor and the A factor depend on
j , so that we cannot, in general, separate these two parts of the
system when we do the sum. However, to try to get an analytic
handle on the decoherence, we assume that within each of
the two main subspaces the EU factor is not significantly
correlated with the A factor; so within each subspace we
can say that the average of the product is the product of
the averages. If we also continue to assume that we can
replace each |
j 〉〈
j | with its unperturbed value |	j 〉〈	j |,
we get

ρ̂‖(t) = 1

4N2

{
P+ ⊗

∑
n

[IA+ cos(ν+
n �t)XA+ sin(ν+

n �t)YA]

+P− ⊗
∑
m

[IA + cos(ν−
m�t)XA + sin(ν−

m�t)YA]

}
.

(78)

Again using P± = (1/2)iIE ⊗ (IU ∓ JU ), we can rewrite this
expression as

ρ̂‖(t) = 1

4N2

∑
n

[IEIUIA + cos(ν+
n �t)IEIUXA

+ sin(ν+
n �t)IEJUJA]. (79)

In writing this last equation we have used the fact, mentioned
earlier, that the vectors |
j 〉 come in complex-conjugate
pairs, and that the real values νj given by Eq. (50) come
in pairs with equal magnitudes and opposite signs. This fact
is what allows us to combine the two sums in Eq. (78) into
a single sum. Numerical tests confirm that Eq. (79) yields
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FIG. 8. (Color online) The spin begins in the x direction and
spirals into the z axis as it precesses around that axis. Here we plot
the length of the Bloch vector as a function of time. The dots (red)
show the numerical results, and the dashed curve (blue) gives the
prediction of Eq. (79) with the νj ’s computed numerically. The solid
curve (purple) shows our analytic approximation given by Eqs. (85)
and (86), in which we have made a simple approximation for the
values of νj . Here N = 1400, s = 30, ω = 300, and � = 2π , so
that time is measured in precession periods. The “bounce” we see
here does not show up in Fig. 5, because in that case a small
wobble around the z axis does not significantly affect the Bloch
vector’s length.

a very close approximation to ρUA. For example, in Fig. 8
the dashed curve shows the length of the Bloch vector as
predicted by Eq. (79)—with the values of νj determined
numerically—while the dots represent the numerical results
obtained directly from Eq. (65). The good agreement provides
evidence in support of our assumption of continual projection,
made in Sec. III D, as well as for the specific assumptions
leading to Eq. (79) in the present section. Still, we would prefer
an equation that does not require an exact determination of ν+

n .
So we take our approximation a step further.

In order to evaluate ν+
n to third order, we find it convenient

to use the relation

−i〈
n|IE ⊗ JU |
n〉 = gn − λ〈
n|V |
n〉, (80)

which comes from Eqs. (22) and (23). Thus, it is sufficient to
expand gn to third order and |
n〉 to second order. On carrying
out this expansion, we find that the third-order contribution to
−i〈
+

n |IE ⊗ JU |
+
n 〉 is

−i〈
+
n |IE ⊗ JU |
+

n 〉(3)

= λ3

2

[
〈	+

n |V |	+
n 〉〈	+

n |V P−V |	+
n 〉

− 〈	+
n |V P−V P−V |	+

n 〉

−
∑

k

|〈	+
n |V P−V |	+

k 〉|2
〈	+

n |V |	+
n 〉 − 〈	+

k |V |	+
k 〉

]
. (81)

We consider the three terms in this expression sepa-
rately. First, following the reasoning in Eq. (29) we ap-
proximate 〈	+

n |V P−V |	+
n 〉 as 1, so that the first term in

the square brackets in Eq. (81) can be approximated as
〈	+

n |V |	+
n 〉, which we have called vn. We can write the second

term as

〈	+
n |V P−V P−V |	+

n 〉 =
∑

k

|〈	+
n |V |	−

k 〉|2〈	−
k |V |	−

k 〉.

(82)

Again we use |〈	+
n |V |	−

k 〉|2 ≈ 1/N , so that we are left with
a sum over the eigenvalues of the negative-subspace part of
V . Those eigenvalues have a typical size that does not depend
on N , but their ensemble average is zero, and we expect their
sum to be of order

√
N because of random fluctuations. Thus,

the whole term diminishes as 1/
√

N , and since we assume a
large environment dimension we take this term to be zero.

The third term in Eq. (81) is more complicated. We can
approximate the numerator as 1/N . The denominator, which
we can write as vn − vk , can be small, so that the sum might
depend crucially on the spacing of the values vk . Those values
follow a semicircle distribution, but this fact does not tell us
how the difference vn − vk is distributed. To get a somewhat
crude approximation, we ignore the issue of the spacing of
values and simply replace the sum with an integral, assuming
a semicircle distribution, and take the Cauchy principal value
of the integral. This gives us

∑
k

1/N

vn − vk

≈
∫ 2

−2

1

N

1

vn − v
η(v)dv = vn

2
(83)

for the semicircle distribution η(v) = (N/π )
√

1 − (v/2)2. The
third term then combines quite simply with the first term to
give us

−i〈
+
n |IE ⊗ JU |
+

n 〉(3) ≈ λ3vn

4
. (84)

We can now put this result back into Eq. (79) and convert
the sum to an integral, again assuming a semicircle distribution
for vn, obtaining a result for the decay similar to what we saw
in Sec. III,

ρUA ≈ 1
4 {IUIA + f (t)[cos(ξ�t)IUXA + sin(ξ�t)JUJA]},

(85)

where

f (t) =
∣∣∣∣2J1(λ3�t/2)

λ3�t/2

∣∣∣∣ (86)

and ξ = 1 − λ2/2 is the frequency reduction factor we
computed in the preceding section. Figure 8 shows the length
of the Bloch vector as a function of time, as computed from
Eq. (85), and compares this approximation with the numerical
values and with Eq. (79). Clearly, our approximation of the
νj ’s is not ideal, but it seems to give us at least a reasonable
estimate of the coherence time τ , which is of order

τ ≈ 1

λ3�
. (87)

[In fact, τ has to be over five times this value to make f (τ )
less than 1/e, though of course the curve is not exponential.]
Moreover, the detailed shape of the curve traced out by our
numerical results in Fig. 8 surely depends on the specific model
of the environment we have chosen, whereas the scaling of the
coherence time with λ and � has a better chance of carrying
over to other models.
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C. The ghost part

To understand the ghost part, we begin by replacing each
νj in Eq. (73) with its second-order value, which is ±ξ for ν±

n .
(Again ξ = 1 − λ2/2.) This approximation allows us to write
ρ̂‖(t) as

ρ̂‖(t) = 1

2N

(∑
n

|
+
n 〉〈
+

n | ⊗ σ+(t)

+
∑

n

|
−
n 〉〈
−

n | ⊗ σ−(t)

)
, (88)

where

σ± = 1
2 [IA + cos(ξ�t)XA ± sin(ξ�t)YA]. (89)

Expanding |
+
n 〉 and |
−

n 〉 to first order in λ, we find∑
n

|
+
n 〉〈
+

n | = P+ + λ

2
[P−V P+ + P+V P−] (90)

and ∑
n

|
−
n 〉〈
−

n | = P− − λ

2
[P−V P+ + P+V P−]. (91)

Upon inserting these expressions in Eq. (88) we get

ρ̂‖(t) = 1

4N
[IEIUIA + cos(ξ�t)IEIUXA

+ sin(ξ�t){IEJU + λ(P−BP+ + P+BP−)}JA],

(92)

where we have again left out the tensor product symbols.
The term proportional to λ is what we are calling the ghost

part. Notice that it accompanies what we would normally think
of as the y component of the Bloch vector (that is, the part
proportional to JU ⊗ JA). Except for the ghost part and the
frequency reduction, the above expression is identical to the
standard quantum mechanical evolution given in Eq. (62). Of
course our expression for the ghost part is valid only to first
order in λ. If we expand each |
j 〉 out to second order and
trace over the environment, we find that the density matrix of
the UA system is

ρUA(t) = 1

4

[
IUIA + cos(ξ�t)IUXA

+
(

1 − λ2

2

)
sin(ξ�t)JUJA

]
, (93)

which shows the shortening of the y component of the Bloch
vector. Here we have assumed a large environment, so that
TrEBEU can be taken to be zero. [The ensemble average of
that partial trace is zero, with fluctuations of order unity.
The factor of 1/(4N ) normalizing the density matrix renders
such fluctuations negligible.] Under this assumption, the ghost
part has disappeared. Figure 9 compares Eq. (93) with our
numerical results.

The picture that emerges, then, is that part of the y

component of the Bloch vector has been lost, but it has been
replaced with the ghost part, which represents a correlation
between the ubit and the environment. When one traces over
the environment, what remains for the UA system is a Bloch

0.5 1.0 1.5 2.0
time

0.992

0.994

0.996

0.998

1.000

length of the Bloch vector

FIG. 9. (Color online) Comparison of our analytic result with the
numerical data for the periodic variation of the length of the Bloch
vector. The spin starts in the positive x direction and precesses around
the z axis. The dots (red) show the numerical results and the curve
(purple) is obtained from Eq. (93). Again, the minima occur when the
Bloch vector is in the positive or negative y direction. Here N = 200,
s = 30, ω = 300, and � = 2π , so that time is measured in precession
periods.

sphere that has been flattened along the y axis by the factor
1 − λ2/2. However, there is an alternative interpretation of
the ghost part that we find more appealing; this alternative
interpretation is the subject of the next section.

VI. THE MODIFIED-UBIT INTERPRETATION

We have assumed that Alice can perform any measurement
on the UA system. One such measurement for the case of a
spin- 1

2 particle is to test whether the spin is in the positive
y direction. In ordinary quantum mechanics this test would
be represented by the projection operator (1/2)(I + Y ). The
direct translation of this operator into real-vector-space terms,
according to the prescription of Sec. II, is the rank 2 projection
operator (1/2)(IU ⊗ IA + JU ⊗ JA). If this measurement were
performed on the completely mixed state and the “yes”
outcome were obtained, the state of the UA system would
be collapsed into the state ρUA = (1/4)(IU ⊗ IA + JU ⊗ JA),
which is the real-vector-space version of spin in the positive
y direction. However, this state cannot persist for any nonzero
duration under the projection assumption of Sec. III D. So it
would seem that Alice cannot prepare a pure state of spin in
the y direction, as we noted earlier.

However, there is another way Alice might try preparing
a spin state in the y direction. She could perform the
measurement (1/2)(IU ⊗ IA + IU ⊗ XU )—testing for spin in
the positive x direction—and upon obtaining the outcome
“yes” she could allow the spin to precess around the z axis
for a quarter cycle, thereby preparing the effective EUA state

ρ̂y = 1

4N
[IEIUIA + {IEJU + λ(P−BP+ + P+BP−)}JA],

(94)

in accordance with Eq. (92). Moreover, if at some later time
she wanted to test for this state, she could do so by first
allowing the spin to precess by a quarter cycle (in the same
direction as before) and then performing the measurement
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(1/2)(IU ⊗ IA − IU ⊗ XA), that is, a test corresponding to the
negative x direction. (Recall our numerical experiments in
which the ghost part could be recovered after a long time during
which there was no precession.) This sequence of operations
is perfectly permissible according to our rules; so it should
count as a valid measurement. In this sense the state ρ̂y given
in Eq. (94) acts like what we would normally think of as a
pure state of spin in the y direction. One can test for this state
and get the “yes” outcome with unit probability. So it seems
that Alice can prepare a pure spin state in the y direction after
all. It does not look like a pure state when one traces over
the environment—it looks like a mixed state—but it acts like
a pure state. Again, this effect can be seen as an example of
“false decoherence” [31–34], in which part of the environment
adiabatically follows the evolution of the system of interest.
In cases of false decoherence it is misleading simply to trace
out the environment, and we seem to have the same kind of
situation here.

In our alternative interpretation, then, the Bloch sphere is
not flattened. To first order in λ, a general pure state of spin
would be expressed in this interpretation by the EUA density
matrix

ρ̂
b = 1

4N
[IEIUIA + bxIEIUXA + by{IEJU

+ λ(P−BP+ + P+BP−)}JA + bzIEIUZA], (95)

for some unit vector 
b = (bx,by,bz). [Equation (95) is valid
only in the special case we have been considering in which
the environment starts out in the completely mixed state. For
a more general initial state the form would be different, as we
see in the following paragraphs.] Alice can prepare any such
state, and if |
b| = 1 she can test for the state. It is only that
the mathematical description of the state is not what we would
have expected, since it implicates part of the environment.

We now spell out the alternative interpretation, which we
call the “modified-ubit interpretation,” more completely and
for a more general case. Let A be a d-dimensional system,
and let us assume for now that νj can be approximated by its
second-order expansion. (This assumption is relaxed shortly.)
Equation (48) gives the general form of a state consistent with
our projection assumption. Our observer Alice has no direct
control over the environment portion of the state, but according
to our initial assumptions she can at least prepare a state σ (0)
of the system A. If she does so, the effective state of the whole
system will have the form

ρ̂‖(0) = 1

2

∑
n

cn(|
+
n 〉〈
+

n | + |
−
n 〉〈
−

n |) ⊗ σ (0), (96)

where σ (0) is a real, positive semidefinite matrix with unit
trace and the non-negative coefficients cn sum to unity.
These coefficients are determined by the initial state of the
environment and ubit (the initial state of the environment is
no longer assumed to be the completely mixed state), and we
assume that Alice has had no control over their values.

Alice can manipulate the initial state (96) by choosing a
Stueckelbergian SUA of the form SUA = IU ⊗ LA − JU ⊗ KA.
In general, the application of this Stueckelbergian would cause
the matrix σ (0) to evolve in a different way for each term
|
±

n 〉〈
±
n |, but as we have seen, to second order in λ there are

only two distinct value of νj , namely, ν± = ±ξ . So the initial
state evolves into

ρ̂‖(t) = 1

2

∑
n

cn[|
+
n 〉〈
+

n | ⊗ σ (t) + |
−
n 〉〈
−

n | ⊗ σ (t)],

(97)

where

σ (t) = e−iH ′t σ (0)eiH ′t (98)

and the effective Hamiltonian is H ′ = ξKA + iLA in accor-
dance with Eq. (52).

We can rewrite Eq. (97) as

ρ̂‖ = 1
2 (�+ ⊗ σ + �− ⊗ σ ), (99)

where

�± =
∑

n

cn|
±
n 〉〈
±

n | (100)

and we have written σ (t) simply as σ . Now, every complex d ×
d positive semidefinite matrix with unit trace can be written
in the form given in the right-hand side of Eq. (98) for some
real σ (0) and some Hermitian H ′. Because Alice can control
σ (0) and H ′ (and t), she can determine the matrix σ in the
state (99). So we can think of this state as the result of Alice’s
preparation. She determines σ , but she does not control �±,
which is determined by the environment.

We can also write Eq. (99) in the following way:

ρ̂‖ = 1
2 (I ⊗ Re σ + J ⊗ Im σ ), (101)

where

I = �+ + �− and J = i(�+ − �−). (102)

The matrix σ evolves according to the equation

dσ

dt
= [−iH ′,σ ]. (103)

In this respect σ behaves like a density matrix. Equation (101)
is reminiscent of Eq. (11) in Sec. II, but the matrices I and J
act on the whole EU space rather than just on U .

We now want to identify, in effect, a “modified ubit” U ′—it
will involve the environment—in terms of which the operators
I and J will appear as tensor products. The modification is
expressed by an orthogonal transformation O acting on the
EU system. Our idea is that the application of O, followed by
a trace over the environment, should leave us with the state of
U ′ (or of U ′A if the system A was included initially). In order
that I and J be turned into tensor products, we want O to
have the following effect:

O|
+
n 〉〈
+

n |OT = 1
2 |n〉〈n| ⊗ (IU − iJU ), (104)

where the vectors |n〉 constitute an orthonormal (real) basis
for the environment. (For our purposes it does not matter
which basis we choose.) We construct such a transformation
in Appendix C.

From Eq. (104) it follows that

OIOT = ρE ⊗ IU and OJOT = ρE ⊗ JU , (105)

052106-17



ALEKSANDROVA, BORISH, AND WOOTTERS PHYSICAL REVIEW A 87, 052106 (2013)

where ρE = ∑
n cn|n〉〈n| is a density matrix of the environ-

ment. In the modified-ubit interpretation, our description of
Alice’s system is given not by ρUA but rather by the density
matrix ρU ′A, defined as

ρU ′A = TrE Oρ̂‖OT . (106)

(In this equation we have written O as an abbreviation for
O ⊗ IA.) When Eq. (101) is valid, that is, when we can neglect
contributions to νj of higher than second order, Eq. (105)
implies that

Oρ̂‖OT = 1
2 ρE ⊗ (IU ⊗ Re σ + JU ⊗ Im σ ) (107)

and therefore

ρU ′A = 1
2 (IU ⊗ Re σ + JU ⊗ Im σ ). (108)

Note that to this order in perturbation theory, Oρ̂‖OT is
equal to the tensor product ρE ⊗ ρU ′A and we can work
out the evolution of ρU ′A without explicitly referring to the
environment. In fact, the theory is almost the same as what
we would have gotten simply by applying the complex-
to-real prescription of Sec. II. The only difference is the
constant factor ξ = 1 − λ2/2 in the effective Hamiltonian
H ′ = ξKA + iLA.

We now relax the restriction to the second-order expansion
of νj . Starting with the same initial state (96), we find that the
states Alice can create have the form

ρ̂‖ = 1

2

∑
n

cn(|
+
n 〉〈
+

n | ⊗ σn + |
−
n 〉〈
−

n | ⊗ σn), (109)

where each σn is a positive semidefinite complex matrix with
unit trace. This equation generalizes Eq. (99). Applying our
transformation O, we get

Oρ̂‖OT = 1

2

∑
n

cn|n〉〈n| ⊗ (IU ⊗ Re σn + JU ⊗ Im σn),

(110)

which is no longer a tensor product between the environment
and the UA system. Now tracing over the environment gives
us

ρU ′A = TrE Oρ̂‖OT = 1
2 (IU ⊗ Re σ + JU ⊗ Im σ ), (111)

where σ = ∑
n cnσn. Thus, it remains true that Alice can

describe her system by a d × d complex density matrix σ .
However, in general, this matrix will not evolve according to
Eq. (103). It might decohere, for example.

It is interesting to follow the evolution of ρU ′A numerically
for the case of a precessing spin. That is, we compute the
evolution of ρ̂‖(t) as always, but instead of simply tracing over
the environment to get ρUA, we apply O before performing
the trace, so as to get ρU ′A. As one would expect from the
results of this section, the ghost effect is no longer seen: Over
the short term, the Bloch vector associated with ρU ′A retains
its full length over the whole cycle. However, the other two
effects—the reduced precession frequency and the long-term
decoherence—persist and appear to be the same as before. In
Eq. (103) the reduction in frequency appears as the constant ξ

in H ′. We do not see the decoherence in this equation because
it does not include third-order contributions to νj .

The notion of a modified ubit raises a new question.
Throughout our analysis we have assumed that Alice is able to
build a device that implements an arbitrary Stueckelbergian
IE ⊗ SUA (though as we have seen, the ubit-environment
interaction can render certain components of this operator
ineffective). However, if Alice can prepare states of the form
(101), involving the environment-ubit matrices I and J , one
might wonder whether she also has the ability to implement a
Stueckelbergian of the form Ŝ = I ⊗ SA + J ⊗ TA, where SA

is antisymmetric and TA is symmetric. Evidently she has some
control over the environment, but does she have the right kind
of control to be able to implement Ŝ? It seems likely that the
correct answer is no. Whereas her ability to prepare states of
the form (101) follows from our initial assumptions, we have
not found a way by which she might implement this kind
of Stueckelbergian. Moreover, the theory is self-consistent
as it stands, even though Alice’s local Stueckelbergians are
linear combinations of IU and JU in the original basis, while
the states she can prepare can be expressed as such linear
combinations only after we have rotated the EU system by
the transformation O. Indeed, Alice prepares these “exotic”
states by using “ordinary” Stueckelbergians, relying on the
interaction matrix BEU to bring the environment into the
picture.

Our modified-ubit interpretation also forces us to extend the
argument of Sec. III E showing that there can be no signaling
through the ubit. If Alice can prepare states involving the
environment, is it possible that she could leave some mark on
the environment that could be read by a second observer? The
answer is no. If the second observer does not have access to the
A system itself, then that observer’s knowledge is contained
in the reduced density matrix TrA ρ̂‖. For the general form
given in Eq. (109), this partial trace is always equal to (1/2)I,
regardless of what Alice has done. So Alice cannot send a
signal by this means.

VII. THE REAL-IMAGINARY SPLIT

In our analysis of the precessing spin, we began with the
Hamiltonian H = h̄(�/2)Z and converted it into a Stueck-
elbergian according to the prescription given in Eq. (10),
which asks us to split H into its real and imaginary parts.
The result was SUA = −(�/2)JU ⊗ ZA. However, for the
very same physical situation, we could just as well have
associated the magnetic field direction with the Pauli matrix
Y instead of Z, in which case the Hamiltonian would have
been H = h̄(�/2)Y and the Stueckelbergian would have been
SUA = (�/2)IU ⊗ JA. This latter Stueckelbergian does not
involve the ubit matrix JU , and this fact would have made the
predictions of our model different from those we obtained in
Secs. IV and V. In particular, there would be no decoherence
and no retardation of the precession. Moreover, we would get
yet another set of results if we chose to assign to the magnetic
field direction some other spin matrix such as (X + Y )/

√
2.

Thus, as we have said before, a given Hamiltonian can give
rise to many distinct Stueckelbergians, depending on the basis
in which the Hamiltonian is written.

Let us see how this ambiguity is expressed for an A

system with dimension d. Given a certain Hamiltonian, we can
imagine changing the basis first and then applying Eq. (10).
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This procedure would give us, for a specified Hamiltonian H ,
a Stueckelbergian SUA defined by

SUA = IU ⊗ Re(−i UHU †) + JU ⊗ Im(−i UHU †), (112)

where U is a unitary transformation representing the change
of basis. (After performing this operation, we could perform
an orthogonal transformation on the A system, but this second
change of basis does not affect the real-imaginary split.) As
the dimension d grows, this freedom opens up many new
possibilities. For example, even for a set of noninteracting
particles, the complex-to-real correspondence of Sec. II could
be carried out in an entangled basis. The predicted physics
would, in general, be different for different choices.

In the specific case of a precessing spin, our model as
currently formulated implies that in addition to the magnetic
field direction, an experimenter might, in principle, also be
able to set the orientation of another physically important axis,
namely, the axis with which we associate the imaginary Pauli
matrix Y . The angle between this second axis and the magnetic
field direction would affect both the rate of precession and the
decoherence rate.

On the other hand, it is conceivable that if something like
the ubit model does apply to our world, there could be a law
of nature that restricts or determines the way in which the
real-imaginary split is made, as we suggested in Sec. IV E.
The simplest possibility would be that the conversion described
by Eq. (10) is required to be carried out in a basis in which
the Hamiltonian is real. (This law would have meaning only
for an isolated system.) Then the Stueckelbergian would be
uniquely determined by the Hamiltonian—up to an orthogonal
transformation on the A system—and it would always take the
form

SUA = −JU ⊗ KA. (113)

In this case the ubit would be playing a role very much like
that of the phase factor e−iEt/h̄ for a state with definite energy
E. In the example of a precessing spin, in our alternative
interpretation there would be no need to specify a second
axis as in the preceding paragraph. The reduced precession
frequency and the decoherence would always be just as we
described them in Secs. IV and V, because the direction of
the magnetic field would always be associated with a real spin
matrix. Moreover, for an A system of arbitrary dimension,
the effective Hamiltonian of Sec. VI would always have the
form H ′ = ξKA, where KA is a symmetric real matrix; there
would be no imaginary part iLA. One consequence is that all
processes would be slowed by exactly the same factor ξ , in
which case the slowing would be unobservable. Thus, if we
(i) adopt the modified-ubit interpretation of Sec. VI and (ii)
assume that Eq. (10) is always to be applied in a basis in which
the Hamiltonian is real, then of the deviations from standard
quantum theory we have identified, the only one that could
actually be observed is the decoherence.

VIII. DISCUSSION

Over the years a number of researchers have taken an
interest in real-vector-space quantum theory. In a paper
published around the same time as Stueckelberg’s papers on
the subject, Dyson argued that when we make use of the

time-reversal operator, we are implicitly basing our theory
on the field of real numbers, since that operator is antilinear in
the complex theory but can be expressed as a linear operator
in the real theory [35]. (See also Ref. [36].) More recently
Gibbons and others have argued that the complex structure
might be an emergent property associated with the emergence
of a time direction [8,9]. Myrheim has observed that a
real-vector-space theory could allow a canonical commutation
relation of the form [x,p] = Jh̄ even for a finite-dimensional
state space [26]. There has also been work on real vector spaces
in quantum information theory [20–23,37–40], including the
proof mentioned earlier that n + 1 rebits can simulate n qubits.

In this paper we have considered a specific model within
real-vector-space quantum theory, characterized by the inclu-
sion of a single binary object, the ubit U , which is not localized
and which can interact with anything in the universe. We
have focused on characterizing the effective theory describing
the behavior of a system consisting of the ubit and a local
real-vector-space object A. From the outset we have assumed
that our local observer Alice has the ability to prepare any
initial state of the UA system and could build an apparatus
that would implement any Stueckelbergian SUA. However, if
both s—the size of a typical eigenvalue of ubit-environment
interaction—and the ubit’s rotation rate ω are, in effect,
infinitely large compared to any local frequency, then the
local observer’s abilities are severely constrained. Assuming
a large environment, the interaction between the ubit and the
environment has the effect of enforcing Stueckelberg’s rule on
the operators of the UA system. If Alice tries to prepare a state
ρUA that does not commute with JU ⊗ IA, the noncommuting
part will instantly disappear. (The noncommuting part has
zero trace—so its disappearance does not entail a loss of
probability.) If she tries to use a Stueckelbergian SUA that
does not commute with JU ⊗ IA, its noncommuting part will
have no observable effect. Note that in our model neither the
state ρ̂ of the whole universe nor the full Stueckelbergian Ŝ

commutes with IE ⊗ JU ⊗ IA. So from a global perspective
the theory is quite different from standard quantum theory. It
is only at the local level that we see all operators commuting
with JU .

Moreover, this automatic enforcement of Stueckelberg’s
rule at the local level does not cause the effective theory to
be equivalent to standard quantum mechanics, because the
ubit-environment interaction has other effects as well. As we
have seen, the degree of divergence between the ubit model and
standard quantum theory depends on how one interprets the
ubit model. We have distinguished two interpretations, which
we have called the literal interpretation and the modified-ubit
interpretation.

The literal interpretation assumes that ρUA is the full and
correct description of the state observed by Alice. If we adopt
this interpretation, then in addition to losing the states and
transformations that would have violated Stueckelberg’s rule,
we also lose certain states and transformations that quantum
mechanics normally allows. For example, for the spin of a
spin- 1

2 particle, the Bloch sphere is, in effect, flattened into
an oblate ellipsoid. Except in a certain preferred plane, it is
impossible to prepare a pure state of spin in any direction. In
particular, in standard quantum theory there will always be
one direction with which we associate a purely imaginary spin
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matrix (usually called the y direction). This is the direction in
which, according to the literal interpretation, the purity of a
spin state is the most limited. Moreover, if one prepares a pure
state in the favored plane and allows the spin to precess out
of that plane, then the purity of the state will temporarily be
diminished in order for the Bloch vector to be able to fit inside
the flattened sphere.

One can see how the ubit model thus provides a kind of
interpolation between standard complex-vector-space quan-
tum theory and standard real-vector-space quantum theory
with no ubit. In the former case, we have the full Bloch
sphere. In the latter case, we have a “Bloch disk,” as all
rebit states are confined to a plane. In the ubit model, in
the literal interpretation, the width of the narrow axis of the
flattened Bloch sphere depends on the parameter λ = s/ω.
As this parameter gets larger—e.g., as the ubit’s rotation
rate diminishes—the Bloch ellipsoid becomes more flattened.
Indeed, when the ubit is not rotating at all, there is nothing
preventing the ubit’s interaction with the environment from
always bringing ρUA to the form (1/2)IU ⊗ ρA, in which case
the ubit becomes inconsequential and, since ρA is real, the spin
is confined to the Bloch disk.

However, there are good reasons to prefer the modified-ubit
interpretation. In this interpretation the matrix ρUA does not
describe what Alice sees. Instead, the state of Alice’s system
is described by ρU ′A = Tr Oρ̂‖OT , where O is an orthogonal
transformation on the EU system. In the case of a spin- 1

2
particle, in the alternative interpretation the Bloch sphere is not
flattened: The set of possible density matrices ρU ′A includes
all the pure states on the sphere. In effect, the density matrix
ρU ′A includes the ghost part that would have disappeared
upon simply tracing ρ̂‖ over the environment to get ρUA.
It makes sense to describe Alice’s states in terms of ρU ′A,
because this description reflects what Alice is actually able to
do—what states she can prepare and test for—according to
our original assumptions. We have noted that though Alice’s
actions involve the environment, they do so in a way that does
not convey information.

The alternative interpretation yields a greater degree of
agreement between the ubit model and standard quantum
theory. To second order in our parameter λ = s/ω, the only
difference between the two theories, with regard to the
behavior of the local system, is a factor ξ � 1 multiplying
the real part of the Hamiltonian. Moreover, we have also
contemplated the possibility of a law of nature that would
force the local Stueckelbergian to be of the form −JU ⊗ KA,
in which case the factor ξ becomes a universal retardation
factor and therefore unobservable.

As we go to higher order in λ the correspondence breaks
down further, and the ubit model will surely be very different
from standard quantum theory once λ is of order unity. One
difference we have been able to identify is the spontaneous
decoherence, which appears as a third-order effect. For the
case of a precessing qubit, we have an analytic estimate of
the coherence time in our model: It is τ ≈ 1/(λ3�), where
� is the angular frequency of precession. Thus, experimental
observations of the product τ� can be used to place an upper
bound on λ. A particularly high value of τ� was obtained
recently by Chou et al. for an optical atomic transition [41].

These authors observed a coherence time around 10 s for
a transition with angular frequency � = 7 × 1015 s−1. This
result implies that our parameter λ cannot be much larger
than 10−6. Note that the slowing by the factor ξ , being a
second-order effect, could conceivably place a tighter bound
on λ, but because of our uncertainty about the real-imaginary
split, it is hard to know how to look for this slowing.

Again, the model we have described here is highly nonlocal,
and it is interesting to ask whether we would get similar
results from a local theory in which the ubit is replaced
with a ubit field. (One is reminded of Refs. [22,23], in
which the authors show that a complex-vector-space quantum
computation can be simulated locally by a real-vector-space
quantum computation.) We have relied on the environment to
effectively cut out the parts of the local Stueckelbergian and
local density matrix that do not satisfy Stueckelberg’s rule. In
order to get this kind of environmental effect with a ubit field,
we would probably need the field to be such that a change at one
location would quickly bring a large part of the surrounding
environment into the dynamics to create effects similar to what
we have seen here.

Clearly, the work presented here leaves many questions
unanswered. It is only an initial exploration of the model.
However, we can at least see that the model is not in obvious
conflict with observation as long as λ is sufficiently small.
Note that in a complete theory it should not be necessary that
this parameter remain constant for all time. So the degree of
deviation from standard quantum theory could conceivably
be different at different stages of the universe’s evolution.
The effective theory might be experimentally indistinguishable
from standard quantum theory at the present time but could
look much more like ordinary real-vector-space quantum
theory (with no ubit) at some very early time. In this sense the
familiar complex structure of quantum theory could indeed be
an emergent feature in the ubit model.
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APPENDIX A: BASIC PERTURBATION EXPANSION

To summarize our notation, the Hermitian operator on
which we base our perturbation expansions is

G = G0 + λV, (A1)

where λ = s/ω and the unperturbed matrix G0 has only
two distinct eigenvalues, ±1, each corresponding to an N -
dimensional subspace. The states |	±

n 〉 are the eigenstates of
G0 that diagonalize V within each of these two subspaces,
and |
±

n 〉 are the corresponding eigenstates of G. The exact
eigenvalues of G are labeled ±gn.

To do our perturbation calculations, we need to expand gn

out to third order and |
±
n 〉 out to second order. We write here
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the expansions for gn and |
+
n 〉. As we have mentioned earlier,

the eigenvector |
−
n 〉 is the complex conjugate of |
+

n 〉. Our
expansion for the eigenvectors is derived from Eqs. (141)–
(143) of Ref. [42]. Our expansion for the eigenvalues is
obtained from the expanded eigenvectors together with Eq. (7)
of the same paper. The normalization convention in that paper
is such that the expanded vectors are not of unit length, but
in the expansion of |
+

n 〉 below we have renormalized the
vector to unit length (to second order in λ), which introduces
the two second-order terms proportional to |	+

n 〉. Here we use
the notation Mnk as an abbreviation for 〈	+

n |M|	+
k 〉, for any

matrix M . Again, P− is the projection onto the space spanned
by the states |	−

n 〉.

The expansion for gn is

gn = 1 + λVnn + λ2

2
(V P−V )nn

+ λ3

4

[
(V P−V P−V )nn − Vnn(V P−V )nn

+
∑

k

′ |(V P−V )nk|2
Vnn − Vkk

]
, (A2)

where the prime on the summation sign indicates that k runs
over all values other than n.

The expansion for |
+
n 〉 is

|
+
n 〉 = |	+

n 〉 + λ

2

[
P−V |	+

n 〉 +
∑

k

′ (V P−V )kn

Vnn − Vkk

|	+
k 〉

]
+ λ2

4

[
P−V P−V |	+

n 〉 − VnnP−V |	+
n 〉 − 1

2
(V P−V )nn|	+

n 〉

+
∑

k

′
(

(V P−V )kn

Vnn − Vkk

P−V |	+
k 〉 − (V P−V )kn(V P−V )nn

(Vnn − Vkk)2
|	+

k 〉 − 1

2

|(V P−V )kn|2
(Vnn − Vkk)2

|	+
n 〉 + (V P−V P−V )kn

Vnn − Vkk

|	+
k 〉

− (V P−V )knVnn

Vnn − Vkk

|	+
k 〉 +

∑
l

′ (V P−V )kl(V P−V )ln
(Vnn − Vkk)(Vnn − Vll)

|	+
k 〉

)]
. (A3)

APPENDIX B: LETTING ω APPROACH INFINITY

For most of this paper we have assumed that both s and
ω are very large compared to SUA. We have also assumed
that the environment dimension N becomes arbitrarily large.
In this Appendix we consider a different limit. Here s and N

both remain finite, and we let ω go to infinity. Our aim is to
show that in this limit, the evolution operator in the ubit model,
eŜt , becomes equivalent to a corresponding evolution operator
of standard quantum theory.

Again, our Stueckelbergian for the whole EUA system is

Ŝ = −ωIE ⊗ JU ⊗ IA + sBEU ⊗ IA + IE ⊗ SUA. (B1)

Let us now write this operator as

Ŝ = −ωĴ + D̂, (B2)

where Ĵ = IE ⊗ JU ⊗ IA and D̂ = sBEU ⊗ IA + IE ⊗ SUA.
We begin by rewriting eŜt as follows, using the fact that Ŝ

is antisymmetric so that ŜT Ŝ = −Ŝ2:

eŜt = I + Ŝt + 1

2!
Ŝ2t2 + 1

3!
Ŝ3t3 + · · ·

=
(

I − 1

2!
ŜT Ŝ t2 + · · ·

)
+

(
Ŝt − 1

3!
Ŝ ŜT Ŝ t3 + · · ·

)

= Ŝ
sin(

√
ŜT Ŝ t)√
ŜT Ŝ

+ cos(
√

ŜT Ŝ t). (B3)

Note that
√

ŜT Ŝ is well defined since ŜT Ŝ is a posi-
tive semidefinite matrix. Now we make the substitution

Ŝ = −ωĴ + D̂:

ŜT Ŝ = (−ωĴ T + D̂T )(−ωĴ + D̂)

= ω2I + ω(Ĵ D̂ + D̂Ĵ ) − D̂2. (B4)

Here we have used the fact that both Ĵ and D̂ are antisym-
metric. Recall that the part of D̂ that commutes with Ĵ can be
written as D̂c = (1/2)(D̂ − Ĵ D̂Ĵ ). In terms of D̂c, we have

ŜT Ŝ = ω2I + 2ωĴ D̂c − D̂2, (B5)

so that

√
ŜT Ŝ = ω

√
I + 2Ĵ D̂c

ω
− D̂2

ω2
. (B6)

We can therefore write the evolution operator [Eq. (B3)] as

eŜt =
(

− Ĵ + D̂

ω

) sin
(
ωt

√
I + 2Ĵ D̂c

ω
− D̂2

ω2

)
√

I + 2Ĵ D̂c

ω
− D̂2

ω2

+ cos

(
ωt

√
I + 2Ĵ D̂c

ω
− D̂2

ω2

)
. (B7)

When ω is very large, we can expand the square roots in
powers of 1/ω. Ignoring terms of order 1/ω multiplying the
sine, and also ignoring terms of order 1/ω inside the sine and
cosine, we get

eŜt ≈ −Ĵ sin[(ωI + Ĵ D̂c)t] + cos[(ωI + Ĵ D̂c)t]

= e(−Ĵ ω+D̂c)t = e−Ĵ ωt eD̂ct . (B8)
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Thus, when ω is very large, the dynamics effectively separates
into two parts: (i) The ubit rotates very rapidly and (ii) the
whole system evolves according to the Stueckelbergian D̂c.
(These two operations commute with each other.)

We now want to show that this evolution amounts to an
ordinary quantum mechanical evolution. The Stueckelbergian
D̂c is exactly what one would get by starting with the
Hamiltonian

H = (D̂c)00 + i(D̂c)10 (B9)

and simply rewriting the same physics in real-vector-space
terms as in Sec. II. Here the indices 0 and 1 are ubit indices
as in that section. When we write out the definition of D̂, this
Hamiltonian becomes

H = HE ⊗ IA + IE ⊗ HA, (B10)

where HE = s{[(BEU )c]00 + i[(BEU )c]10} and HA =
[(SUA)c]00 + i[(SUA)c]10, and we are using script letters to
refer to systems described in terms of a complex vector space.
(Again the subscript c means that we are taking only the part
of the operator that commutes with Ĵ .) Thus, the environment
and the local system evolve independently, each according to
its own Hamiltonian.

We conclude that, even without letting s or N go to infinity,
the effective dynamics of the local system in the ubit model
reduces to the dynamics of standard quantum mechanics as
ω approaches infinity. On the other hand, if we keep terms
of order 1/ω in Eq. (B7), we obtain correction terms that do
not commute with Ĵ (for a generic D̂). So we do not expect a
perfect correspondence with standard quantum theory for any
finite value of ω.

APPENDIX C: CONSTRUCTING THE ORTHOGONAL
TRANSFORMATION O

In this Appendix our aim is to find an orthogonal trans-
formation O on the EU system such that O|
+

n 〉〈
+
n |OT =

(1/2)|n〉〈n| ⊗ (IU − iJU ), where the real vectors |n〉 constitute
an orthonormal basis for the environment. We construct O in
two steps. First, let O1 be the matrix

O1 =
∑

n

(|	+
n 〉〈
+

n | + |	−
n 〉〈
−

n |). (C1)

O1 transforms between two orthonormal bases, so it is unitary.
It is also real and therefore orthogonal. Upon applying O1 to
|
+

n 〉〈
+
n |, we get

O1|
+
n 〉〈
+

n |OT
1 = |	+

n 〉〈	+
n | = |φ+

n 〉〈φ+
n | ⊗ |+〉〈+|

= 1
2 |φ+

n 〉〈φ+
n | ⊗ (IU − iJU ), (C2)

where we are using the factorization |	+
n 〉 = |φ+

n 〉 ⊗ |+〉
introduced in Sec. III C.

Next, let U be the unitary matrix that takes |φ+
n 〉 to |n〉.

That is, U = ∑
n |n〉〈φ+

n |. Let O2 be the real-vector-space
version of U according to the transcription rules of Sec. II.
That is,

O2 = Re U ⊗ IU + Im U ⊗ JU . (C3)

By rewriting U |φ+
n 〉〈φ+

n |U † = |n〉〈n| in real-vector-space
terms, we get

O2(Re |φ+
n 〉〈φ+

n | ⊗ IU + Im |φ+
n 〉〈φ+

n | ⊗ JU )OT
2

= |n〉〈n| ⊗ IU . (C4)

Multiplying both sides of this equation by −iIE ⊗ JU (which
commutes with O2) gives us

O2(i Im |φ+
n 〉〈φ+

n | ⊗ IU − i Re |φ+
n 〉〈φ+

n | ⊗ JU )OT
2

= −i |n〉〈n| ⊗ JU . (C5)

Now we add Eqs. (C4) and (C5) to get

O2[|φ+
n 〉〈φ+

n | ⊗ (IU − iJU )]O2 = |n〉〈n| ⊗ (IU − iJU ),

(C6)

in which the left-hand side mirrors the right-hand side of
Eq. (C2). Finally, we define O to be O = O2O1. Then
Eqs. (C2) and (C6) imply that

O|
+
n 〉〈
+

n |OT = 1
2 |n〉〈n| ⊗ (IU − iJU ), (C7)

which is what we wanted to show.
To get some mathematical insight it is interesting to work

out the effect of O on SEU , though in our modified-ubit
interpretation we do not perform this transformation. We can
write SEU as

SEU = −iω
∑

n

gn(|
+
n 〉〈
+

n | − |
−
n 〉〈
−

n |), (C8)

where the gn’s are eigenvalues of G as in Sec. III B. Upon
applying O, we get

OSEUOT = −ω

(∑
n

gn|n〉〈n|
)

⊗ JU . (C9)

Thus, the transformation O brings SEU to a tensor-product
form. Any antisymmetric real matrix such as SEU can be
brought to block-diagonal form by an orthogonal transfor-
mation, with 2 × 2 blocks proportional to J [43]. If we take
the basis defined by the |n〉’s to be the standard basis for
the environment, then O is an orthogonal transformation that
brings SEU to this form.
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