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Lattice-supersolid phase of strongly correlated bosons in an optical cavity
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We numerically simulate strongly correlated ultracold bosons coupled to a high-finesse cavity field, pumped by
a laser beam in the transverse direction. Assuming a weak classical optical lattice added in the cavity direction,
we model this system by a generalized Bose-Hubbard model, which is solved by means of bosonic dynamical
mean-field theory. The complete phase diagram is established, which contains two novel self-organized quantum
phases, lattice supersolid and checkerboard solid, in addition to conventional phases such as superfluid and Mott
insulator. At finite but low temperature, thermal fluctuations are found to enhance the buildup of the self-organized
phases. We demonstrate that cavity-mediated long-range interactions can give rise to stable lattice supersolid and
checkerboard solid phases even in the regime of strong s-wave scattering. In the presence of a harmonic trap, we
discuss coexistence of these self-organized phases, as relevant to experiments.
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Experimental realizations of atomic many-body systems
coupled to a high-finesse cavity have recently attracted a
large amount of attention [1]. In particular, the self-organized
phase of atoms induced by coherent scattering between pump
laser and cavity mode has been predicted theoretically [2],
and confirmed experimentally for laser-cooled atoms in a
transversally pumped cavity [3]. However, only recently it
has become possible to combine a high-finesse cavity with
an ultracold quantum gas in the strong-coupling regime and
to experimentally investigate properties of a Bose-Einstein
condensate (BEC) in an optical cavity [4–7]. A phase transition
from a normal to self-organized phase in an open system
has been realized [8], and a lifetime up to 10 ms of the
self-organized phase has been achieved which indicates a
steady state. Up to now, these experiments have, however,
focused only on weakly interacting condensates. On the
theory side, there is a lack of quantitative predictions for
strongly correlated bosons coupled to an optical cavity, even
though an extended Bose-Hubbard model has been derived
[9,10] which describes the ultracold gas trapped in a periodic
optical potential generated by the high-finesse cavity. Recently,
theoretical studies of the BEC-cavity system have predicted
that the ground state can be Mott insulating with finite
photon excitations of the cavity mode [11,12]. However,
the robustness of this self-organized phase against strong
contact interactions, finite temperature, and the inhomogeneity
induced by an external trap remains an important open issue.

To bridge this gap, here we numerically investigate the
buildup of self-organized phases in ultracold bosonic gases
coupled to a single-mode cavity field, pumped by a laser
beam in the transverse direction. This setup is similar to
a two-dimensional (2D) classical optical lattice but with
a quantized field in the cavity direction. Since the cavity
field mediates long-range interactions between atoms [13–15],
we investigate the system by means of real-space bosonic
dynamical mean-field theory (RBDMFT) which captures both
strong correlations and spatial inhomogeneity as well as
arbitrary long-range order in a unified framework [16].

Motivated by the recent experiment [8], we consider a
system of ultracold 87Rb atoms with natural s-wave scatter-
ing length ãs = 5.77 nm and atomic transition wavelength

λ = 780.2 nm, which is driven by a linearly polarized
standing-wave laser with a red-detuned wave length λp =
784.5 nm in the direction perpendicular to the cavity axis.
The setup of our simulation consists of the optical cavity in
the x direction, driven by a pump laser in the z direction, and
a strong confinement freezing the motional degree of freedom
of the atoms in the third direction [17]. We choose the cavity
decay rate as κ = 300ωR which is close to the experimental
value of κ = 2π × 1.3 MHz [8], where ωR is the frequency
corresponding to the recoil energy, ER = h̄ωR = h2/(2mλ2

p)
(≈ 2π × 3.8 kHz). We choose the light shift as U0 = g2

0/�a =
−0.1ωR , which leads to an atom-cavity coupling strength g0

two orders of magnitude larger than the cavity decay rate κ and
thus implies that the system is in the strong-coupling regime of
cavity QED [7], where �a denotes the atom-pump detuning.

This system can be described by an extended Bose-Hubbard
model [9,10], where, for generality, a weak classical optical
lattice is added in the cavity direction. We further assume
the cavity mode to be in a coherent state to simplify the atom-
cavity coupling, which is in good agreement with experimental
results [8]. Within this approximation, the cavity mode is
described by a complex amplitude α, and the parameters of
the extended Bose-Hubbard model only depend on the average
photon numbers. We thus finally obtain the lowest-band
effective Hamiltonian employed in the following calculations:

Ĥ = −
∑

〈i,j〉
J̃x(z)b̂

†
i b̂j + 1

2
U

∑

i

b̂
†
i b̂

†
i b̂i b̂i

+ 2Re[α]ηeffJ
′
0

∑

i

(−1)i b̂†i b̂i

+
∑

i

(Vi − μ̃)b̂†i b̂i , (1)

where b̂
†
i (b̂i) denotes the bosonic creation (annihilation)

operator for a Wannier state at site i. Here J̃x (J̃z) is the
effective nearest-neighbor hopping amplitude in the x (z)
direction, with the hopping in the x direction determined by
the cavity mode, μ̃ is the effective chemical potential, Vi =
Vtrap i2 with the strength Vtrap of the external harmonic trap,
and U = 4πash̄

2/m is the Hubbard interaction strength. The
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cavity mode amplitude α = ηeffJ
′
0

∑
i(−1)i〈b̂†i b̂i〉/(�′

c + iκ)
[18] with �′

c = �c − U0(J c
0

∑
i〈b̂†i b̂i〉 + J c

1

∑
〈i,j〉〈b̂†i b̂j 〉) is

determined self-consistently by the density distribution of the
atoms. J c

0 , J ′
0, and J c

1 denote the on-site single-particle matrix
elements of the potential generated by the cavity mode, by scat-
tering between pump laser and cavity mode via single atoms,
and the first-order tunneling matrix element between nearest-
neighbor sites of the cavity mode standing wave, respectively.
ηeff = −√|VpU0| denotes the effective pump strength into the
cavity through atomic scattering, �c the cavity-pump detun-
ing, and Vp (Vp = Vz) the depth of the standing-wave potential
created by the pump laser in the z direction. The hopping
amplitudes in the x and z direction for nearest neighbors are
given by J̃x,z/ER = (4/

√
π)(Vx,z/ER)(3/4) exp(−2

√
Vx,z/ER)

and the Hubbard interaction parameter by U/ER =
4
√

2π (as/λp)(VxVzVy/E
3
R)(1/4) [19], where Vx (Vy,Vz) is the

optical lattice depth in the x (y, z) direction and Vx is self-
consistently determined by the cavity mode. For the on-site
coupling matrix elements we use a Gaussian approximation
of the Wannier states. To ensure that the tight-binding
approximation is valid, we assume an external optical lattice
in the cavity direction with a depth of Vext = 5ER .

The main challenge now is to determine the steady state
of the BEC-cavity system described by the Hamiltonian (1)
in the Wannier basis. Here we apply real-space bosonic
dynamical mean-field theory (RBDMFT) [16] which provides
a nonperturbative description of the many-body system both
in three and two spatial dimensions (considered here) [20].
RBDMFT, which is capable of including the inhomogeneity
of a trapped system as well as strong correlations between the
atoms, assumes the self-energy to be local but site dependent.
In our calculations, we choose the recoil energy ER (ωR) as
the unit of energy, and set h̄ = 1.

We first investigate the robustness of the supersolid phase
against interactions for experimentally relevant parameters.
The supersolid is characterized by coexistence of the staggered
order parameter 	 = 〈∑i(−1)ib†i bi〉/〈

∑
i b

†
i bi〉 and super-

fluid order φ = 〈b〉. There are two possible signs of 	; i.e., the
majority of the atoms occupy even sites for 	 > 0 or odd sites
for 	 < 0 [7]. Intuitively, if the pump laser is strong enough to
stabilize a larger atom density at the even sites, and at the same
time we choose a negative shifted cavity detuning �′

c < 0, this
implies that the coherent scattering between the pump laser
and the cavity mode generates a potential with minima at the
even sites, as indicated by the staggered term of Eq. (1). As
a result, the corresponding potential will attract more atoms
toward even sites and the system self-organizes into a steady
state. In the following, we will confirm this heuristic argument
via numerical simulations based on RBDMFT.

Figure 1 shows a zero-temperature phase diagram at filling
n = 1.98 in terms of cavity-pump detuning �c and rescaled
pump-laser power NtotVp for two different scattering lengths
as = ãs , 1.25ãs (ãs = 5.77 nm). One reason for using the
rescaled pump-laser power NtotVp in the phase diagram is
that the system has a physical finite size effect, meaning that
in general, at a given filling, the phase boundary in terms of
�c and Vp depends on the system size. The physical origin of
this effect is that the pump laser globally couples to all atoms
in the cavity; thus the strength of the coherently scattered
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FIG. 1. (Color online) Zero-temperature phase diagram at filling
n = 1.98 in terms of cavity-pump detuning �c and rescaled pump-
laser power NtotVp for two different scattering lengths as = ãs [red
(lower) line], and 1.25ãs [blue (upper) line] (ãs = 5.77 nm). There
are two phases in the diagram: superfluid (SF) and supersolid (SS).
Different markers correspond to different sizes of the system in our
calculations [Nlat = 12 × 12 (+), Nlat = 16 × 16, Nlat = 20 × 20 (�),
and Nlat = 24 × 24 (×)]. The cavity decay rate is set to κ = 300ER

and the light shift is U0 = −0.1ER . Inset: Rescaled critical strength
NtotV

c
p of the standing-wave pump laser vs temperature at fixed cavity

detuning �c = −1000ER obtained from calculations on a 16 × 16
lattice.

light field in the cavity direction is proportional to the atom
number, which in turn shifts the transition boundary. This
motivates us to rescale Vp by the total atom number. For
a sufficiently large total particle number (according to our
calculations Ntot � 500), we indeed observe a nearly universal
phase boundary regardless of the system size. For a weak
pump laser, the system is superfluid with homogeneous density
distribution and 	 = 0. In this case, the mean photon number
in the cavity is zero. On the other hand, if the pump laser
is strong enough, more photons are scattered into the cavity
mode and the atoms organize themselves into a checkerboard
pattern with |	| > 0. Our simulations thus clearly confirm
the existence of the supersolid phase for single-component
Bose gases in the cavity in the presence of strong on-site
interactions. In Fig. 1 we observe that the trend of the phase
boundary from superfluid to supersolid as a function of Vp at
fixed scattering length as is consistent with experiment [8].
The phase boundary is considerably shifted upwards for larger
scattering length, which indicates that more pump laser power
is needed to drive the system into the self-organized phase. We
also observe that on-site interactions have a more pronounced
effect on the buildup of the supersolid phase for a stronger
pump laser field. Generally, there exists also an unstable state
for positive shifted cavity detuning �′

c > 0 [8,21], which is
beyond the scope of this work.

We also investigate the effect of finite temperature on the
critical pump strength, as shown in Fig. 1(a). We observe a
minimum of V c

p at low but finite temperature, since thermal
fluctuations excite the atoms from the ground state and thus
reduce the energy gap between the homogeneous and the
self-organized state. As a result, less power of the pump
laser is needed to stabilize the supersolid. On the other
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FIG. 2. (Color online) Properties of the self-organized phases
of strongly interacting bosons on a square (Nlat = 16 × 16) lattice.
The blue curve corresponds to the filling dependence of checker-
board order 	 at zero temperature; the green (lower) and the red
(upper) triangles denote where the system is in the Mott insulator
and checkerboard solid, respectively. (a)–(d): Density distribution
of superfluid, supersolid, Mott insulator, and checkerboard solid,
respectively, in real space (left) and in quasimomentum space (right),
corresponding to the densities marked by the red arrows in the
main figure. Other parameters are �c = −500ER , κ = 300ER , U0 =
−0.1ER , and Vp = 15ER . Inset: Melting of the supersolid phase
with increasing temperature at fixed filling Ntot/Nlat = 0.68, where
the green (circle symbols) and red (star symbols) curves indicate the
temperature dependence of the superfluid order φ and checkerboard
order 	.

hand, at high temperature, thermal fluctuations tend to smear
out the self-organized density pattern, and as a result, more
power is needed to stabilize it. Interestingly, the maximum of
checkerboard order occurs when the superfluid order vanishes.
A similar effect in a different model has been observed in
Ref. [22]. Note that the long-range order φ �= 0 at T > 0 in
two dimensions is a mean-field artifact in the thermodynamical
limit, while in reality, the system exhibits a Kosterlitz-Thouless
transition [23].

From the previous discussion, we conclude that on-site
interactions strongly shift the phase boundary between su-
perfluid and supersolid. The sensitivity to on-site interactions
has been also observed experimentally in Ref. [8]. We now
investigate this effect in detail at different fillings on a square
(Nlat = 16 × 16) lattice. We choose a cavity detuning �c =
−500 ωR , a scattering length of 2.5ãs , and a lattice depth Vp =
15ER of the standing-wave pump laser, motivated by the recent
experiment [8]. Figure 2 displays the resulting checkerboard
order 	 (blue line) as a function of filling, where four possible
phases of the BEC-cavity system are observed. Panels (a)–(d)
in Fig. 2 show the density distribution in real space (left) and in
quasimomentum space (right): (a) superfluid phase (φ �= 0 and
	 = 0) with off-diagonal long-range order (phase coherence),
(b) supersolid (φ �= 0 and 	 �= 0) with coexisting diagonal
long-range order (periodic density modulation) and phase
coherence, (c) Mott insulator (φ = 0 and 	 = 0) with zero
mean-photon number in the cavity mode, and (d) checkerboard
solid (φ = 0 and 	 �= 0) with diagonal long-range order and
finite mean-photon number in the cavity mode. Let us now
discuss the underlying mechanism for the buildup of the
self-organized phases. The excitation of the cavity mode is

a collective effect due to all the atoms in the cavity and
depends on the total particle number; i.e., the more atoms
are in the cavity, the more photons will be coherently scattered
into the cavity mode, and the easier the checkerboard pattern
of the density distribution can be formed. In the absence of
induced long-range interactions, there are two possible phases
for strongly interacting bosonic gases in an optical lattice:
superfluid and Mott insulator. The low-lying excitations of
the superfluid phase are gapless sound modes which can be
easily excited [24], while the lowest excitations of the Mott
insulator are gapped particle-hole pairs with an energy gap of
order U [25]. These different excitation properties, which can
be detected via Bragg spectroscopy [15,24], strongly influence
the buildup of the self-organized phases. As can be seen from
the blue curve in Fig. 2, the order parameter 	 becomes finite
with increasing total particle number, and decreases to zero
again in the vicinity of the Mott insulator. With further increase
of the filling n > 1, the checkerboard supersolid phase appears
again. Interestingly, there is also a checkerboard solid phase
emerging at n = 1.5, since for larger particle number more
photons are scattered into the cavity mode, and the resulting
standing wave in the cavity direction suppresses tunneling of
atoms and therefore superfluidity. Interestingly, we observe
a maximum of the order parameter 	 at finite temperature
due to the competition between superfluid and checkerboard
order. All four phases can be detected experimentally by
combining time-of-flight measurements and the detection of
photons leaking from the cavity [8].

We have so far studied the homogeneous case, but in real
experiments the external trap induces inhomogeneity and a
resulting coexistence of superfluid, Mott insulator, supersolid,
and checkerboard solid. We will now investigate the effect
of inhomogeneity on the buildup of self-organized phases of
the BEC-cavity system, and answer the question of how the
different phases shown in Fig. 2 will manifest themselves in
the experiment. In contrast to the situation with pure contact
interactions, we find that the properties of the BEC in the
optical cavity are strongly influenced by the trapping potential,
due to cavity-mediated long-range interactions which are
self-consistently determined by the density distribution of the
whole system. Here we consider a Nlat = 32 × 32 lattice with
harmonic trap strength Vtrap = 0.003ER . All other parameters
are chosen as in Fig. 2. In Fig. 3 we show the resulting density
(upper panels) and superfluid order parameter distributions
(lower panels) in real space for different total particle numbers.
In general, the larger the total particle number, the more
photons are scattered into the cavity mode, and thus the easier
the system can form the self-organized phase. We observe that
at Ntot = 139, there is almost no checkerboard phase region, as
visible in panel (a). At Ntot = 167, the supersolid phase can be
clearly observed in the center of the trap, since with increasing
Ntot the superfluid core expands at the trap center and hence
more photons are scattered into the cavity mode. From Fig. 2,
we expect that the self-organized phase will disappear again
when the number of particles increases to a value at which a
Mott gap arises in the center of the trap, which is clearly visible
in panel (c) at Ntot = 184. After further increase of the particle
number to Ntot = 220, the checkerboard order reappears
again. Moreover, we observe that a checkerboard solid core
with average filling n = 0.5 builds up, indicating that the
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FIG. 3. (Color online) Density distribution n and superfluid order
parameter φ versus position on a square (32 × 32) lattice for different
atom numbers Ntot = 139, 167, 184, and 220 in panels (a)–(d),
respectively. Other parameters are �c = −500ER,κ = 300ER ,
U0 = −0.1ER , Vp = 15ER , with a harmonic trap Vtrap = 0.003ER .

interplay between the trap inhomogeneity and cavity-mediated
long-range interaction can give rise to new phases. Observation
of these different phases is possible by using single-site
addressing techniques in an optical lattice based on optical
or electron microscopy [26–28].

In conclusion, we have investigated self-organized phases
(supersolid and checkerboard solid) of both homogeneous

and trapped ultracold Bose gases coupled to a high-finesse
optical cavity. We have found that these phases are robust
against strong on-site interactions at zero temperature, where
the self-organization phase transition is solely driven by
quantum fluctuations. We observe that thermal fluctuations
can enhance the buildup of self-organized phases at finite but
low temperature. In the presence of an external harmonic trap,
the coexistence of superfluid, Mott-insulating, supersolid, and
checkerboard solid domains is observed. We find the buildup
of these self-organized phases to be strongly influenced by
an external trap, due to the density dependence of scattering
between pump laser and cavity mode by atoms in the cavity.
Self-organized phases can be detected by combining time-of-
flight measurements and the detection of photons leaking from
the cavity [8], while the coexistence of different phases in the
presence of an external trap could be directly observed by
quantum gas microscopy with single-site resolution [26–28].
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