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Revealing the condensate and noncondensate distributions in the inhomogeneous
Bose-Hubbard model
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We calculate the condensate fraction and the condensate and noncondensate spatial and momentum distribution
of the Bose-Hubbard model in a trap. From our results, it is evident that using approximate distributions
can lead to erroneous experimental estimates of the condensate. Strong interactions cause the condensate to
develop pedestal-like structures around the central peak that can be mistaken as noncondensate atoms. Near the
transition temperature, the peak itself can include a significant noncondensate component. Using distributions
generated from quantum Monte Carlo simulations, experiments can map their measurements for higher accuracy
in identifying phase transitions and temperature.

DOI: 10.1103/PhysRevA.87.051603 PACS number(s): 67.85.−d, 03.75.Lm, 05.30.−d, 37.10.Jk

The Bose-Hubbard (BH) model has been the focus of
intensive research over the past decade as a prototypical
example of strongly correlated physics, especially since the
model was realized with cold atoms in optical lattices [1].
Optical lattice experiments (OLE) are prime candidates for
quantum simulations due to their extensive tunability and ease
of control; they serve as ideal systems to study dynamical phe-
nomena of many-body effects in strongly interacting systems.
Before studies can be meaningful, systematic characterization
of equilibrium properties is crucial, the most important
quantities being temperature (T ) and density. However, direct
or in situ measurements of temperature in OLEs is still
unresolved [2,3]. The natural choice for the study of phase
transitions is the order parameter, which for the BH model
is the condensate fraction n0 = N0/N , where N0 is the
total number of condensed atoms and N is the number of
atoms. Alternatively, the superfluid fraction [4,5] characterizes
the transition, but this is not simple to measure in cold
atom systems. Accessible observables in experiments include
estimates of the entropy and n0 that come from time-of-flight
(TOF) measurements. The former is obtained from TOF
measurements of atoms in a harmonic trap (without the lattice),
which are then isentropically transferred into the lattice [3,6,7].
The latter could be measured directly from TOF expansions
after all fields are “snapped off.” n0 is particularly useful since,
combined with entropy, it could be used for thermometry in
experiments [2,8].

A major complication in OLEs is the presence of a parabolic
confining potential that renders the system inhomogeneous:
Multiple domains arranged in concentric shells coexist and,
unlike the homogeneous system, n0 is no longer given by the
occupation number at zero momentum. The most common
modeling approach to handle the trap is mean-field (MF)
theory: e.g., the Hartree-Fock-Bogoliubov-Popov approxima-
tion [9–11] for small interaction strengths (U ) or the site-
decoupled approach for large U [12], together with the local
density approximation (LDA). In situations where MF fails
or quantitative comparison to measurement is important, we
can resort to exact quantum Monte Carlo (QMC) techniques.
QMC has been used to directly compare some observables
with measurements. However, to the best of our knowledge,
the order parameter has not been computed and compared
directly to experiment [13].

In the most common approach, experimental TOF images
are heuristically fit to obtain the number of condensed atoms
under the peaks and the remaining noncondensed atoms. The
ratio of the former to the sum of two is defined as the peak
weight [8] or the coherence fraction [3] (f0) that serves as a
proxy for n0. In previous experiments, thermometry was done
by comparing full momentum distributions together with f0,
peak width, and the visibility directly to QMC results [8].
The last three observables were further used to characterize
the critical temperature (Tc) for the transition from the normal
to the superfluid phase. Unfortunately, these probes are not
necessarily reliable estimates of the order parameter since
the relation between n0 and f0 is not well understood [14].
Previous comparisons show large differences [3]. This is
unfortunate because n0 is a simple probe for this transition
and is also indicative of the effect of interactions, i.e., the
quantum depletion. Combined with the entropy measurements,
n0 would be an excellent probe for the temperature.

The difficulties in characterizing the mapping stems from
a poor understanding of the underlying condensate and
noncondensate distributions. If they were known, then n0

could be estimated by counting the number of atoms in the
condensate distribution and in the background. (We note that
an analytical mean-field theory method has been developed for
a homogeneous system [15]. Although qualitatively useful,
this method finds limited use in real trapped systems where
it must rely on LDA.) Another serious problem is the role
of interaction during TOF expansion; some have argued that
the effect is small since by the time the wave functions from
two adjacent lattice sites start overlapping, the densities would
have dropped dramatically [16]. However, others argue that the
effects are significant and lead to hydrodynamic effects in TOF
images [3]. The crucial quantity that dictates the significance
of these effects is the initial density. From two different sets
of experimental data, it seems that for low densities (central
filling of 1 or less) [8] interaction effects are small, while at
large densities [3] (central filling of 3) they could be significant.

In this Rapid Communication, we calculate n0 and the
spatial and momentum distributions for several low-density
systems modeled with the BH Hamiltonian:

H = −t
∑
〈ij〉

â
†
i âj + U

2

∑
i

n̂i(n̂i − 1) −
∑

i

μ̃i n̂i , (1)
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where t is the hopping integral between nearest-neighbor
sites i and j , â

†
i (âi) is the Boson creation (annihilation)

operator, n̂i = â
†
i âi is the number operator, and U is the on-site

repulsive interaction. Here, μ̃i = μ − V (ri/a)2 includes both
the chemical potential term and spherical harmonic confining
potential with a, the lattice spacing and V = 1

2mω2 the
curvature that is given by the mass (m) and trap frequency (ω).
Energies are given in atomic recoil energy units: Er ∼ 167 nK
for 87Rb and the laser wavelength λ = 800 nm that is used to
create the lattice. For our simulations, lattices are between 703

and 1003 with open boundary conditions and the number of
particles, N ∼ 58 000 to 64 000.

We calculate the single-particle density matrix
ρ̂1(i,j ) = 〈â†

i âj 〉 [4,5,17,18] using the stochastic series
expansion and the directed loop update algorithm [19–21].
Then the occupation of the single-particle states is defined by
ρ̂1|ψi〉 = Ni |ψi〉, where the largest eigenvalue N0 of ρ̂1 gives
the number of condensed atoms and |ψ0〉 is the condensate
wave function. The other atoms Nnc = ∑

i �=0 Ni = N − N0

are noncondensed atoms.
For large systems, obtaining all the occupation modes is

challenging because of the Monte Carlo noise in ρ̂1 and the

complexity of a complete diagonalization of ρ̂1. However,
since the condensate is not fragmented and occupies only
one mode in these systems, we use an iterative diagonal-
ization procedure to obtain N0 and the condensate spatial
(momentum) wave function ψ0(r) [φ0(k) = F[ψ0(r)], where
F is the Fourier transform] [22]. The spatial noncondensate
distribution is then given as nnc(r) = n(r) − N0|ψ0(r)|2, where
n(r) is the spatial density. The total momentum distribution is

n(k) = |w(k)|2
∑
j l

eik(j−l)ρ(j,l) = n0(k) +
∑
p=1

np(k). (2)

|w(k)|2 is the Wannier envelope needed to switch from
discrete to continuum space. The last term on the right-hand
side is the momentum noncondensate distribution nnc(k). In
order to match with experiments we must include finite TOF
effects by adding a site dependent phase term to (2) so that
nτ

p(k) = |w(k)|2 Np

∑
j l e

ik(j−l)−i(m/2h̄τ )(j 2−l2)〈j |ψp〉〈ψp|l〉,
where τ is the TOF time, and m is the particle mass [16]. Note
nτ

0(k) [nτ
nc(k)] is the finite TOF condensate (noncondensate)

distribution.
In Figs. 1(a)–1(d), we present the exact n(r) corresponding

to large U . [The trap frequency has been adjusted so that

U/t = 25 N ∼ 60, 000 ω = 68.1 t/UzH = 40 N ∼ 58, 000 ω = 67.6Hz

kB T/t = 2.456 n0 = 0.218(2) kB T/t = 0.98 n0 = 0.626(6) kB T/t = 1.96 n0 = 0.198(2) kB T/t = 0.98 n0 = 0.484(6)

)d()c()b()a(
Far Field (τ → ∞)

)h()g()f()e(
Finite TOF (τ = 20 ms)

)l()k()j()i(

FIG. 1. (Color online) Top row (a)–(d) are the spatial particle densities; middle row (e)–(h) and bottom row (i)–(l) are the column integrated
far-field and finite TOF momentum distributions. Insets of (e)–(h) show fine features for all distributions and of (i)–(l) show zoomed versions
of the finite TOF noncondensate distribution [nτ

nc(k)]. For the momentum distributions in the middle and bottom row the y axis is in arbitrary
units, but the scale is the same for all images.
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TABLE I. Statistics of the secondary peaks: fraction of condensate
at the maxima of the secondary peak (kp2) and size relative to the
central peak.

U/t kBT /t n0(kp2)/n(kp2) n0(kp2)/n(0)

2.46 0.405 0.009825 0.98 0.742 0.0127
1.96 0.696 0.041440 0.98 0.86 0.034

n(r = 0) = 1; the density is 1 atom/lattice site at the center
of the trap.] At U/t = 40, the Mott insulating (MI) domain
appears as an integer plateau. The corresponding column
integrated momentum distributions in the far field, shown in
Figs. 1(e)–1(h), exhibit secondary peaks similar to [23,24].
Note that these peaks can arise not only due to the finite extent
of the condensate but rather all modes [Figs. 1(e)–1(h) insets].
However, it is only around the MI regime that it forms around
k = 2π/ξ0, where ξ0 is the width of the condensate. This is
specifically due to the way the condensate forms between
domain boundaries (in this case between the MI and the
vacuum). We present statistics of the secondary peak in Table I
from which it is evident that its size relative to the central peak
and the contribution of the condensate mode to it is much
larger (2.8 times at low T and five times at high T ) when the
system has a MI domain.

Finite TOF effects, presented in Figs. 1(i)–1(l), alter the
far-field distributions by suppressing and blurring the central
low k values, as expected [16]. Higher order modes of ρ̂1 with
rapid spatial variations are not significantly affected by the
site dependent phase shift. Thus, the maximum effect is on
the condensate distribution. The time scale for the condensate
to reach the far field (τff) is ∝Rξ0(1 − ξ0/2R), where R is
the radial extent of the condensate. This leads to larger τff for
U/t = 25 and so for the fixed τ = 20 ms, the central peak
sees a greater suppression (and surrounding region greater
enhancement) than U/t = 40. Although n(k) and nτ (k) are
both broader due to the secondary peaks, the latter case has
relatively more condensate atoms. They would not be captured
in fitting schemes used in experiments [3,8].

We note that the broader structure is observable within the
experimental resolution. Using 
k = (mλπ/hτ )
r/a, where
λ is the wavelength of the optical lattice, τ is the expansion
time, and 
r is the resolution, we obtain the 
k resolution.
Using 87Rb, τ = 20 ms, λ = 800 nm, and typical resolving
power of 
r = 3 μm gives 
k ∼ 0.026π/a. Features in
Figs. 1(i)–1(l) are spread over 
k ∼ 0.06π/a.

Figures 2(a) and 2(b) show underlying distributions around
the transition temperature (Tc) for a weakly (strongly) inter-
acting system with U/t = 3.4 (U/t = 25) when nnc = 0.98(5)
[0.998(6)]. In accordance with previous studies, we see strong
central peaks [23,25] even at these warm temperatures. The
central and surrounding Bragg peaks contain a significant
number of noncondensed atoms. Although the error in esti-
mating n0 will be specific to the fitting procedure used, we
can systematically try to analyze its bounds. We estimate f0

by calculating the ratio of atoms under the central peak (up
to a limit kl) to the total number of atoms. (The numbers
are calculated from column integrated images without the

U/t = 3.4 ω = 37.7 Hz U/t = 25 ω = 68.1 Hz
kB T/t = 3.93 n0 = 0.0151(1) kB T/t = 3.27 n0 = 0.00142(4)

)b()a(

FIG. 2. (Color online) Finite TOF distributions near the transition
temperature for a system of N ∼ 64 000 atoms with τ = 20 ms.
Depending on the cut-off k value chosen (kl) there are 500–5000
atoms for U/t = 3.4 (kl = 0.01,0.1) and 300–1260 atoms for
U/t = 25 (kl = 0.035,0.075). The exact numbers are 960 and 90,
respectively. The insets show nnc(k) and n0(k) with three peaks.

Wannier envelope to circumvent the need to deconvolve it.)
The range is chosen large enough to accommodate finite
optical resolvability in experiments. It should also allow for
related fitting procedures.

We present comparisons with exact results in Figs. 3(a) and
3(b) approximated by

n0(T ) = n∗
0

{
1 − exp

[
g

(
1 − Ti

T

)]}
, (3)

U/t = 25 ω = 68.1 Hz

(a)
U/t = 40 ω = 67.6 Hz

(b)

FIG. 3. (Color online) Condensate fraction (n0) as a function
of temperature (T ) compared with coherence fraction [f0(T )]
measurements for different cutoff kl [f0 ≡ ∑

|k|<kl
n0(k)/N ]. We

have fit n0 to (3) where n∗
0 = 0.638(7) [0.502(6)], kBTi/t = 2.99(2)

[2.36(1)], and g = 1.91(9) [2.4(1)] for U/t = 25 (40). The short
arrows indicate kBTc/t = 3.023 (2.285) for U/t = 25 (40) where
n0 ∼ 0.01. The error bars are smaller than point size used in plots.
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away from the critical regime [26]. We see that at low T ,
the depletion is severely overestimated, whereas around the
transition it is underestimated. It is worth noting that general
trend of the error is in accordance with f0 measurements
presented in [3], where it is further exacerbated by experimen-
tal noise and possible interaction effects during expansion of
the gas.

Care is needed in the estimation of Tc using f0. The
specific nature of the error in measuring Tc from f0(T )
will depend on the exact form of the latter. For instance,
from our fitting procedure, for kl � 0.035, f0(kl) > n0. If
Tc is to be estimated correctly, |∂2f0/∂T 2| > |∂2n0/∂T 2|
is required for rapid convergence to the same n0(T ) → 0.
The most rigorous way to estimate Tc would be to study
the trap-size scaling behavior analogous to finite size scaling
studies done for homogeneous systems that would also
identify critical exponents for trapped systems [27]. Here
we use a simple working definition n0(Tc) ∼ 0.01 that
suffices to show that estimates of Tc using f0 directly
would be incorrect: In Figs. 3(a) and 3(b), kBTc/t = 3.022
(2.284), but using f0, 3.023 (2.29) < kBTc/t < 3.3 (2.81) for
U/t = 25 (40). Furthermore, a smooth decrease in f0(T )
across the transition may prevent the presence of a clear
inflection point thereby making accurate estimates of Tc

difficult.
In principle Tc could be estimated from a finite size

corrected measurement of f0 or only n(k = 0), since, as
per a theorem due to Chester, Penrose, and Onsager, the
latter is expected to be zero (positive) in the absence
(presence) of a condensate in the thermodynamic limit for
these three-dimensional (3D) systems [14,28]. We point out
that alternate schemes have been proposed and used to
measure Tc from in situ density imaging [29–31], which
could be problematic as discussed in [32]. The latter study
also suggests measurements from the momentum distributions.
However, all these proposals are predicated upon measuring T

correctly.

Apart from the mapping technique we consider, alternate
ways of measuring T include fitting the tail end of n(r) to
a noninteracting model assuming that atoms are normal such
as in [30], second-order high-temperature series expansions
(HTE2) [33], as well as Fluctuation-Dissipation theorem
approaches [34]. Although the first approach might be ap-
plicable for weak traps where there is a large tail of (very)
low-density normal atoms, it is clearly invalid in the strongly
interacting regime in the general case. HTE2 also requires
a measurable normal tail where the signal is appreciable.
Finally, the last approach could be a feasable alternative despite
the requirement of the LDA because in the BH model with
the trap there are few shells that are in the critical regime.
However, it is not clear whether it will apply to variations of the
Bose-Hubbard model, for instance in the presence of disorder.
In such cases an effective mapping between the entropy and
n0(T ) could be more robust.

We have presented the effects of interactions on the
components of the spatial and momentum distributions of
bosonic particles in a trapped optical lattice. Our unbiased
estimates of ρ̂1 elucidate the potential problems in mapping
between the coherence fraction and the exact n0, and how
to account for them. Using exact distributions for QMC,
experiments will get more accurate estimates of n0. In a
future work, we will study the effects of interaction during
TOF and present comparisons with experimental systems at
higher density [35]. We will also explore the entropy (S)
mapping using QMC that is needed to compare with n0(S)
from experiments. The method we have presented in this Rapid
Communication will be crucial to such studies.
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