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We report an experimental study of recently formulated entropic Leggett-Garg inequality (ELGI) by Usha Devi
et al. [Phys. Rev. A 87, 052103 (2013)]. This inequality places a bound on the statistical measurement outcomes
of dynamical observables describing a macrorealistic system. Such a bound is not necessarily obeyed by quantum
systems, and therefore provides an important way to distinguish quantumness from classical behavior. Here we
study ELGI using a two-qubit nuclear magnetic resonance system. To perform the noninvasive measurements
required for the ELGI study, we prepare the system qubit in a maximally mixed state as well as use the “ideal
negative result measurement” procedure with the help of an ancilla qubit. The experimental results show a
clear violation of ELGI by over four standard deviations. These results agree with the predictions of quantum
theory. The violation of ELGI is attributed to the fact that certain joint probabilities are not legitimate in
the quantum scenario, in the sense they do not reproduce all the marginal probabilities. Using a three-qubit
system, we also demonstrate that three-time joint probabilities do not reproduce certain two-time marginal
probabilities.
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I. INTRODUCTION

The behavior of quantum systems is often incomprehensi-
ble by classical notions, the best examples being nonlocality
[1,2] and contextuality [3]. Quantum systems are nonlocal
since they violate Bell’s inequality derived from the locality
assumption, i.e., operations on one of the two spacelike
separated objects can not disturb the measurement outcomes
of the other [4]. The quantum systems are also contextual in
the sense that a measurement outcome depends not only on
the system and the property being measured, but also on the
context of the measurement, i.e., on the set of other compatible
properties which are being measured along with them.

Another notion imposed on classical objects is macroreal-
ism, which is based on two criteria: (i) the object remains
in one or the other of many possible states at all times,
and (ii) the measurements are noninvasive, i.e., they reveal
the state of the object without disturbing the object or its
future dynamics. Quantum systems are incompatible with
these criteria and therefore violate bounds on correlations
derived from them. For instance, the Leggett-Garg inequality
(LGI) sets up macrorealistic bounds on linear combinations of
two-time correlations of a dichotomic observable belonging
to a single dynamical system [5]. In this sense, the LGI is
regarded as a temporal analog of Bell’s inequality. Quantum
systems do not comply with the LGI, and therefore provide
an important way to distinguish the quantum behavior from
macrorealism. Violations of the LGI by quantum systems have
been investigated and demonstrated experimentally in various
systems [6–17]. Such studies are important in characterizing
quantum processors or quantum sensors, where in one would
like to know the useful lifetime of a open quantum system
gradually decohering towards a classical state [11].

For understanding the quantum behavior it is important to
investigate it through different approaches, particularly from
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an information theoretical point of view. For example, an
entropic formulation for Bell’s inequality has been given by
Braunstein and Caves [18], and later that for contextuality
has been given independently by Chaves and Fritz [19] and
Kurzyński et al. [20]. Recently Usha Devi et al. [21] have
introduced an entropic formulation of the LGI in terms of
classical Shannon entropies associated with classical correla-
tions.

Here we report an experimental demonstration of the
violation of the entropic LGI (ELGI) in an ensemble of
spin-1/2 nuclei using nuclear magnetic resonance (NMR)
techniques. Although NMR experiments are carried out at a
high temperature limit, the nuclear spins have long coherence
times, and their unitary evolutions can be controlled in a
precise way. The large parallel computations carried out in
an NMR spin ensemble assists in efficiently extracting the
single-event probabilities and joint probabilities. The simplest
ELGI study involves three sets of two-time joint measurements
of a dynamic observable belonging to a “system” qubit at time
instants (t1,t2), (t2,t3), and (t1,t3). The first measurement in
each case must be “noninvasive” in the sense that it should
not influence the outcome of the second measurement. These
noninvasive measurements can be performed with the help of
an “ancilla” qubit.

Further, it has been argued in Ref. [21] that the violation of
the ELGI arises essentially due to the fact that the joint prob-
abilities do not originate from a legitimate grand probability
(of which the joint probabilities are the marginals). Here we
also describe extracting the three-time joint probability (grand
probability) using a three-qubit system, and demonstrate
experimentally that it can not reproduce all the marginal
probabilities substantiating this feature.

The paper is organized as follows. In Sec. II we briefly
revisit the theory of the ELGI [21], and then we describe the
scheme for the measurement of probabilities in Sec. III. Later
we detail the experimental study in Sec. IV and describe the
study of the three-time joint probability in Sec. V. We conclude
in Sec. VI.
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II. THEORY

Consider a dynamical observable Qk := Q(tk) measured at
different time instances tk . Let the measurement outcomes be
qk with probabilities P (qk). In classical information theory, the
amount of information stored in the observable Qk is given by
the Shannon entropy [22], H (Qk) = −∑

qk
P (qk) log2 P (qk).

Assuming that the observable Qk has an outcome qk , the condi-
tional information stored in Qk+l at time tk+l is H (Qk+l|Qk =
qk) = −∑

qk+l
P (qk+l|qk) log2 P (qk+l|qk), where P (qk+l|qk)

is the conditional probability. Then the mean conditional en-
tropy is given by H (Qk+l|Qk) = −∑

qk
P (qk)H (Qk+l|Qk =

qk). Using Bayes’ theorem, P (qk+l |qk)P (qk) = P (qk+l ,qk),
the mean conditional entropy becomes

H (Qk+l|Qk) = H (Qk,Qk+l) − H (Qk), (1)

where the joint Shannon entropy H (Qk,Qk+l) =
−∑

qk,qk+l
P (qk+l ,qk) log2 P (qk+l ,qk). These Shannon

entropies always follow the inequality [18]

H (Qk+l|Qk) � H (Qk+l) � H (Qk,Qk+l). (2)

The left side of the inequality implies that removing a con-
straint never decreases the entropy, and the right side implies
information stored in two variables is always greater than or
equal to that in one [21]. Suppose that three measurements Qk ,
Qk+l , and Qk+m, are performed at time instants tk < tk+l <

tk+m. Then, from Eqs. (1) and (2), the following inequality can
be obtained:

H (Qk+m|Qk) � H (Qk+m|Qk+l) + H (Qk+l|Qk). (3)

For n measurements Q1,Q2, . . . ,Qn, at time instants t1 < t2 <

· · · < tn, the above inequality can be generalized to [21]

n∑
k=2

H (Qk|Qk−1) − H (Qn|Q1) � 0. (4)

This inequality must be obeyed by all macrorealistic objects,
and its satisfaction means the existence of a legitimate
joint probability distribution, which can yield all marginal
probabilities [20].

Usha Devi et al. [21] have shown theoretically that the
above inequality is violated by a quantum spin-s system,
prepared in a completely mixed initial state, ρin = 1/(2s +
1). Consider a dynamical observable Qt = UtSzU

†
t , with

Ut = eiωSx t representing the precession about x̂ axis with
frequency ω. Let n measurements occur at regular time instants
0,�t,2�t, . . . ,(n − 1)�t . Ideally in this case, the conditional
entropies H (Qk|Qk−1) between successive measurements
are all equal, and can be denoted as H [θ/(n − 1)], where
θ/(n − 1) = ω�t is the rotation in the interval �t . Similarly
we can denote H (Qn|Q1) as H [θ ]. The left-hand side of
inequality (4) scaled in units of log2(2s + 1) is termed as the
information deficit D. For n-equidistant measurements, it can
be written as [21]

Dn(θ ) = (n − 1)H [θ/(n − 1)] − H [θ ]

log2(2s + 1)
� 0. (5)
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FIG. 1. Circuits for measuring (a) single-event probabilities,
(b) two-time joint probabilities, and (c) three-time joint probabilities.
The gates grouped by dashed lines represent measurements in the
{�t

0,�
t
1} basis. The pointer at the end in each circuit represents the

measurement of diagonal elements of the density matrix.

III. MEASUREMENT OF PROBABILITIES

A spin-1/2 particle provides a simple two-level quan-
tum system. Using the eigenvectors {|0〉,|1〉} of Sz, as the
computational basis, the projection operators at time t =
0 are {�α = |α〉〈α|}α=0,1. For the dynamical observable,
the measurement basis is rotating under the unitary Ut =
eiωSx t , such that �t

α = Ut�αU
†
t . However, it is convenient

to perform the actual measurements in the time-independent
computational basis. Since for an instantaneous state ρ(t),
�t

αρ(t)�t
α = Ut�α[U †

t ρ(t)Ut ]�αU
†
t , measuring in the {�t

α}
basis is equivalent to back evolving the state by U

†
t , measuring

in the computational basis, and lastly forward evolving by
Ut . In the case of multiple-time measurements, the forward
evolution can be omitted after the final measurement, since
we are interested only in the probabilities and not in the
postmeasurement state of the system.

The method for extracting single-event probabilities and
joint probabilities involves the quantum circuits shown in
Fig. 1. To measure single-event probabilities P (qi) of a system
qubit in a general state ρS , it is evolved by U

†
i = e−iωSx ti , and

the probabilities P (qi) are obtained by measuring the diagonal
elements of U

†
i ρSUi [Fig. 1(a)].

To measure joint probabilities P (qi,qj ), we utilize an
ancilla qubit initialized in the state |0〉〈0| [Fig. 1(b)]. After
back evolution to the computational basis by U

†
i , the CNOT

gate encodes the probabilities of the system qubit P (qi) onto
the ancilla qubit. Consider a system qubit initially prepared in
a general state ρS and an ancilla qubit prepared in the state
|0〉〈0|. The CNOT gate encodes the probability of the outcomes
in the diagonal elements of the ancilla qubit since[

P (0i) a

a† P (1i)

]
S

⊗
[

1 0
0 0

]
A

CNOT−−−→

⎡
⎢⎣

P (0i) 0 0 a

0 0 0 0
0 0 0 0
a† 0 0 P (1i)

⎤
⎥⎦

SA

,
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where a is the off-diagonal element of the system density
matrix. The probabilities P (0i) and P (1i) can now be retrieved
by tracing over the system qubit and reading the diagonal
elements of the ancilla state. After a further evolution by
UiU

†
j = e−iωSx (tj −ti ), the measurement of diagonal elements

of the full two-qubit density matrix yields P (qi,qj ).
A similar scheme, shown in Fig. 1(c), is employed for

extracting the three-time joint probabilities. These circuits can
be generalized for higher order joint probabilities or for spin
numbers greater than 1/2, using appropriate ancilla register.

In the earlier LGI experiments, noninvasive measurements
have been performed by either (i) a weak measurement which
causes minimum disturbance to the quantum state [6,9,10] or
(ii) initializing the system qubit in a maximally mixed state
so that the system density matrix remains unchanged by the
measurements [11,12]. Recently however, it was noted by
Knee et al. that a skeptical macrorealist is not convinced
by either of the above methods [23]. Instead, they had
proposed a different procedure, viz., an “ideal negative result
measurement” (INRM) procedure that is more convincingly
noninvasive [17]. The idea is as follows. The CNOT gate is able
to flip the ancilla qubit only if the system qubit is in state |1〉,
and does nothing if the system qubit is in state |0〉 [Fig. 1(b)].
Therefore after the CNOT gate, if we measure the probability of
the unflipped ancilla, this corresponds to an “interaction-free”
or “noninvasive measurement” of P (q = 0). Similarly, we can
implement an anti-CNOT gate, which flips the ancilla only if the
system qubit is in state |0〉, and does nothing otherwise, such
that the probability of the unflipped qubit now gives P (q = 1).
Note that in both the cases, the probabilities of states wherein
the system interacted with the ancilla, resulting in its flip, are
discarded. The final measurement need not be noninvasive
since we are not concerned about any further evolution.

In our experiments we combine the two methods, i.e.,
(a) first we prepare the system in a maximally mixed state,
i.e., ρS = 1/2, and (b) we perform an INRM. Theoretically,
P (0i) = P (1i) = 1/2, and the joint probabilities are

P (0i ,0j ) = | cos(θij /2)|2/2 = P (1i ,1j ), and,
(6)

P (0i ,1j ) = | sin(θij /2)|2/2 = P (1i ,0j ),

where θij = ω(tj − ti) [21].
The only single event entropy needed for the ELGI test

is H (Q1), since H (Q1) = H (Q2) for the maximally mixed
system state. Further, since H (Q1,Q2) = H (Q2,Q3) in the
case of uniform time intervals, only two joint entropies
H (Q1,Q2) and H (Q1,Q3) are needed to be measured for
evaluating D3. In the following we describe the experimental
implementation of these circuits for the three-measurement
LGI test.

IV. EXPERIMENT

We have used 13CHCl3 (dissolved in CDCl3) as the two
qubit system and treat its 13C and 1H nuclear spins as the
system and the ancilla qubits, respectively. The J coupling
and the molecule are shown in Figs. 2(a) and 2(b). The
resonance offset of 13C was set to 100 Hz (provides a dynamic
“observable”) and that of 1H to 0 Hz (on-resonant). The
spin-lattice T 1 and spin-spin T 2 relaxation time constants for

H C 

H 0 209.2 
C 100 

C

H

F F F

F 100.0 69.9 -128.3 

F 11960.8 47.4 

F -17279.1 

F1

F2

F3

PFG

(π/2)
x

(π/4)
x

(π/3)
x

(π/4)
-y

τ τ

FIG. 2. (Color online) The molecular structures of (a) chloroform
and (c) trifluoroiodoethylene and the (b), (d) corresponding tables of
relative resonance frequencies (diagonal elements, in Hz) and the
J -coupling constants (in Hz). The pulse sequence for initializing
trifluoroiodoethylene is shown in (e). In (e) the open pulses are π

pulses and the delay τ = 1/(4J23). Pulsed field gradient (PFG) pulses
are used to destroy the transverse magnetization.

the 1H spin are, respectively, 4.1 and 4.0 s. The corresponding
time constants for 13C are, respectively, 5.5 and 0.8 s. The
experiments were carried out at an ambient temperature of
300 K on a 500 MHz Bruker UltraShield NMR spectrometer.

The initialization involved preparing the maximally mixed
state ρS = 1/2 on the system qubit (13C). This is achieved
by a π/2 pulse on 13C followed by a strong pulsed field
gradient (PFG). The evolution propagator U

†
j Ui = e−iSxω(tj −ti )

is realized by the cascade HUdH, where H is the Hadamard
gate, and the delay propagator Ud = e−iSzω(tj −ti ) corresponds
to the ẑ precession of the system qubit at ω = 2π100 rad/s
resonance offset. The J evolution during this delay is refocused
by a π pulse on the ancilla qubit. The CNOT, H, as well as the
π pulses are realized by numerically optimized amplitude and
phase modulated RF pulses, and were robust against the RF
inhomogeneity with an average Hilbert-Schmidt fidelity better
than 0.998 [24–26]. The final measurement of probabilities are
carried out by diagonal tomography. It involved dephasing all
the coherences using a strong pulsed field gradient followed
by a π/30 detection pulse. The intensities of the resulting
spectral lines yielded a traceless diagonal deviation matrix
{dii}. The experimental deviation density matrix is normalized
with respect to the theoretical traceless density matrix such
that they both have the same root mean square value

√∑
i d

2
ii ,

and a trace is introduced by adding the identity matrix to the
normalized deviation matrix. The resulting diagonal density
matrix yields the probabilities.

As described in Fig. 1(b), two sets of experiments were
performed, one with CNOT and the other with anti-CNOT. We
extracted P (0,q) (q = {0,1}) from the CNOT set, and P (1,q)
from the anti-CNOT set. The probabilities thus obtained by
the INRM procedure are plotted in Fig. 3. These sets of
experiments also allow us to compare the results from (i) only
CNOT, (ii) only anti-CNOT, and (iii) INRM procedures. The joint
entropies were calculated in each case using the experimental
probabilities and the information deficit (in bits) was calculated
using the expression D3 = 2H (Q2|Q1) − H (Q3|Q1). The
theoretical and experimental values of D3 for various rotation
angles θ are shown in Fig. 4. We find a general agreement
between the mean experimental D3 values with that of the
quantum theory. The error bars indicate the standard deviations
obtained by a series of independent measurements. According
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FIG. 3. (Color online) The lines indicate the theoretical joint
probabilities (a) P (q1,q2)th and (b) P (q1,q3)th, and the symbols
indicate the mean experimental probabilities (a) P (q1,q2) and
(b) P (q1,q3) obtained by the INRM procedure.

to quantum theory, a maximum violation of D3 = −0.134
should occur at θ = π/4. The experimental values of D3(π/4)
are −0.141 ± 0.005 [Fig. 4(a)], −0.136 ± 0.002 [Fig. 4(b)],
and −0.114 ± 0.027 [Fig. 4(c)] for the CNOT, anti-CNOT, and
INRM cases, respectively. Thus in all the cases, we found a
clear violation of ELGI.

V. THREE-TIME JOINT PROBABILITY

In the above, we have described extracting the two-time
joint probabilities P (qi,qj ) directly. However, it should also be
possible to generate them as marginals P ′(qi,qj ) of three-time
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FIG. 4. (Color online) Information deficit D3 versus θ obtained
with (a), (b) CNOT; (c), (d) anti-CNOT; and (e), (f) INRM procedure.
The boxed areas in the left plots [(a), (c), (e)] are magnified in the
right plots [(b), (d), (f)], respectively. The mean experimental D3 (in
bits) values are shown as symbols. The curves indicate theoretical D3

(in bits). The horizontal lines at D3 = 0 indicate the lower bounds of
the macrorealism territories.

joint probabilities:

P ′(q1,q2) =
∑
q3

P (q1,q2,q3),

P ′(q2,q3) =
∑
q1

P (q1,q2,q3), and (7)

P ′(q1,q3) =
∑
q2

P (q1,q2,q3).

In a macrorealistic world P ′(qi,qj ) = P (qi,qj ).
The above equality can be investigated experimentally by

measuring the three-time joint probabilities, as described in
Fig. 1(c). Since this experiment requires measurements at three
time instants, we need two ancilla qubits along with the system
qubit. We use the three 19F nuclear spins (each spin 1/2) of
trifluoroiodoethylene dissolved in acetone-D6 as the three-
qubit system [Figs. 2(c) and 2(d)]. Here the first spin F1 is used
as the system qubit and the others, F2 and F3, are chosen as
the ancilla qubits. The effective 19F transverse relaxation time
constants T ∗

2 were about 0.8 s and their longitudinal relaxation
time constants were all longer than 6.3 s. The experiments
were carried out at an ambient temperature of 290 K. The
initialization involved evolution of an equilibrium deviation
density matrix under the sequence shown in Fig. 2(e):

S1z + S2z + S3z

↓ (π/2)1x(π/3)3x,PFG

S2
z + 1

2
S3z

↓ (π/4)2x

1√
2
S2z − 1√

2
S2y + 1

2
S3z

↓ 1/(2J23)
1√
2
S2z +

√
2S2xS3z + 1

2
S3z

↓ (π/4)−2y,PFG

1

2
(S2z + 2S2zS3z + S3z).

The above deviation density matrix is equivalent to the
traceless part of 1−ε

8 1 + ε{ 1
21S ⊗ |00〉〈00|A} where ε ∼ 10−5

is the purity factor [27].
First we obtained the three-time joint probabilities

P (q1,q2,q3) using the circuit in Fig. 1(c). Two-time marginal
probabilities P ′(qi,qj ) were obtained using Eqs. (7). Note
that the circuits measuring higher order joint probabilities
can also be used to retrieve lower order joint probabilities
by selectively tracing out qubits. Therefore, two-time joint
probabilities P (qi,qj ) were measured directly with the same
circuit [Fig. 1(c)]; here the joint probabilities are completely
stored in the ancilla qubits, and were obtained by tracing out
the system qubit. The experimental results of P (q1,q2) and
P ′(q1,q2) are shown in Fig. 5(a). It is evident that the marginals
agree quite well with the corresponding joint probabilities.
Similarly experimental results of P (q1,q3) and P ′(q1,q3) are
shown in Fig. 5(b). However, here we see significant deviation
of marginal probabilities from joint probabilities.

These results show, in contrary to the macrorealistic theory,
that the grand probability P (q1,q2,q3) can not reproduce all
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FIG. 5. (Color online) (a) Joint probabilities P (q1,q2) and
marginal probabilities P ′(q1,q2), and (b) joint probabilities P (q1,q3)
and marginal probabilities P ′(q1,q3). The lines correspond to theo-
retical values and the symbols are mean experimental values.

the two-time joint probabilities as the marginals. Therefore the
grand probability is not legitimate in the quantum case, which
is the fundamental reason for the violation of the ELGI by
quantum systems [21].

It is interesting to note that even for those values of θ

for which D3 is positive, the three-time joint probability
is illegitimate. Therefore, while the violation of the ELGI
indicates the quantumness of the system, its satisfaction does
not rule out the quantumness.

VI. CONCLUSIONS

We described an experimental study of the entropic Leggett-
Garg inequality in nuclear spins using NMR techniques.
We employed the recently described ideal negative result
measurement procedure to noninvasively extract joint prob-
abilities. Our results indicate the macrorealistic bound being
violated by over four standard deviations, confirming the
nonmacrorealistic nature of the spin-1/2 particles. Further,
we have experimentally measured the three-time joint prob-
abilities and confirmed that the two-time joint probabilities
are not reproduced as the marginals. Thus, quantum systems
do not have legitimate joint probability distribution, which
results in the violation of bounds set-up for macrorealistic
systems.

One distinct feature of the entropic LGI is that the
dichotomic nature of observables assumed in the original
formulation of the LGI can be relaxed, thus allowing one
to study the quantum behavior of higher dimensional sys-
tems, such as those with spin numbers greater than 1/2.
This could be an interesting topic for future experimental
investigations.
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