RAPID COMMUNICATIONS

PHYSICAL REVIEW A 87, 051607(R) (2013)

Phase diagram of the Bose-Hubbard model on a ring-shaped lattice with tunable weak links
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Motivated by recent experiments on toroidal Bose-Einstein condensates in all-optical traps with tunable
weak links, we study the one-dimensional Bose-Hubbard model on a ring-shaped lattice with a small region of
weak hopping integrals using quantum Monte Carlo simulations. Besides the usual Mott insulating and superfluid
phases, we find a phase which is compressible but nonsuperfluid with a local Mott region. This “local Mott” phase
extends in a large region of the phase diagram. These results suggest that the insulating and conducting
phases can be tuned by a local parameter, which may provide additional insight into the design of atomtronic

devices.
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Introduction. Cold atom experiments utilizing an optical
lattice provide an excellent test bed for quantum many-body
problems which were previously inaccessible in conventional
materials. A remarkable achievement is the realization of the
Bose-Hubbard (BH) model using ultracold atoms on optical
lattices [1,2] with the addition of a confining potential that
results in the “wedding cake” structure [3]. Over the past two
decades, a considerable amount of work has been devoted
to understanding the ground-state phase diagram of the BH
model and its variants [4-9]. In general, the model contains a
superfluid (SF) phase at incommensurate fillings and a Mott
insulating (MI) phase at commensurate fillings and strong
coupling. The SF phase is gapless, whereas the MI phase is
characterized by the existence of an energy gap for creating a
particle-hole pair. As the density is changed or the interaction
strength is varied, the BH model can be tuned from the MI
to the SF. Tuning between insulating and conducting phases
by controlling the external parameters provides a tantalizing
opportunity of creating analogs to electronic devices and
circuits by using ultracold atoms in optical lattices, which
have been recently defined as “atomtronics” [10,11]. The
conventional electronic system is based on the electron charge,
whereas the atomtronic system can use neutral atoms which are
either bosons or fermions; moreover, the optical lattice is better
controlled. Based on this unique property, it has been suggested
that these atomtronic systems may be useful in quantum
computing [12]. Some models have already been proposed
for atomtronic devices such as batteries, wires, diodes, and
transistors [12-20].

A recent advance in optical lattices is the realization of con-
fining potentials with toroidal shapes using the intersection of
two different red-detuned laser beams [10,21]. The versatility
of this technique allows the creation of ring-shaped lattices
by superimposing an optical lattice on a toroidal confining
potential, which is a realization of a quasi-one-dimensional
lattice with periodic boundary conditions. Remarkably, it is
possible to control the local hopping parameter in a region of
the ring by applying a magnetic field and an additional laser
beam [21]. This opens up the possibility that the different
phases in a boson system can be tuned not only by a global
parameter, such as the coupling strength or chemical potential,
but also by a local parameter, such as the tunneling strength
of a small region of the entire lattice. It has been suggested
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that this property can be utilized as an alternative realization
of atomtronics [21].

In this letter, by using quantum Monte Carlo (QMC), we
show that introducing weak links in a ring lattice can produce
a local Mott (LM) phase in addition to the usual MI and
SF phases present in the homogeneous BH model. Zero-
temperature local incompressible MI behavior was shown in
a one-dimensional system of interacting bosons in a confining
potential [3]. Our nonconfined model exhibits a LM phase
which is gapless and non-SF in addition to a region of LM
insulator which exhibits incompressible MI behavior. This is
an important result which suggests that by controlling the local
tunneling strength the system can be tuned between a SF phase
and a MI phase thorough a non-SF LM phase. This provides
theoretical support to the idea that atomtronic switches can
be implemented by tuning certain local parameters in a
quasi-one-dimensional system.

Model and method. We consider a bosonic system on
a torus-shaped lattice, where the section of the torus is
sufficiently small compared to the primary radius so the
physics can be reduced to a one-dimensional lattice with
periodic boundary conditions. The Hamiltonian takes the form

L
H=—t) wijala;+Hc)+ % > i =1, (1)
(i.J) i=1

where L is the number of lattice sites. The creation and
annihilation operators aj and a; satisfy bosonic commutation
rules, [a;.a,] = [a].a}] =0, [a,.a}] = 8;, and ; = ala, is
the operator that measures the number of bosons on site i. The
parameter ¢ is the global magnitude of the hopping integral.
In this paper, we use ¢ = 1 to set the energy scale. The sum
> i,y Tuns over all distinct pairs of first neighboring sites i
and j, and w;; € [0; 1] determines the weakness of the hopping
integral between i and j. In the following we consider a system
with M consecutive weak links for which w;; = J/t, where
J € [0;¢] is a control parameter, and L — M strong links with
w;; = 1. We restrict our study to the case with 10% of weak
links (M = L/10). The parameter U determines the strength
of the on-site interaction.

In order to solve this model, we perform exact QMC
in both canonical and grand-canonical ensembles by using
the Stochastic Green Function algorithm [22,23] with global
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FIG. 1. (Color online) The superfluid density p; as a function of
the chemical potential p for L = 50 and U = 8 in the ground state.
The figure shows results for different values of the weak hopping
integrals, J = 0.2¢ (circles), J = 0.4¢ (stars), J = 0.6¢ (triangles),
and J = 0.8¢ (diamond).

space-time updates [24]. In the canonical ensemble, the
number of particles N is a parameter and remains constant
during the simulation. The chemical potential u is measured
at zero temperature by the finite-energy difference w(N) =
E(N +1)— E(N). In the grand-canonical ensemble, the
number of particles is given by the quantum average of
the operator N = > ;Ai; and is controlled by adding to the
Hamiltonian (1) the term —u N where  is a control parameter.
We use an inverse temperature § = L/t in order to capture the
ground-state properties.

Superfluid density and compressibility. For the uniform sys-
tem, J = ¢, only two phases are present: Mott insulator (MI)
and superfluid (SF). The MI phase occurs at commensurate
fillings and large onsite repulsion U and is characterized by
a vanishing compressibility, k = g—ﬁ, where p = N/L. The
SF phase is detected by measuring the superfluid density, p;,
given by the response of the system to a phase twist of the
wave function at the boundaries. In our QMC simulations, it is
convenient to relate this superfluid density to the fluctuations
of the winding number, W, via Pollock and Ceperley’s formula

[25], ps = <v;/tsz . We have checked analytically and with
exact diagonalization that this formula remains valid for the
nonuniform system where J < z.

In the following, we show that there exists a range of
parameters for the nonuniform system for which we observe
a vanishing superfluid density and a finite compressibility at
incommensurate fillings. Figure 1 shows the superfluid density
ps as a function of the chemical potential u for L = 50 and
U = 8. Here we use grand-canonical simulations for different
weak link hopping J. We can clearly see that the region with
vanishing superfluid density expands over a large range of
chemical potentials i when the strength of the weak links is
lowered.

Figure 2 shows the density p and the superfluid density p; as
functions of the chemical potential p, for both homogeneous
(J = t) and inhomogeneous (J = 0.2¢) systems, for L = 50
and U = 20. We can see that a Mott plateau at p = 1 exists
until & = 16.1 with a vanishing superfluid density p, and
compressibility «, for both systems. For i > 16.1, the density
p starts to increase and the compressibility « is finite. As is well

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 87, 051607(R) (2013)

—8—p, J=0.2t A
+p,J=t -~ AROEEEsS : i

1.2 .
-IO +2ps, J=02t |

M 0400004 00000000000000 %

20.0

FIG. 2. (Color online) The density p and the superfluid density p;
as functions of the chemical potential u for the homogeneous system
(J = t) and an inhomogeneous system (J = 0.2¢), for L = 50 and
U = 20.

known, the superfluid density p, of the homogeneous system is
nonzero as soon as the density is no longer an integer. However,
for the inhomogeneous system, the superfluid density remains
zero until u ~ 19.1. Thus there exists a finite range of values
for the chemical potential for which the superfluid density is
vanishing but the compressibility is finite. Therefore, as the
chemical potential is increased, the inhomogeneous system
undergoes a phase transition from a MI phase to a new phase
and then to a SF phase.

Properties of the phases. We investigate the intermediate
phase first by analyzing the local density of the lattice. The
local density in the homogeneous model is uniform, whether
the system is in the MI or SF phase. For the inhomogeneous
model, we have phases with a nonuniform local density, as
shown in Fig. 3(a). We insert 10% of the weak links in the
middle of the lattice. In the MI region, the local density n;
throughout the entire lattice is uniform and sticks to integer
values (n; = 1 for the first Mott lobe, n; = 2 for the second
one, etc).

When additional particles or holes are added to the lattice
the weak link region keeps its integer density [see Fig. 3(a)].
Outside the weak link region, the local density shows an
oscillatory behavior. Although, based on numerical data, it
is difficult to strictly rule out the possibility that the superfluid
density is exceedingly small but nonzero in the weak link
region, these two observations indicate that the additional
particles do not affect the MI character of the weak link
until the number of additional particles or holes is beyond a
critical density. For a one-dimensional system, the superfluid
density or the winding is zero when part of the system is
locally Mott. As aresult we identify this locally integer-density
region as a local Mott (LM) phase. The weak link provides
an effective fixed boundary condition for the density profile,
and the additional particles or holes accumulate outside.
Then, the region with J = ¢ can be effectively described by
the hard-core boson model with L — Lye,x number of sites.
For a one-dimensional system, the hard-core boson can be
written in terms of spinless fermions using the Jordan-Wigner
transformation [26], and the oscillation of the local density
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FIG. 3. (Color online) The local density (top panel) and the
excitation spectrum (bottom panel) for L = 50 and U = 20, in the
ground state. Top panel: The local density n; as a function of the site
index i for different values of the chemical potential . Bottom panel:
The low-energy excitation spectrum €2(k) in the three regions of the
phase diagram: SF, LM, and ML

can then be explained by Friedel oscillations [27], where
n; ~ cos(krx;), where kr is the Fermi wave vector given by
the particle density. This explanation is corroborated by the
numerical data, which show that the cycle of the oscillation
of the local density is approximately given by 1/|n — 1.0| for
uw =16.6and 1/|n — 2.0| for u = 22 [see Fig. 3(a)].

When adding more particles beyond the critical density, the
local density at the weak link shifts away from integer values.
This suggests that the LM insulating region is destroyed. Thus
it opens the path for the flow, and we find that the superfluid
density becomes finite when this happens.

We study the dynamics of the model by evaluating the
low-energy excitation spectrum. Using the Feynman single-
mode approximation, the low-energy excitation spectrum €2(k)
can be written as [28]

Ey

Q(k) = SGK) 2

where

L
Ei = —(cosk — D{% > o + ol @), )

| W) is the ground state, and S(k) is the static structure factor.
Figure 3(b) displays the low-energy excitation spectrum
throughout the reciprocal lattice space. In the MI region it
shows a gap near the zero wave vector, whereas it has a linear
dependence for the SF phase. The linear behavior is expected
in the SF region due to the gapless Goldstone mode. In the LM
region the low-energy spectrum shows a parabolic behavior,
as expected for disordered free particles. Since the LM does
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not follow a linear behavior near k = 0, no signal of superflow
exists in the LM region.

Ground-state phase diagram. The MI phase is characterized
by an integer local density and the existence of a finite gap for
single-particle excitations. At zero temperature, the gap can
be easily obtained in the canonical ensemble. We define the
gap as A = puy — —, where pu_ and p, are the minimum
and maximum values of the chemical potential for which the
MI phase exists. By definition, uy = E(N + 1) — E(N) and
u— = E(N)— E(N — 1), where N is the number of particles
in the MI phase. The functions p_(¢,J,U) and p(t,J,U)
determine the boundaries between the MI and LM regions.
Since the total density remains unchanged for u € [pu—; u4],
the compressibility « is vanishing in the MI region.

We determine the phase boundary between the LM and SF
regions by using the grand-canonical simulations and scanning
over the chemical potential, as in Fig. 2. The critical value 1,
of the chemical potential where the superfluid density becomes
nonzero depends on the size of the system, L, and converges to
a finite value in the thermodynamic limit. As the size increases,
the curve displaying the superfluid density becomes sharper
and sharper. Since we work with a fixed large size, L = 50,
we define . by the value of the chemical potential that
corresponds to the maximum slope for the superfluid density
curve. The curve p.(¢,J,U) determines the boundary between
the LM and SF phases.

In our simulations the density varies continuously as a
function of the chemical potential. This suggests that the
transitions from MI to LM and from LM to SF are continuous,
as is the case for the homogeneous model [29-31]. We show
in Fig. 4 the ground-state phase diagram for J = 0.2¢ in
the (u/U,t/U) plane. The Mott lobes that are present in
the homogeneous model are weakly deformed by the presence
of the LM phase. The phase boundaries near the tip of the Mott
lobes are difficult to estimate due to the very small LM region.

We now investigate the variation of the phase boundary
between the LM and SF regions as a function of weak link
hopping J, Fig. 5. For a fixed value of the interaction U, the
phase boundary lifts up linearly when decreasing the hopping
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FIG. 4. (Color online) The ground-state phase diagram of the
inhomogeneous system (J = 0.2¢) inthe (u/U,t/U) plane. The lines
with solid circles show the first and the second Mott lobes, and the
lines with open circles show the boundaries between the LM and the
SF regions.
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FIG. 5. (Color online) The critical value of the chemical potential
1. between the LM and SF regions, as a function of the weak link
hoping J, for U = 8 and U = 20. The variation with J is quasilinear.

J in the weak link, reducing the size of the SF region in the
phase diagram. In the limit J = O the curve extrapolates to
u/U =1, and the SF region completely disappears since the
system is no longer periodic.

Conclusion. In this study, we propose that a superconduct-
ing ring with weak links might display a phase which is
gapless, compressible, and nonsuperfluid, with local Mott
insulating behavior. This phase does not exist in the ho-
mogeneous Bose-Hubbard model. We expect that in the
thermodynamic limit, the weak link acts effectively as a do-
main wall which suppresses the superfluid. While a thorough
characterization of the phases and the critical properties of
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the model will require an analysis of the inhomogeneous
Luttinger liquid coupled to a lattice, which is an interesting
and challenging topic by itself [32-35], we hope our work
motivates further study in this direction. Perhaps the most
important aspect of the present study is to understand the
mechanism of controlling superfluid flow by local perturbation
on a finite-size system, which is directly related to atomtronic.
In the experiment by Raman e al., a toroidal condensate is
created with a smooth trapping potential [21]. If the experiment
can be repeated by superimposing a lattice on top of the toroidal
potential, our model could be directly studied experimentally.
Our results have direct implications for atomtronic devices
[12,17]. For example, if the chemical potential u, the weak
link hopping J, and the interaction U/t are tuned so that
only the link is a Mott insulator, then a gate above the
link can be used to switch the conductivity of the link on
and off. The nonlinearity of the switching can be tuned by
adjusting the link width and hoping J /. Complex circuits with
highly nonlinear behavior may be constructed by a series of
such switches.
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