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Hermitian four-well potential as a realization of a PT -symmetric system
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A PT -symmetric Bose-Einstein condensate can be theoretically described using a complex optical potential;
however, the experimental realization of such an optical potential describing the coherent in- and outcoupling of
particles is a nontrivial task. We propose an experiment for a quantum mechanical realization of a PT -symmetric
system, where the PT -symmetric currents of a two-well system are implemented by coupling two additional
wells to the system, which act as particle reservoirs. In terms of a simple four-mode model we derive conditions
under which the two middle wells of the Hermitian four-well system behave exactly as the two wells of the
PT -symmetric system. We apply these conditions to calculate stationary solutions and oscillatory dynamics. By
means of frozen Gaussian wave packets we relate the Gross-Pitaevskii equation to the four-mode model and give
parameters required for the external potential, which provides approximate conditions for a realistic experimental
setup.
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In quantum mechanics an observable is described by an
Hermitian operator. This is true in particular for the energy,
which is represented by the Hamiltonian. The Hermiticity
is sufficient for purely real eigenvalues, but is this really a
necessary condition? Bender and Boettcher found that for
non-Hermitian Hamiltonians with a weaker condition, namely,
PT symmetry, there exist parameters for which the energy
eigenvalue spectrum is purely real [1], where PT stands for
a combined action of parity P (x → −x, p → −p) and time
reversal T (x → x, p → −p with T i = −iT ).

Due to the close analogy between the Schrödinger equa-
tion and the equations describing the propagation of light
in structured waveguides, a PT -symmetric optical system
could be visualized [2] and experimentally investigated [3,4].
The necessary complex potential corresponds to a complex
refractive index, which is realized by balanced gain and loss
of light in the waveguide. In particular with a Kerr nonlinearity
the PT -symmetric setup can lead to new optical devices [5].
Several other systems withPT symmetry have been suggested
and partially realized, including lasers [6–8], electronics
[9–11], microwave cavities [12], and quantum field theories
[1,13]. But up to now, a quantum mechanical realization of
a PT -symmetric system is still missing, i.e., there is no
experimental proof of the existence of real eigenvalue solutions
in non-Hermitian PT -symmetric quantum systems.

It was proposed [2] that a system similar to complex
refractive indices in waveguides could be realized with
Bose-Einstein condensates (BECs) in double-well potentials,
where particles are injected in one well and removed from
the other one. BECs in PT -symmetric double-well potentials
have been investigated in the Bose-Hubbard model and
the mean-field approximation [14–18]. In those studies, the
PT symmetry is given by a complex potential which fulfills the
condition V ∗(x) = V (−x) and describes the coherent in- and
outcoupling of atoms into and from the system. It has already
been shown that a bidirectional coupling between two BECs
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is possible and at the same time particles may be continuously
ejected [19,20].

In this Rapid Communication we follow a different
approach. Instead of injecting and removing particles, we
couple two additional wells to a double-well system. The
tunneling of the outer wells can be used to add and remove
particles from the inner wells (see Fig. 1). This connects
the PT -symmetric structures with transport processes of
Bose-Einstein condensates in optical lattices. Previous studies
in a PT -symmetric double well [18] revealed that the gain
and loss effects can drastically influence the stability of the
wave function. This may have a crucial influence on the
transport processes, which should be analyzed further in
the realistic setup of this article. We investigate if just
considering the two middle wells, they behave like the two
wells of the PT -symmetric two-well system.

For the four-well potential we assume a combination of
four Gaussian beams,

Vext(r) =
3∑

i=0

Vi exp

[
−2x2

w2
x

− 2y2

w2
y

− 2
(
z − si

z

)2

w2
z

]
, (1)

with Vi < 0 the depth and si
z the displacement along the z axis

of each well, and wα the width of a single well in each direction.
The dynamics of a BEC is described by the Gross-Pitaevskii
equation (GPE)

ih̄∂tψ(r,t) =
[
− h̄2

2m
� + Vext(r) + Ng |ψ(r,t)|2

]
ψ(r,t),

(2)

where g = 4πh̄2as/m is the strength of the nonlinearity, with
as being the scattering length.

It was shown that the PT -symmetric two-mode model
shows the features specific of PT -symmetric systems [21].
Therefore we use the simple, but instructive two- and four-
mode models for our investigations. For the moment we
neglect particle interaction, which will be taken into account
later. The Hamiltonian of the linear, PT -symmetric two-mode

051601-11050-2947/2013/87(5)/051601(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.051601


RAPID COMMUNICATIONS

KREIBICH, MAIN, CARTARIUS, AND WUNNER PHYSICAL REVIEW A 87, 051601(R) (2013)

(a) (b)

FIG. 1. (a) PT -symmetric two-well system with tunneling rate
J and complex potential ±i�, which describes coherent in- and
outcoupling of atoms. (b) Alternatively, two additional wells serve
as particle reservoirs and induce particle currents that—under
application of specific system parameters to be determined—are
equivalent to the PT -symmetric currents of system (a).

model is given by

H (2) =
(

i� −J

−J −i�

)
, (3)

which models a double-well system of noninteracting bosons.
The real quantity J > 0 designates the tunneling amplitude
between the two wells, and � ∈ R gives the strength of
the imaginary PT -symmetric potential, which models gain
and loss, respectively. Obviously, this Hamiltonian commutes
with the combined action of parity (given as a 2 × 2
permutation matrix) and time reversal (complex conjuga-
tion), [PT ,H (2)] = 0. The eigenvalues and eigenvectors
are easily found to be E± = ±√

J 2 − �2 and ψ± = (i� ±√
J 2 − �2,−J )T (unnormalized). For � < J the eigenvalues

are purely real and the eigenvectors obey PT symmetry. In
the opposite case, � > J , the PT symmetry is broken and the
eigenvalues become purely imaginary.

To gain deeper insight, and for an easier comparison with
the later defined four-mode model, we give the time derivatives
of the observables of the system. Two observables are the
number of particles in each well, which are given by nk =
ψ∗

k ψk , where ψ ∈ C2 describes a quantum mechanical state.
With the particle current j12 = iJ (ψ1ψ

∗
2 − ψ∗

1 ψ2) between the
two wells the time-scaled (t → h̄t) Schrödinger equation can
be brought to the closed set of differential equations for the
observables

∂tn1 = −j12 + 2�n1, ∂tn2 = +j12 − 2�n2, (4a)

∂t j12 = 2J 2(n1 − n2). (4b)

The imaginary potential induces particle currents from and to
the environment, je1 = 2�n1 and j2e = 2�n2, both of which
are proportional to the number of particles in the corresponding
well.

It is now our main purpose to investigate whether the
behavior of the PT -symmetric two-mode model (3) can
be described by a Hermitian four-mode model, where two
additional wells are coupled to the system. The Hamiltonian
of the four-mode model is given by

H (4)(t) =

⎛
⎜⎜⎜⎝

E0(t) −J01(t) 0 0

−J01(t) 0 −J12 0

0 −J12 0 −J23(t)

0 0 −J23(t) E3(t)

⎞
⎟⎟⎟⎠ . (5)

The two middle wells will be symmetric, hence E1 = E2 = 0.
The tunneling amplitudes and on-site energies of the outer

wells are J01, J23, and E0, E3, respectively. They may be
time dependent, as denoted by the explicit time dependence
in Eq. (5). To be able to compare the four-mode model with
the two-mode model, we calculate the time derivatives of the
particle populations, which yields the simple relations

∂tn0 = −j01, ∂tn1 = j01 − j12,
(6)

∂tn2 = j12 − j23, ∂tn3 = j23,

where jkl = iJkl(ψkψ
∗
l − ψ∗

k ψl) is the particle current be-
tween adjacent wells. By additionally considering the time
derivative of j12, we obtain

∂tn1 = j01 − j12, ∂tn2 = j12 − j23, (7a)

∂tj12 = 2J 2
12(n2 − n1) + J12(J23C13 − J01C02), (7b)

where we defined Ckl = ψkψ
∗
l + ψ∗

k ψl . Comparing Eqs. (4)
and (7) we can conclude that if the conditions

j01 = 2�n1, j23 = 2�n2, J01C02 = J23C13 (8)

are fulfilled, the two middle wells of the Hermitian four-
mode model (5) behave exactly as the two wells of the
PT -symmetric two-mode system (3).

We now need to give the explicit time dependency of the
free parameters of the Hamiltonian (5), E0, E3, J01, and J23,
such that Eqs. (8) are fulfilled. For the tunneling elements we
can set

J01 = dC13, J23 = dC02, (9)

where d is a time-independent parameter and can be tuned to
bring the tunneling elements into an experimentally realizable
range. The currents j01 and j23 have to fulfill Eqs. (8). However,
with the tunneling elements determined by Eqs. (9), there are
no free parameters left to adjust these currents. Instead, we
take the time derivatives of Eqs. (8), which yields

∂tj01 = 2�̇n1 + 2�ṅ1 = 2�̇n1 + 2�(2�n1 − j12), (10a)

∂tj23 = 2�̇n2 + 2�ṅ2 = 2�̇n2 + 2�(j12 − 2�n2), (10b)

where we allow the parameter � to be explicitly time
dependent. For the last equalities we used Eqs. (6) and (8).
Here, � is not a quantity entering the Hamiltonian directly
as in the two-mode model (3), but a free parameter, which
determines the matrix elements of the Hamiltonian (5).

Now we can calculate the time derivatives of j01 and j23.
This leads to the linear system of equations for the on-site
energies E0 and E3,(

J01C01 dj̃01j̃13

−dj̃02j̃23 −J23C23

)(
E0

E3

)
=

(
v0

v3

)
, (11)

with the entries

v0 = 2�̇n1 + 2�(j01 − j12) − 2J 2
01(n0 − n1)

− J01J12C02 − d(J01j̃03 + J12j̃23 − J23j̃12)j̃01, (12a)

v3 = 2�̇n2 + 2�(j12 − j23) − 2J 2
23(n2 − n3)

+ J23J12C13 − d(J01j̃12 − J12j̃01 − J23j̃03)j̃23. (12b)

Here we have defined the modified currents j̃kl = i(ψkψ
∗
l −

ψ∗
k ψl). Thus, the on-site energies E0 and E3 are used to

maintain the validity of Eqs. (8). Since the energies do not
determine the currents but their time derivatives, the initial
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FIG. 2. (Color online) (a) Populations n1 = n2 = 1/2 of the
middle wells, which are both equal and constant in time. (b)
Populations n0 (solid) and n3 (dashed) of the outer wells, which
depend linearly on the time, i.e., ṅ0 = −� and ṅ3 = �. (c) Time-
dependent on-site energies E0 (solid) and E3 (dashed). (d) Tunneling
amplitudes J01 (solid) and J23 (dashed). Time is given in units of
t0 = h̄/J12.

wave function must be chosen in such a way that the conditions
are fulfilled.

So far we could find the explicit time dependences of
the matrix elements E0(t), E3(t), J01(t), and J23(t) of the
four-mode model in order that at every time the two middle
wells have the same behavior as the PT -symmetric two-mode
model. Thus our method is a valid possibility to realize a
PT -symmetric quantum mechanical system. To calculate the
matrix elements at every time step we integrate the four-
dimensional complex Schrödinger equation with a numerical
integrator and use Eqs. (9) and (11). We now give two examples
for different solutions.

First we consider a quasistationary solution, i.e., a state
in which the particle numbers in the two middle wells are
stationary. These states correspond to the stationary solution
of the two-mode model. We prepared this stationary solution
for �/J12 = 0.5 at t = 0. Fig. 2 shows the results. As required,
the number of particles in the middle wells are equal and
constant in time (we have chosen the normalization such that
n1 + n2 = 1). From Eqs. (6) and (8) we then obtain ṅ0 = −�

and ṅ3 = �, plotted in Fig. 2(b). Figures 2(c) and 2(d) show
the calculated matrix elements. All of them vary only slightly
in time. Due to the linear decrease of the number of particles
in well 0 the available time for the PT symmetry is limited.

As a second example we prepared a nonstationary solution
at t = 0 for �/J12 = 0.5 (Fig. 3). There are the typical Rabi-
type oscillations, but with a smaller phase difference �φ <

π , which leads to a nonconstant added number of particles
in the two middle wells. This value oscillates harmonically
around its mean value. The same behavior is obtained for
the optical system in Ref. [2]. The matrix elements show a
quasioscillatory behavior. As before, the time for an exact PT
symmetry is limited.

For these calculations, the initial conditions have to be
chosen appropriately so that they obey PT symmetry. This
would be a difficult task in an experiment. For that, we propose
an approach of adiabatically increasing the PT parameter
�. We start at the ground state of the four-well system,
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FIG. 3. (Color online) Same as Fig. 2, but for oscillatory
dynamics. Additionally, the total number of particles in wells 1 and 2
are plotted as black crosses in (a).

and increase � according to �(t) = �f[1 − cos(πt/tf)]/2 for
t ∈ [0,tf] [see Fig. 4(a)]. The quantities �f and tf have to be
chosen such that �̇/� � ω, where ω is the typical oscillation
frequency. The system then changes adiabatically from the
ground state of the Hermitian system to a PT -symmetric
ground state.

So far we have neglected the contact interaction of the
atoms. However, as we show next, taking into account the
nonlinear contact interaction will not change the characteristic
PT -symmetric behavior. The Hamiltonian, which is nonlinear
in the mean-field approximation, then reads

H (4)(t) = H
(4)
lin (t) + c diag(|ψ1|2,|ψ2|2,|ψ3|2,|ψ4|2), (13)

where H
(4)
lin is the linear part (5). The quantity c measures

the strength of the interaction. We have to recalculate the
time derivatives of the observables. For the derivatives of the
populations, ṅ1 and ṅ2, we obtain the same as in the linear
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FIG. 4. (Color online) (a) Adiabatic ramp of the current from
� = 0 to a target value of �f as a function of the time t . Time
dependences of (b) the potential depths V0 (solid) and V3 (dashed)
and (c) the displacements of the outer wells δ0 (solid) and δ3 (dashed).
(d) and (e): Number of particles in each well.
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case. For the current between the middle wells we get

Two wells: ∂tj12 = (∂tj12)lin + Jc(n1 − n2)C12, (14a)

Four wells: ∂tj12 = (∂tj12)lin + J12c(n1 − n2)C12. (14b)

Generally, the time evolution of C12 differs for the two- and
four-mode model. But in the case of adiabatically increasing
�, we have n1 ≈ n2, i. e., with the choice of parameters given
above we have an approximate equivalence of the two- and
four-mode model. Solely the linear system of equations (11)
has to be modified to include the interaction.

We further want to give approximate parameters for a
realistic potential. Four wells can be realized by a superposition
of four Gaussian laser beams (1). The dynamics of a BEC is
described by the GPE (2). To relate the four-mode model to
the GPE, we assume the wave function to be a superposition
of frozen Gaussian wave packets,

ψ =
3∑

k=0

dkgk =
3∑

k=0

dk e−Axx
2−Ayy

2−Az(z−qk
z )2

. (15)

For simplicity we assume the widths Aα to be constant in
time and the same for each Gaussian, and the displacement
of each Gaussian to be the same as the displacement of
the corresponding well, qi

z = si
z. Only the amplitudes of the

Gaussians dk are dynamical variables.
Multiplying Eq. (2) by ψ∗ and integrating over R3, we

obtain the equations of motion for dk ,

ih̄

3∑
k=0

〈gl|gk〉ḋk =
3∑

k=0

〈gl|Ĥ |gk〉dk. (16)

With the method of symmetric orthogonalization [22] we can
write these equations as a Schrödinger equation with a sym-
metric and Hermitian 4 × 4 Hamiltonian. By considering only
nearest neighbors in the integrals, we can relate the matrix ele-
ments of the four-mode model (5) to the realistic potential (1).
This yields

Ek = h̄2

2m
(Ax + Ay + Az) + Vkβxβyβz, (17a)

Jlk = h̄2

2m
A2

z

(
ql

z − qk
z

)2
γ + (Vl + Vk)βxβyβzγ

×
(

1

2
− γ 1/(1+Azw

2
z )

)
, (17b)

c = 4h̄2Nas

m

√
AxAyAz

π
, (17c)

with the abbreviations

βα =
√

Aαw2
α

1 + Aαw2
α

, γ = exp

[
−Az

2

(
ql

z − qk
z

)2
]

. (18)

The parameters Aα are determined by minimizing the mean-
field energy.

We calculated the adiabatic current ramp for a condensate
of N = 105 atoms of 87Rb with a scattering length tuned to a =
10.9aB (aB being the Bohr radius). The distance between the
middle wells is  = 2μm. We express the distance of the outer
wells by their deviation from a equidistant lattice, i.e., q0

z =
−3/2 + δ0 and q3

z = 3/2 + δ3. The basic unit of energy
is E = h̄2/m2, which yields E/h = 29.1 Hz. As initial
condition we use the ground state for V1 = V2 = −80E and
V0 = V3 = −122E. The parameter d in Eq. (9) is chosen such
that δ0 = δ3 = 0 for t � 0. We have chosen the widths of the
trap (1) to be wx = wy = 4 and wz = /2. The basic unit of
time is t = h̄/E = 5.47 ms. Figure 4 shows the results for
�f/J12 = 0.5 and tf/t ≈ 70.

The trap depth V0 has to be increased, whereas V3 has to
be decreased, in an almost symmetric way. The distance of
the outer wells has to be varied within a few percent of the
distance . The results of the particle numbers in each well
confirm that the change of � is approximately adiabatic
(see Fig. 4). For these conditions, the system arrives at an
approximate PT -symmetric ground state for t � 70t, which
can be determined by the constant number of particles in
wells 1 and 2. We note that the change of the distances of
the outer wells can be neglected, as further calculations show.
Furthermore, the simulation indicates that the system is robust
with respect to small random perturbations of the external
potential.

To summarize we have shown that the two middle wells of
the Hermitian four-mode model can show the same behavior
as the PT -symmetric two-mode model, and thus offers an
approach to realize PT symmetry in a quantum mechanical
system. We have proposed the method of adiabatically increas-
ing the PT parameter � to create the PT -symmetric ground
state. We finally estimated parameters of a realistic potential,
which would be necessary to prepare such an experiment.
The time-dependent potential (1) could be realized, e.g., by
using an acousto-optical modulator [23]. For future work it
is desirable to extend these investigations to a BEC described
by the full GPE to obtain more accurate parameters for an
experimental realization.
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