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Vacuum Rabi oscillation induced by virtual photons in the ultrastrong-coupling regime

C. K. Law
Department of Physics and Institute of Theoretical Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative

Region, People’s Republic of China
(Received 1 January 2013; published 19 April 2013)

We present an interaction scheme that exhibits a dynamical effect of virtual photons carried by a vacuum-field
dressed two-level atom in the ultrastrong-coupling regime. We show that, with the aid of an external driving field,
virtual photons provide a transition matrix element that enables the atom to evolve coherently and reversibly to
an auxiliary level accompanied by the emission of a real photon. The process corresponds to a type of vacuum
Rabi oscillation, and we show that the effective vacuum Rabi frequency is proportional to the amplitude of a
single virtual photon in the ground state. Therefore, the interaction scheme could serve as a probe of ground-state
structures in the ultrastrong-coupling regime.
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A single-mode electromagnetic field interacting with a two-
level atom has been a fundamental model in quantum optics
capturing the physics of resonant light-matter interaction. In
particular, the Jaynes-Cummings (JC) model [1,2], which
describes the regime where the interaction energy h̄λ is much
smaller than the energy scale of an atom h̄ωA and a photon h̄ωc,
has tremendous applications in cavity QED [3,4] and trapped
ion systems [5]. Recently, there has been considerable research
interest in the ultrastrong-coupling regime, where λ is an
appreciable fraction of ωc or ωA. In particular, the possibility of
realizing an ultrastrong coupling has been discussed in circuit
QED architectures [6], and some experiments have explored
the regime in various systems with artificial atoms and cavity
photon resonators, including a superconducting qubit in a
coplanar waveguide [7] or LC resonator [8], microcavities
embedding doped quantum wells [9,10], and two-dimensional
electron gas coupled to metamaterial resonators [11]. In
addition, theoretical investigations have also found novel
phenomena in the ultrastrong-coupling regime, such as the
asymmetry of vacuum Rabi splitting [12], photon blockade
[13], nonclassical state generation [14], superradiance transi-
tion [15], and collapse and revival dynamics [16].

A key feature in the ultrastrong-coupling regime is an
appreciable number of virtual photons in the ground state of the
system. The generation of such virtual photons is governed by
counter-rotating terms in the Hamiltonian, and these photons
do not correspond to radiation as they are bound to the atom.
However, by modulating the atom-field coupling strength,
virtual photons can be released as a form of quantum vacuum
radiation [17]. In this paper, we indicate a different effect
of the vacuum-field dressed atom, namely a type of vacuum
Rabi oscillations that would not occur if virtual photons are
absent.

Specifically, we investigate the quantum dynamics of a
driven quantum Rabi model. The configuration of our system
is shown in Fig. 1 in which a �-type three-level atom is
confined in a single-mode cavity. The atomic levels |g〉 and
|e〉 are coupled to a cavity field of frequency ωc. These two
atomic levels and the cavity field mode constitute a Rabi
model [18]. In addition, there is an external classical field
driving the transition between |e〉 and the third atomic level
|f 〉. We note that some theoretical aspects of three-level

artificial atoms in circuit QED were discussed in Refs. [19,20],
and �-type superconducting atoms have been demonstrated in
experiments [21–23]. Recently, Carusotto et al. have studied
the dynamics of a related system in a different driving
configuration [24].

The Hamiltonian of our system is given by (h̄ = 1)

H = HR + ωf |f 〉〈f | + � cos ωpt(|f 〉〈e| + |e〉〈f |), (1)

where HR is the Hamiltonian of the Rabi model,

HR = ω0

2
(|e〉〈e| − |g〉〈g|) + ωca

†a

+ λ(a + a†)(|g〉〈e| + |e〉〈g|). (2)

Here a† and a are creation and annihilation operators as-
sociated with the field mode, ω0 is the (bare) transition
frequency between |e〉 and |g〉, and ωf − ω0/2 is the transition
frequency between |f 〉 and |e〉. The parameter λ denotes the
atom-cavity coupling strength, and the classical driving field
has a frequency ωp and an interaction strength �. In writing
HR , we have kept counter-rotating terms because λ can be
comparable to ωc in the ultrastrong-coupling regime. Note that
the coupling between the cavity field and the atom involving
|f 〉 is assumed to be far off resonance and weak, so it is
neglected in the Hamiltonian.

Initially, the system is prepared in the ground state of
HR in the absence of the driving field. Our task is to
determine the dynamics after the driving field is turned on.
To analyze the problem, we apply a unitary transformation to
simplify the Hamiltonian. It is known that HR can be
transformed into a form of the Jaynes-Cummings Hamiltonian
approximately by a unitary operator e−S [25]. Here the
operator S and its parameters are defined by

S = λξ

ωc

(|g〉〈e| + |e〉〈g|)(a† − a), (3)

ξ = ωc

ωc + ηω0
, (4)

η = exp

(
−2λ2ξ 2

ω2
c

)
. (5)
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FIG. 1. (Color online) Interaction scheme of a �-type three-level
atom in a cavity. The atomic states |g〉 and |e〉 and a cavity field mode
of frequency ωc form a quantum Rabi model described by HR , and an
external classical field of frequency ωp drives the transition between
|e〉 and |f 〉.

Then it can be shown that H ′
R = eSHRe−S is approximately

given by Refs. [25–28]

H ′
R ≈ ω′

0

2
(|e〉〈e| − |g〉〈g|) + ωca

†a + λ′(a|e〉〈g| + H.c.)

+ λ2ξ

ωc

(ξ − 2)(|e〉〈e| + |g〉〈g|) ≡ HJC, (6)

where HJC describes a JC model in which the atomic frequency
and cavity-atom interaction strength are renormalized as ω′

0 =
ηω0 and λ′ = 2ηω0ξλ/ωc, respectively. One can solve Eqs. (4)
and (5) for ξ and η to obtain the renormalized parameters. In
the regime where λ < ωc, ξ can be expanded as

ξ = ωc

ωc + ω0
+ 2ω0ω

3
c

(ωc + ω0)4

(
λ

ωc

)2

+ O

(
λ

ωc

)4

. (7)

In the resonance case ωc = ω0, ξ is roughly about 0.5 in the
range |λ|/ωc < 0.5, and the corresponding η is slightly less
than 1 obtained by Eq. (5).

Note that HJC in Eq. (6) is an approximation to H ′
R , and

the difference H ′
R − HJC describes multiphoton processes that

correspond to higher-order corrections [25–28]. Since |g,0〉 is
the ground state of HJC, e−S |g,0〉 is an approximated ground
state of HR in the original frame. The accuracy of such an
approximation has been tested in Ref. [25]. Specifically, if λ

is comparable to but smaller than ωc, the ground-state energy
of HJC is in good agreement with that of HR obtained by
exact numerical calculations over a range of parameters. For
example, in the case ωc = ω0 = 2λ, the approximated ground-
state energy obtained by HJC has a percentage error of about
0.65%.

Now we apply the transformation to our system Hamilto-
nian H , which becomes

H ′ = eSHe−S ≈ HJC + ωf |f 〉〈f |
+� cos ωpt(eS |e〉〈f | + |f 〉〈e|e−S). (8)

Since eS |e〉 = cosh[ λξ

ωc
(a† − a)]|e〉 + sinh[ λξ

ωc
(a† − a)]|g〉, we

expand the hyperbolic sine and cosine operator functions in
normal order up to first order in λξ/ωc,

cosh

[
λξ

ωc

(a† − a)

]
≈ η1/4, (9)

sinh

[
λξ

ωc

(a† − a)

]
≈ η1/4 λξ

ωc

(a† − a). (10)

Therefore, the transformed Hamiltonian becomes

H ′ ≈ HJC + ωf |f 〉〈f | + �′ cos ωpt(|f 〉〈e| + |e〉〈f |)
+ λξ

ωc

�′ cos ωpt(|g〉〈f | − |f 〉〈g|)(a† − a), (11)

where �′ = η1/4� is a renormalized driving field strength,
and the last term indicates a new coupling between |g〉 and |f 〉
through the cavity field mode.

A further simplification can be made by exploiting res-
onance when ωp is tuned to a certain resonance frequency
defined by the undriven system. In this paper, we consider the
resonance at

ωp = ωf + ωc −
[
λ2ξ

ωc

(ξ − 2) − ω′
0

2

]
, (12)

which corresponds to the transition between |g,0〉 to |f,1〉,
since the square bracket term is the approximate ground-state
energy of HR obtained by the transformation method. By
the condition (12), |g,0〉 and |f,1〉 are resonantly coupled,
but the transition between |f,1〉 and |e,1〉 is far away
from resonance (the corresponding detuning is of order ωc).
Therefore, if �′ is not too strong, the system is confined to the
two resonantly coupled states, i.e., all off-resonant transitions
may be ignored. In this way, H ′ in the interaction picture is
reduced to

H ′
I ≈ − λξ

2ωc

�′(|g,0〉〈f,1| + |f,1〉〈g,0|). (13)

Equation (13) indicates that the system would execute a form
of vacuum Rabi oscillations, in which |g,0〉 behaves like
an excited atom in the vacuum field and |f,1〉 behaves like
a ground atom with a single photon. In cavity QED, such
oscillations lead to vacuum Rabi splitting [29–33]. Note that
the effective vacuum Rabi frequency here is λξ�′/ωc, which
is significant in the ultrastrong-coupling regime where λ is
comparable to ωc.

It is useful to go back to the original frame in which the Rabi
oscillations occur between the states e−S |f,1〉 and e−S |g,0〉.
Since e−S |f,1〉 = |f,1〉, an initial ground state will evolve to
|f,1〉 after half of a Rabi period. If we switch off the external
field at this moment, the single photon described by |f,1〉 will
be free to escape the cavity because the atom in the state |f 〉
does not couple to the cavity field when � = 0, i.e., the photon
cannot be reabsorbed by the atom. In this way, a π pulse of
the driving field can generate a real photon deterministically
while the atom is excited to the |f 〉 state.

To gain a better insight into the physical process without
relying on the approximation made in Eqs. (6) and (11), we
express the Hamiltonian by the eigenbasis of HR . Let |ψn〉 be
an eigenvector of HR with the eigenvalue λn, i.e., HR|ψn〉 =
λn|ψn〉 (the ground state is denoted by |ψ0〉), and consider the
expansion |e,n〉 = ∑

m cnm|ψm〉 with the coefficients cnm =
〈ψm|e,n〉. Therefore,

|f 〉〈e| =
∑

n

|f,n〉〈e,n| =
∑
nm

c∗
nm|f,n〉〈ψm|. (14)

Then the Hamiltonian (1) in the interaction picture is

HI = � cos ωpt
∑
nm

ei(ωf +nωc−λm)t c∗
nm|f,n〉〈ψm| + H.c. (15)
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FIG. 2. (Color online) Probability amplitude of |e,1〉 in the
ground state of HR as a function of the coupling strength λ for the
ω0 = ωc case. The solid red line corresponds to exact numerical
values, and the dashed blue line is obtained from the approximated
ground state e−S |g,0〉 according to Eq. (6).

At the resonant frequency ωp = ωf + ωc − λ0, |ψ0〉 and |f,1〉
are resonantly coupled. By keeping only the resonant terms,
we have

HI ≈ �c∗
10

2
|f,1〉〈ψ0| + H.c. (16)

Comparing with H ′
I in Eq. (13) and noting that |ψ0〉 ≈

e−S |g,0〉, HI describes the same type of resonant interaction
as H ′

I . However, we emphasize that HI in Eq. (16) is a
more accurate interaction Hamiltonian than H ′

I because HI

is derived directly from the eigenbasis of HR without making
use of the approximation in Eq. (6). In this sense, the resonant
condition (12) can be improved by replacing the square bracket
term by λ0.

The role of virtual photons is now explicitly seen in Eq. (16)
through the effective vacuum Rabi frequency �|c10|. This
is because c10 is precisely the probability amplitude of a
single virtual photon state in |ψ0〉. In other words, we may
interpret that the interaction described in Eq. (16) is induced
or mediated by a virtual photon. In Fig. 2, we plot c10 (solid
line) as a function of λ/ωc for the case ωc = ω0, and the
figure shows that the magnitude of c10 is appreciable in the
ultrastrong-coupling regime. As a comparison, we also plot
the approximate amplitude c10 ≈ −η1/4ξλ/ωc (dashed line)
obtained from e−S |g,0〉. For the parameters used in Fig. 2, we
see that the approximation agrees well with the exact numerical
calculation up to λ/ωc < 0.6.

We have tested our prediction of the virtual-photon-induced
Rabi oscillations by solving numerically the Schrödinger
equation defined by the Hamiltonian (1) with the initial state
|ψ0〉. In Fig. 3, we plot the exact numerical probability P1f

of the system in the state |f,1〉 as a function of time. The
parameter λ = ωc/2 used in the figure serves as an example of
ultrastrong coupling. We see the Rabi cycles as predicted by
the Hamiltonians (13) or (16) for relatively weak driving fields
with � � 0.4ωc. At a stronger driving field with � = 0.8ωc

(red solid line), there is a high-frequency pattern due to
counter-rotating terms of the classical driving field, and the
Rabi oscillations are less perfect in the sense that the maximum
P1f ≈ 0.9 is smaller than 1. Such a behavior is understood
because the off-resonance transitions neglected in Eq. (13) or
(16) would generate energy shifts which in turn could bring
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FIG. 3. (Color online) Probability of |f,1〉 as a function of time
for � = 0.2ωc (blue long-dashed line), 0.4ωc (green short-dashed
line), and 0.8ωc (red solid line). The parameters used are λ = 0.5ωc,
ωc = ω0 = ωf /3, ωp = ωf + ωc − λ0, and the numerical ground-
state energy λ0 = −0.633ωc. The figure is essentially the same if ωp

in Eq. (11) is used.

the driven system out of resonance. As a result, the amplitude
of oscillations in P1f is reduced. Since these energy shifts are
generally proportional to �2, as long as � is small compared
with detunings associated with off-resonance transitions, it
would be safe to use Eq. (16), and this is demonstrated in
Fig. 3 for � up to 0.4ωc.

Finally, it is worth noting that the Hamiltonian in Eq. (15)
has higher resonances at ωp = ωf + nωc − λ0 for odd positive
integers n. The requirement of an odd n is because |ψ0〉 has
a definite parity in which the atomic state |e〉 and odd photon
numbers are connected. In the case n = 3, the driving field
at the corresponding ωp would resonantly excite the atom to
|f 〉 with the emission of three real photons. The effective
Hamiltonian would be of the same form as (16), but with
|f,1〉 and c∗

10 replaced by |f,3〉 and c∗
30, i.e., the effective

Rabi frequency is proportional to |c30|. Such a three-photon
resonance was also observed in our numerical calculations.

To conclude, we have shown that virtual photons in
the ultrastrong-coupling regime can play a role in quantum
dynamics by providing transition matrix elements that allow
the system to access relevant quantum states of interest.
In our scheme, the system can exhibit a form of vacuum
Rabi oscillations, and this can be regarded as a signature of
virtual photons. Since our main focus in this paper is on the
interaction induced by virtual photons, decoherence effects
have not been included in the discussion. However, as long as
the decoherence time is sufficiently short, coherent dynamics
predicted by the Hamiltonian (13) or (16) would be justified.
Specifically, given a vacuum Rabi period T ≈ 2πωc/λξ�′,
the cavity field damping rate γc, and the atomic decay rate γA,
the condition γjT � 1 (j = c,A) ensures that the system can
execute a Rabi cycle without being affected by the damping,
and this is achievable in the ultrastrong-coupling regime with
moderate small γ ’s. For the parameters used in Fig. 3, for
example, γj < 10−2ωc would be sufficient. We emphasize that
a finite interaction time within T is of practical importance,
since the interaction (13) or (16) is switchable via the driving
field. This feature could be a tool for performing quantum
operations on qubits formed by the atom or the field, as well as
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for deterministic single-photon generation [34,35]. In addition,
since the effective vacuum Rabi frequency is proportional to
the corresponding virtual photon amplitude, our scheme can
be used to probe the ground-state structure of the quantum
Rabi model.
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