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Intrinsic relationship between dynamical resonance energy and decay rate
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In the framework of dilatation transformation based on complex scaling, we show that the dilated non-Hermitian
Hamiltonian may be decoupled into two separated Hermitian operators, namely, the resonance energy operator
and the decay rate operator, i.e., the FWHM. We present an intrinsic relationship between these operators.
Specifically, we show that the effective potential for resonance decay rate is a virial function of the effective
potential for resonance energy. As examples of their application, we invoke the decoupled Hamiltonian operators
for resonance states of a single particle in a central force field and to problems in potential scattering to identify
the resonance states and determine resonance energy and decay rate.
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I. INTRODUCTION

In contrast to bound states, quasibound states, i.e., dynam-
ical resonances, are characterized by states with a relative
stability but a finite lifetime. These states are ubiquitous and
clearly some of the most important dynamical processes [1–4],
including reaction dynamical resonances such as quantum
transition state resonances and reaction thresholds [5–7].
Quantum dynamical resonance states also play a key role in
optimal and optical control of molecular dynamics [8].

Among the various approaches to studies of quasibound
states, the rigged Hilbert space theory is one of the most
successful [9]. Mathematically, it is generated by a dilatation
transformation of the basic Hilbert space by extending the reac-
tion coordinates into a complex domain, i.e., r → reiθ , such
that a dilatation-transformed, diagonalizable, non-Hermitian
system Hamiltonian Ĥ (reiθ ) is obtained.

The development of the theory has been encouraging, and
many numerical applications have been successful by invoking
the complex virial theorem [9–27], which was first analyzed by
Balslev and Combes [9]. These researchers provided a math-
ematical foundation for the complex virial theorem that can
be written in a variational form, i.e., dE(θ )/dθ = 0. Further
discussions on the complex virial theorem of quasistationary
molecular systems were given by Tachibana et al. and others
[28–33]. Throughout the years, the rigged Hilbert space theory
has been applied to various quantum dynamical processes, e.g.,
atomic and molecular physics, chemical reaction dynamics,
etc.

In summary of the rigged Hilbert space theory, a complex
dilated system Hamiltonian has the following physical features
and mathematical advantages:

(i) A quantum reaction dynamical process is generally
an unbound scattering process and contains a mixture of
bound-unbound states. In such a case, the wave function is
generally not square integrable. With the complex dilatation
transformation, the rigged Hilbert space wave function be-
comes square integrable, i.e., an L2 function. Mathematically,
it behaves exactly like that of a bound-state wave function.
Because the wave function becomes square integrable, the
eigenvalue problem may be performed to obtain energies and
eigenfunctions, in exactly the same way as that of a bound
state.

(ii) The bound-state eigenvalues are not affected by the
complex dilatation transformation. In other words, the bound-
state eigenvalues are not changed regardless of the transfor-
mation.

(iii) The continuum states in scattering processes are filtered
out as background. They do not have any effects on the
dynamical process, nor do they have any mathematical
implication on numerical calculation.

(iv) Each quasibound state (resonance) embedded in the
continuum will distinguish itself in providing a complex
eigenvalue for the complex scaled Hamiltonian, E(θ ) =
ER(θ ) − i�(θ )/2, where ER(θ ) is the resonance energy and
�(θ ) is the FWHM. For a given scaling parameter θ , the
resonance lifetime is related to its FWHM such that τ (θ ) =
h̄/�(θ ).

(v) The scaling parameter θ is obtained by the so-called
complex virial theorem, dE(θ )/dθ = 0, to determine the
corrected resonance states with corresponding resonance
energies and lifetimes.

In this paper, we show that the dilatation-transformed
non-Hermitian Hamiltonian operator can be formally de-
coupled into two interrelated Hermitian operators, namely,
the resonance energy operator and resonance width operator
[18]. We present a theoretical derivation of an intrinsic
relationship between the aforementioned operators, i.e., an
intrinsic relationship between resonance energy ER(θ ) and
its FWHM �(θ ). To illustrate this intrinsic relationship and
the practical calculations of quasibound states, we apply the
decoupled Hamiltonian operators to problems in potential
scattering and resonance states of a single particle in a central
force field.

II. RELATIONSHIP BETWEEN RESONANCE ENERGY
AND DECAY RATE

For a quantum reactive dynamical process, dilatation
transformation of Hilbert space is generated by complex
scaling of the reaction coordinate in basic Hilbert space [9],
obtained by replacement of the reaction coordinate via the
transformation r → reiθ . This operation is achieved through
a unitary dilatation transformation Û (θ ) = eiθŜ , where Ŝ =
i(rp̂ + p̂r)/2h̄ is the so-called generating operator. By noting
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that momentum p̂ = −ih̄(d/dr), we may write the generating
operator in the form of the virial operator,

Ŝ = 1

2

(
r

d

dr
+ d

dr
r

)
. (1)

Application of the dilatation transformation Û (θ ) to a wave
function, ψ(r,θ ) = Û (θ )ψ(r), yields

ψ(r,θ ) = eiθ/2ψ(reiθ ). (2)

This rigged Hilbert space wave function now becomes square
integrable (L2 function) and behaves similarly to that of the
bound-state wave function.

The dilated Hamiltonian operator is given by

Ĥ (reiθ ) = Û (θ )Ĥ (r)Û (θ )−1, (3)

which, sometimes denoted by Ĥ (r,θ ) = Ĥ (reiθ ), becomes
a non-Hermitian operator that can be used to characterize
quasibound states with finite lifetimes. Correspondingly, its
real part represents the center of a resonance energy and its
imaginary part is interpreted as the rate of resonance decay.
By solving the eigenvalue equation

Ĥ (r,θ )ψ(r,θ ) = E(θ )ψ(r,θ ), (4)

it yields the resonance energy and resonance FWHM, E(θ ) =
ER(θ ) − i�(θ )/2.

It can be shown that the dilated Hamiltonian operator can be
decoupled into a real and an imaginary part [14] as expressed
by

Ĥ (r,θ ) = ĤR(r,θ ) − i
1

2
�̂(r,θ ). (5)

For a given system with potential function V (r), by defining
V0(r) = V (r), and

Vn(r) = −1

2
r

d

dr
Vn−1(r), n = 1,2, . . . (6)

the operator for resonance energy takes the form

ĤR(r,θ ) = cos(2θ )
p̂2

2μ
+

[
V0(r) − (2θ )2

2!
V2(r)

+ (2θ )4

4!
V4(r) − · · ·

]
= cos(2θ )

p̂2

2μ
+

∞∑
k=0

(−1)k(2θ )2k

(2k)!
V2k(r), (7)

while the operator for resonance width is given by

1

2
�̂(r,θ ) = sin(2θ )

p̂2

2μ
+

[
(2θ )1

1!
V1(r) − (2θ )3

3!
V3(r)

+ (2θ )5

5!
V5(r) − · · ·

]
= sin(2θ )

p̂2

2μ
+

∞∑
k=0

(−1)k(2θ )2k+1

(2k + 1)!
V2k+1(r). (8)

Now, if we define the effective potential functions U (r,θ ) and
W (r,θ ) such that

U (r,θ ) =
∞∑

k=0

(−1)k(2θ )2k

(2k)!
V2k(r) (9)

and

W (r,θ ) =
∞∑

k=0

(−1)k(2θ )2k+1

(2k + 1)!
V2k+1(r), (10)

we may write the resonance energy operators as

ĤR(r,θ ) = cos(2θ )
p̂2

2μ
+ U (r,θ ), (11)

1

2
�̂(r,θ ) = sin(2θ )

p̂2

2μ
+ W (r,θ ). (12)

The significance of the pair of operators in Eqs. (11) and (12),
each acting as an effective Hamiltonian operator, is that they
are Hermitian operators and represent resonance energy and
resonance width (i.e., decay rate).

The interrelationship between the operators ĤR(r,θ ) and
�̂(r,θ ) is of interest to us. In order to obtain a better under-
standing, we examine U (r,θ ) and W (r,θ ) in greater detail. In
the following discussion, we show that the effective potential
function W (r,θ ) is a virial function of U (r,θ ). Conversely,
U (r,θ ) can also be written as a virial function of W (r,θ ). It
is exactly this mutual virial relationship between U (r,θ ) and
W (r,θ ) that provides us with an improved understanding of
the complex virial theorem.

First, we write W (r,θ ) as a virial of U (r,θ ). By invoking
the condition given in Eq. (6), we can write W (r,θ ) such that

W (r,θ ) =
∞∑

k=0

(−1)k(2θ )2k+1

(2k + 1)!
V2k+1(r)

= −1

2
r

d

dr

[ ∞∑
k=0

(−1)k(2θ )2k+1

(2k + 1)!
V2k(r)

]
. (13)

Taking the first derivative of W (r,θ ) in Eq. (13) with respect
to θ gives

d

dθ
W (r,θ ) = −r

d

dr

[ ∞∑
k=0

(−1)k(2θ )2k

(2k)!
V2k(r)

]
(14)

or

d

dθ
W (r,θ ) = −r

d

dr
U (r,θ ). (15)

Thus we may write W (r,θ ) in terms of U (r,θ ) as

W (r,θ ) =
∫

θ

[
−r

d

dr
U (r,η)

]
dη. (16)

Equation (16) shows that the effective potential for resonance
width W (r,θ ) is fundamentally the virial function of U (r,θ )
that acts as an effective potential for the energy operator
ĤR(r,θ ). We can then readily rewrite Eq. (12) as

1

2
�̂(r,θ ) = sin(2θ )

p̂2

2μ
+

∫
θ

[
−r

d

dr
U (r,η)

]
dη. (17)

Using the trigonometric identity

sin(2θ ) = 2
∫

θ

cos(2η)dη, (18)

we have

�̂(r,θ ) = 4
∫

θ

[
cos(2η)

p̂2

2μ
− 1

2
r

d

dr
U (r,η)

]
dη. (19)
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Equations (11) and (19) are the central result of this
letter. They indicate that the effective potential for resonance
decay rate, as given in Eq. (19), is a virial function of the
effective potential for resonance energy, shown in Eq. (11).
Both operators are Hermitians which, for a given dynamical
system, can be used to determine its quasibound states.

III. BOUND STATES

As the first example, let us consider a bound state, a simple
one-dimensional harmonic oscillator with potential V (x) =
mω2x2/2 and ψ(−∞) = ψ(∞) = 0. Even though this is a
trivial case, it somewhat illustrates the relationship discussed
in Eq. (19). Invoking Eq. (6), we have

V0(x) = V2(x) = V4(x) = V2j (x) = 1
2mω2x2, j = 1,2,3, . . .

(20)

Then,

U (x,θ ) =
∞∑

k=0

(−1)k(2θ )2k

(2k)!

(
1

2
mω2x2

)
= cos(2θ )

(
1

2
mω2x2

)
, (21)

1

2
x

d

dx
U (x,θ ) = cos(2θ )

(
1

2
mω2x2

)
. (22)

Applying Eqs. (21) and (22) to Eqs. (10) and (17) yields

ĤR(x,θ ) = cos(2θ )

(
p̂2

2m
+ 1

2
mω2x2

)
, (23)

�̂(x,θ ) = 2 sin(2θ )

(
p̂2

2m
− 1

2
mω2x2

)
. (24)

The complex virial theorem requires dE(θ )/dθ = 0, which
means

d

dθ

〈
Ĥ (x,θ )

〉 = d

dθ

〈
ĤR(x,θ )

〉 − i
1

2

d

dθ

〈
�̂(x,θ )

〉 = 0. (25)

Equivalently, this gives us

d

dθ

〈
ĤR(x,θ )

〉 = −2 sin(2θ )

〈
p̂2

2m
+ 1

2
mω2x2

〉
= 0 → θ = 0, (26)

d

dθ

〈
�̂(x,θ )

〉 = 4 cos(2θ )

〈
p̂2

2m
− 1

2
mω2x2

〉
= 0 → θ = π

4
.

(27)

For θ = 0,

ER =
〈

p̂2

2m
+ 1

2
mω2x2

〉
=

(
n + 1

2

)
h̄ω, n = 0,1,2, . . . ,

(28)

� = 2 sin(2θ )

〈
p̂2

2m
− 1

2
mω2x2

〉
θ=0

= 0. (29)

This is exactly the normal result for a harmonic oscillator in
quantum mechanics, where ω is the oscillator frequency.

For θ = π/4,

ER = cos(2θ )

〈
p̂2

2m
+ 1

2
mω2x2

〉
θ=π/4

= 0, (30)

�

2
= sin(2θ )

〈
p̂2

2m
− 1

2
mω2x2

〉
θ=π/4

=
〈

p̂2

2m
+ 1

2
m (iω)2 x2

〉
=

(
n + 1

2

)
h̄ (iω) . (31)

Thus the total system energy is given as

E = ER − i
1

2
� =

(
n + 1

2

)
h̄ω, (32)

and it is clear that the θ = π/4 scaling likewise does not
change the physical nature of the system. As expected,
dilatation transformation with complex scaling does not alter
any physical properties of a bound state. In this case, it is a
simple harmonic oscillator.

Let us consider a generic bound value problem with the
system Hamiltonian Ĥ (r) = p̂2/2μ + V (r), where V (r) is an
arbitrary potential well. With a scaling parameter 0 � θ <

π/2, let us define an effective mass m(θ ) = μ/ cos(2θ ). The
resonance energy and width operators can then be written
as

ĤR(r,θ ) = p̂2

2m(θ )
+ U (r,θ ), (33)

�̂(r,θ ) = 4
∫

θ

[
p̂2

2m(η)
− 1

2
r

d

dr
U (r,η)

]
dη. (34)

Invoking the complex virial theorem for resonance en-
ergy, d

〈
Ĥ (r,θ )

〉
/dθ = 0, we have for the resonance

energy

d

dθ

〈
ĤR(r,θ )

〉 = d

dθ

〈
p̂2

2m(θ )
+ U (r,θ )

〉
= 0. (35)

Equation (35) can be solved to provide a critical scal-
ing parameter θc, from which we can obtain a resonance
energy

ER =
〈

p̂2

2m(θc)
+ U (r,θc)

〉
. (36)

Application of the complex virial theorem to the decay rate
operator yields

d

dθ

〈
�̂(r,θ )

〉 = 4

〈
p̂2

2m(θ )
− 1

2
r

d

dr
U (r,θ )

〉
= 0. (37)

It is obvious that the scaling parameter θc obtained from
Eq. (35) is also a solution for Eq. (37), due to the fact that

2

〈
p̂2

2m(θc)

〉
=

〈
r

d

dr
U (r,θc)

〉
. (38)

Therefore, using Eq. (34), � = 0.

It is clear that for a bound state, the real part of the energy
is restored to its value before scaling and the decay rate is
zero. Thus complex scaling indeed does not alter any system
dynamics for bound states.
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IV. SCATTERING STATES

To illustrate the case of unbound states, we now discuss
the resonances in scattering over a potential barrier. Again, let
us first consider a simple parabolic potential barrier V (x) =
−mω2x2/2 for which ψ(−∞) and ψ(∞) are free states.

Using Eq. (6) we have

V0(x) = V2(x) = V4(x) = V2j (x)

= −1

2
mω2x2, j = 1,2,3, . . . (39)

Then

U (x,θ ) =
∞∑

k=0

(−1)k(2θ )2k

(2k)!

(
−1

2
mω2x2

)
= − cos(2θ )

(
1

2
mω2x2

)
, (40)

1

2
x

d

dx
U (x,θ ) = − cos(2θ )

(
1

2
mω2x2

)
, (41)

and

ĤR(x,θ ) = cos(2θ )

(
p̂2

2m
− 1

2
mω2x2

)
, (42)

�̂(x,θ ) = 2 sin(2θ )

(
p̂2

2m
+ 1

2
mω2x2

)
. (43)

It should be noted that the complex scaled Hamiltonian
Ĥ (x,θ ) has square-integrable eigenfunctions, which provide
Eqs. (42) and (43) with the boundary conditions ψ(−∞,θ ) =
ψ(θ,∞) = 0.

Using the complex virial theorem for d�(θ )/dθ = 0 leads
to

d

dθ

〈
�̂(x,θ )

〉 = 4 cos(2θ )

〈
p̂2

2μ
− 1

2
mω2x2

〉
= 0 → θ = π

4
.

(44)

Therefore,

1

2
� = sin(2θ )

〈
p̂2

2m
+ 1

2
mω2x2

〉
θ=π/4

=
(

n + 1

2

)
h̄ω,

(45)

ER = cos(2θ )

〈
p̂2

2m
− 1

2
mω2x2

〉
θ=π/4

= 0. (46)

Equations (45) and (46) represent the well-known resonance
state for the parabolic potential barrier with resonance lifetime
τ = 2h̄/� = 2/(2n + 1)ω and a maximum resonance lifetime
τ = 2/ω.

For an arbitrary potential barrier V (r), the system Hamil-
tonian may be written as Ĥ (r) = p̂2/2μ + V (r). The scaled
potential barrier is effectively

U (r,θ ) = V (r) +
∞∑

k=1

(−1)k(2θ )2k

(2k)!
V2k(r). (47)

Because the potential in Eq. (47) has a barrier, its virial
function as given below, practically, has a potential well,

d

dθ
W (r,θ ) = −r

d

dr
U (r,θ ). (48)

With a scaling parameter, 0 � θ < π/2, and an effective
mass defined by m(θ ) = μ/ cos(2θ ), the resonance energy and
width operators can be written as

�̂(r,θ ) = 4
∫

θ

[
p̂2

2m(η)
− r

d

dr
U (r,η)

]
dη, (49)

ĤR(r,θ ) = p̂2

2m(θ )
+ U (r,θ ). (50)

Application of the complex virial theorem to the decay rate
operator yields

d

dθ

〈
�̂(r,θ )

〉 = 4

〈
p̂2

2m(θ )
− 1

2
r

d

dr
U (r,θ )

〉
= 0, (51)

which determines a critical scaling parameter θc and guar-
antees the regular virial theorem. Solving the eigenvalue
problem for the resonance width operator �̂(r,θc), which has
a effective potential well W (r,θ ), yields a proper resonance
wave function. The resonance energy is then calculated by

ER =
〈

p̂2

2m(θc)
+ U (r,θc)

〉
. (52)

Thus potential barrier scattering provides a potential well
for the resonance width operator that can be used to determine
the corresponding resonance wave function and resonance
lifetime.

V. A SINGLE PARTICLE IN A CENTRAL FORCE
POTENTIAL FIELD

As a final consideration, we now discuss the case of a
single particle in the field of a central force potential V (r). By
spherical coordinates, the system Hamiltonian takes the form

Ĥ (r) = − h̄2

2m

1

r

∂2

∂r2
r + L2

2mr2
+ V (r), (53)

where L is the angular momentum operator. The eigenfunc-
tions are of the form


(r) = 1

r
ψ�(r)Y�m(θ,φ). (54)

Using Eqs. (53) and (54), it yields a one-dimensional
Schrödinger equation for the central potential,[

− h̄2

2m

d2

dr2
+ h̄2

2m

� (� + 1)

r2
+ V (r)

]
ψ(r) = Eψ(r). (55)

For a fixed angular moment �, Eq. (55) provides an effective
central potential:

Veff(r) = h̄2

2m

� (� + 1)

r2
+ V (r). (56)

This effective potential, for a given angular momentum �,
is within the group of arbitrary potential barriers that can
be dilated to obtain information on resonance states, as
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discussed earlier. Theoretically, the discussion above holds
for all states with or without angular momentum �, provided
that lim

r→0
r2V (r) = 0.

Now, let us consider a practical anharmonic central force
potential in the special case of � = 0, namely, an inverted
Morse potential barrier [18],

V (x) = De[2e−αx − e−2αx], (57)

where α is a Morse potential parameter and x = r − re is the
distance from the barrier height, r = re, with De > 0. In this
case, the function related to resonance width is practically a
potential well given by

W (x,θ ) =
∞∑

k=0

(−1)k(2θ )2k+1

(2k + 1)!
V2k+1(x)

= Deα
2x2 sin(2θ ) +

∞∑
k=1

(−1)k(2θ )2k+1

(2k + 1)!

× (ax3 + bx4 + cx5 + · · ·). (58)

With the defined problem above, the particle is trapped
inside the well and the boundary conditions are given by
ψ(−re) = ψ(∞) = 0. An eigenvalue problem can be solved
for this potential well to obtain the resonance width:

〈ψn|sin(2θ )
p̂2

2μ
+ W (x,θ )|ψn〉 = 1

2
�n(θ ). (59)

Under harmonic approximation, with standard θ = π/4 as for
the harmonic oscillator, Eq. (59) leads to

�n = 2

(
n + 1

2

)
h̄

√
2Deα2

μ
, n = 0,1,2, . . .. (60)

The resonance energy may then be calculated by

ER,n = 〈ψn|cos(2θ )
p̂2

2μ
+ U (x,θ )|ψn〉θ=π/4

= De − 1

4De

(
n + 1

2

)2

h̄2

⎛⎝√
2Deα2

μ

⎞⎠2

,

n = 0,1,2, . . . (61)

Equations (60) and (61) are again the well-known solutions of
resonance states for the inverted anharmonic Morse oscillator.

For � �= 0, we write the centrifugal barrier term as

u(r) = h̄2

2m

� (� + 1)

r2
. (62)

It is easy to verify that

−1

2
r

d

dr
u(r) = h̄2

2m

� (� + 1)

r2
= u(r), (63)

u0(r) = u1(r) = · · · = un(r) = h̄2

2m

� (� + 1)

r2
= u(r),

n = 1,2,3, . . . . (64)

Then, for the effective potential Veff(r), as given in Eq. (56),
we have

W (x,θ ) =
∞∑

k=0

(−1)k(2θ )2k+1

(2k + 1)!
(Veff)2k+1 (x)

= sin(2θ )

[
Deα

2x2 + h̄2

2m

� (� + 1)

(x + r0)2

]
+

∞∑
k=1

(−1)k(2θ )2k+1

(2k + 1)!
(ax3 + bx4 + · · ·). (65)

Under harmonic approximation, it can be written as

W (x,θ ) =
∞∑

k=0

(−1)k(2θ )2k+1

(2k + 1)!
(Veff)2k+1 (x)

≈ sin(2θ )

[
Deα

2x2 + h̄2

2m

� (� + 1)

r2
0

]
. (66)

Equation (66) provides a resonance state with decay rate of

�n = (2n + 1)h̄

√
2Deα2

μ
+ h̄2

m

� (� + 1)

r2
0

, n= 0,1,2, . . ..

(67)

VI. DISCUSSION

Alternative approaches, both different from and similar
to the dilatation transformation based on complex scaling,
have also been successful for finding resonances in atomic
and molecular dynamics. A stationary principle for quantum
resonance states, separate from dilatation transformation by
complex scaling, was developed by Truhlar and Mead [5].
In that formalism, a generalized antiunitary operator was
proposed for a generalized dilatation transformation (GDT) in
terms of time reversal. Truhlar and Mead showed that the time-
reversal operator provided a stationary formulism for finding
resonances in atomic and molecular systems, and discussed the
difference and similarity between the Truhlar-Mead stationary
principle and the method of complex dilatation. Actually, for
the complex scaled Hamiltonian as discussed in this paper,
its eigenvalues can also be obtained by the Truhlar-Mead
principle [5] in seeking stationary points of

E(θ ) = 〈Ĉ
(r)|Ĥ (r,θ )|
(r)〉
〈Ĉ
(r)|
(r)〉 . (68)

In Eq. (68), Ĉ is an antiunitary operator and 
(r) is a trial
function for stationary points.

Specifically, in the method of dilatation transformation
based on complex scaling, for systems of a single particle in
a central force potential field, the resonance-state expectation
values are calculated by

E(θ ) = 〈ψ∗(r,θ )|Ĥ (r,θ )|ψ(r,θ )〉
〈ψ∗(r,θ )|ψ(r,θ )〉 , (69)

where ψ∗(r,θ ) is a complex conjugate of ψ(r,θ ). Examining
Eqs. (68) and (69), we recognize that

Ĉψ(r,θ ) = ψ∗(r,θ ). (70)
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It is worth noting that for the examples discussed in
this paper, under harmonic approximation, the eigenfunctions
are real, i.e., the eigenfunctions are not complex functions.
Therefore we have ψ∗(r,θ ) = ψ(r,θ ), and

E(θ ) = 〈ψ∗(r,θ )|Ĥ (r,θ )|ψ(r,θ )〉
〈ψ∗(r,θ )|ψ(r,θ )〉

= 〈ψ(r,θ )|Ĥ (r,θ )|ψ(r,θ )〉
〈ψ(r,θ )|ψ(r,θ )〉 . (71)

In summary, we have presented an intrinsic relationship be-
tween resonance energy and resonance width in the framework
of dilatation transformation by complex scaling. We show
that the dilated non-Hermitian Hamiltonian operator can be
formally decoupled into two interrelated Hermitian operators,

corresponding to resonance energy and resonance decay rate,
and that the decoupled operators can be applied successfully
to determine dynamical resonances. Although the applications
are limited to the simplest cases in this paper, the theory is
generalizable to any dynamical system. We expect that more
successful applications of the theory to practical, complex,
multidimensional problems will be forthcoming.
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