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Resonance interaction induced by metal surfaces catalyzes atom-pair breakage
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(Received 18 September 2012; published 9 April 2013)

We present the theory for retarded resonance interaction between two identical atoms at arbitrary positions near
a metal surface. The dipole-dipole resonance interaction force that binds isotropically excited atom pairs together
in free space may turn repulsive close to an ideal (totally reflecting) metal surface. On the other hand, close
to an infinitely permeable surface it may turn more attractive. We illustrate numerically how the dipole-dipole
resonance interaction between two oxygen atoms near a metal surface may provide a repulsive energy of the
same order of magnitude as the ground-state binding energy of an oxygen molecule. As a complement we also
present results from density-functional theory.
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Two identical, isotropically excited atoms can be bound
together in free space due to attractive retarded resonance
interaction. Interestingly, Jones et al. demonstrated the influ-
ence of retarded resonance interaction on the binding energy
of Na2 molecules [1,2]. Boström and co-workers [3] demon-
strated that, due to too drastic approximations, the underlying
theory of resonance interactions in free space derived from
perturbative quantum electrodynamics is correct only in the
nonretarded limit. Mechanisms of breakage and formation of
molecules near surfaces are the key problems of catalysis.
We present here a mechanism that derives from the retarded
resonance interaction between two identical atoms near a
surface. Hopmeier et al. [4] provided experimental evidence
for enhancement of dipole-dipole interaction in microcavities
and Agarwal and Gupta [5] verified this theoretically. A way
has recently been predicted by which very large molecules
may form by resonance interaction between atoms in a narrow
cavity [6].

The aim of this brief report is to present the theory for
retarded resonance interaction between two identical atoms
in an excited state with the line joining the two atoms being
perpendicular to the surface. A schematic illustration of the
system is shown in Fig. 1. This choice of configuration was
used because it enables us to derive analytical results for a
configuration that has not been previously studied. Previous
work considered only the case with two atoms at the same
distance from the surfaces. This is now extended to enable
consideration of two atoms at arbitrary positions near a
metal surface. We find that attractive resonance interaction
between isotropically excited atom pairs in free space may
turn repulsive close to an ideal metal surface and more
attractive close to an infinitely permeable surface. Close to an
ideal metal there is a repulsive contribution which decreases
as 1/z3

+ (where z+ is the distance between one atom and
the surface image of the second atom). The calculations of
resonance interaction between excited-state atom pairs and
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Casimir-Polder interaction between ground-state atom pairs
require the proper Green’s functions. The nonzero matrix
elements of the field susceptibility matrix (Tii) needed for our
calculations were adapted from the Green’s functions given in
the literature. Buhmann and co-workers [7,8] studied Casimir-
Polder interaction between two ground-state atoms placed with
different orientations near a surface. As an illustrative example
we present numerical calculations on the resonance interaction
between two oxygen atoms near a metal surface. The bond
enthalpy for an O2 molecule is around 498 kJ mol−1 = 5.2 eV.
The sunlight spectrum has an energy range of 1–3 eV, so
apart from solar energy one needs an extra 3 eV to split an
oxygen molecule. A contribution to such bond splitting may
occur due to excitation-induced resonance interaction between
oxygen atoms near a metal surface. We also present results
for two Zn atoms where the binding energy is much smaller,
∼0.4 eV, and the resonance interaction effects are much
stronger.

We first recall the standard argument: Consider two identi-
cal atoms where one initially is in its ground state and the other
is in an excited state. This state can also be represented by a
superposition of states, one symmetric and one antisymmetric
with respect to interchange of the atoms. While the symmetric
state is likely to decay into two ground-state atoms, the
antisymmetric state can be quite long-lived. The system can
thus be trapped in the antisymmetric state [3,9]. The energy
migrates back and forth between the two atoms until either
the two atoms move apart or a photon is emitted away
from the system. First-order dispersion interactions are caused
by this coupling of the system, i.e., the energy difference
between the two states is separation (ρ) dependent. After
writing down the equations of motion for the excited system,
it is straightforward to derive the zero-temperature Green’s
function for two identical and isotropic atoms [3,10]. The
resonance frequencies of the system are given by the following
equation [3]:

1 − α(1|ω)α(2|ω)T (ρ|ω)2 = 0, (1)

where α(j |ω) is the polarizability of atom j [11]. We present
in Fig. 2 the numerically evaluated polarizability of oxygen
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FIG. 1. (Color online) Two atoms in vacuum near a metal surface.
Also shown are their mirror images.

and zinc atoms used in this study. The atomic polarizability
data were obtained from quantum chemical response theory
calculations based on the complex polarization propagator
(CPP) approach [12] with implementations made in the Dalton
program [13] as described in Refs. [14–16]. In the CPP
framework, damping terms are introduced in the response
functions so as to describe relaxation in the system. These
damping terms may be viewed as causing the frequency
argument of the linear response function to become complex,
and in the present work we employ this feature to determine
the polarizability for the special case of imaginary frequencies.
We have earlier described and applied this technique in several
papers, see, e.g., Ref. [17].

The electronic configuration of the Zn atom is [Ar]3d104s2

and we chose to describe the electronic structure of this
singlet ground state at the Kohn-Sham density-functional
theory (DFT) level with use of the Coulomb attenuated
hybrid exchange-correlation functional CAM-B3LYP [18,19]
in conjunction with Dunning’s triple-augmented triple-ζ basis
set (t-aug-cc-pVTZ) [20]. For the O atom we consider the
reference state of triplet spin symmetry and we describe
the wave function by means of the multiconfigurational self-

FIG. 2. (Color online) The polarizabilities of oxygen and zinc
atoms. The discrete Matsubara frequencies are indicated by the
circles. Note that we have placed the n = 0 value at the left vertical
axes.

consistent field (MCSCF) method. We apply a valence active
space, which means there is only one triplet spin-adapted
configuration with MS = 0. Also in this case, we adopt the
t-aug-cc-pVTZ basis set [21].

In the case of two identical atoms the above resonance
condition can be separated in one antisymmetric and one
symmetric part. Since the excited symmetric state has a much
shorter lifetime than the antisymmetric state, the system can be
trapped in an excited antisymmetric state [3]. The resonance
interaction energy of this antisymmetric state is

U (ρ) = h̄[ωr (ρ) − ωr (∞)]. (2)

Since the relevant solution of Eq. (1) really is the pole of the
antisymmetric part of the underlying Green’s function, we can
in a standard way [22] deform a contour of integration around
this pole to obtain a both simple and exact expression for the
resonance interaction energy:

U (ρ) =
∑

i=x,y,z

h̄

π

∫ ∞

0
dωln[1 + α(1|iω)Tii(ρ|iω)]

≈
∑

i=x,y,z

h̄

π

∫ ∞

0
dωα(1|iω)Tii(ρ|iω). (3)

In order to compare with previous calculations on dipole-
dipole resonance interaction we use the approximate linearized
expression. In this way we ignore corrections due to an
attractive van der Waals (Casimir-Polder) term. We also
ignore finite size effects, which will change the interaction
for separations smaller than two atomic radii.

To account for the temperature (T ) dependence, we simply
replace the integration over imaginary frequencies by a
summation over discrete Matsubara frequencies [22],

h̄

2π

∫ ∞

0
dω → kBT

∞∑
n=0

′, ωn = 2πkBT n/h̄, (4)

where kB is the Boltzmann constant and the prime indicates
that the n = 0 term should be divided by 2.

We consider the case when the distance x between the two
atoms in the plane of the surface is zero and the distances
from atoms a and b to the surface is za and zb, respectively.
In other words, the atoms are along a line perpendicular to
the surface; atom a is furthest away from the surface (see
Fig. 1). The field susceptibility is a sum of three terms. Apart
from the free space field susceptibility T 0

ii , there are p and s

field susceptibility corrections due to the presence of a surface,
T

p

ii and T s
ii , respectively. In free space the field susceptibility

matrix T(ρ|iω) has the following nonzero matrix elements:

T 0
xx(iωn) = T 0

yy(iωn) = −
(

ω2
n

c2
+ ωn

cz−
+ 1

z2−

)
e−ωz−/c

z−
,

(5)

T 0
zz(iωn) = 2

(
1

z2−
+ ωn

cz−

)
e−ωnz−/c

z−
.

Here we define z+ = za + zb and z− = za − zb, with the
first being the distance between atom a and the image of
atom b inside the surface and the second being the distance
between the two atoms (see Fig. 1). The corresponding surface-
induced corrections to the field susceptibility matrix [7,8] have
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contributions from p and s polarizations (with η = ωnz+/c),

T p
xx = T p

yy = rp[1 + η + 0.5η2]e−η/z3
+,

(6)
T p

zz = 2rp(1 + η)e−η/z3
+,

and

T s
xx = T s

yy = −rsω
2
ne

−η/(2c2z+), T s
zz = 0, (7)

respectively. Here rs and rp are the reflection coefficients for s-
and p-polarized waves, respectively, impinging on the surface.
For an ideal metal rs = −1 and rp = 1. For an infinitely
permeable surface one gets a sign reversal of both terms.
Therefore the corrections to the resonance interaction due
to a surface have opposite sign at an ideal metal surface as
compared to an infinitely permeable surface. The result in free
space in the retarded limit is

U (z−) ≈ −2h̄cα(0)/(πz4
−). (8)

Near a surface we find a surface-induced nonretarded
resonance interaction between the two atoms,

U (z+) ≈ 4h̄rp/(πz3
+)

∫ ∞

0
dωα(iω) ≈ 2rph̄ωjα(0)/(z3

+),

(9)

where the London approximation, α(j |iω) ≈ α(j |0)/
(1 + ω2/ω2

j ), has been used to find the final analytical
expression. It is also possible to derive analytical results
for the surface corrections to the resonance interaction at
finite temperature in the retarded limit when α(iωn) ≈ α(0).
Defining ωn = nω1, η1 = ω1z+/c, and γ = (−1 + eη1 )−1, we
find for the p- and s-polarized contributions,

Up(z+) ≈ 2rpkBT α(0)

z3+

{
4 + 2η2

1γ
3 + (

4 + 4η1 + η2
1

)
γ

+ (
4η1 + 3η2

1

)
γ 2} (10)

and

Us(z+) ≈ −2rskBT α(0)η2
1

z+
{2γ 3 + 3γ 2 + γ }, (11)

respectively. The retarded asymptote at zero temperature then
is

Us(z+) + Up(z+) ≈ h̄cα(0)(10rp − 2rs)/(πz4
+). (12)

It is interesting to see that this asymptote has the same power
law as the Casimir-Polder energy between a ground-state atom
and an ideal metal surface [23], which goes as UCP(z) ≈
−3h̄cα(0)/(8πz4).

At finite temperature the long-range resonance interaction
driven by entropy is given by

Us(z+) + Up(z+) ≈ 8rpkBT α(0)/z3
+. (13)

Now let us consider the total resonance interaction in the
retarded limit but at sufficiently small separations for the zero-
temperature results to apply. It is given by

U ≈ [h̄cα(0)/π ]{[(10rp − 2rs)/(z4
+)] − 2/z4

−}. (14)

It is then clear that in the case of two atoms near an ideal
metal surface the total resonance interaction can be either
attractive or repulsive depending on z+ and z−.

FIG. 3. (Color online) The resonance interaction energy between
two oxygen atoms situated one outside the other near an ideal metal
surface. The closest atom is at 1 Å from the surface. For comparison
we have added a curve (DFT curve) showing the potential for
two oxygen atoms at an Au(111) surface as obtained from a DFT
calculation, including a van der Waals functional. See the text for
details.

We will now proceed to calculate numerically the retarded
resonance interaction at 300 K between two oxygen atoms
near an ideal metal surface. We present in Figs. 3 and 4
the retarded resonance interaction between two atoms near
an ideal metal surface. The total potential is the sum of the
contributions from free space U0, the correction due to the
surface from s waves Us , and the correction due to the surface
from p waves Up. In the first case, when one atom is adsorbed
at the surface, the interaction is dominated by p-polarized
surface corrections. When the atom closest to the surface
is some distance away from the surface, the interaction for

FIG. 4. (Color online) The resonance interaction energy between
two oxygen atoms situated one outside the other near an ideal metal
surface. The closest atom is 10 Å from the surface.
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FIG. 5. (Color online) The resonance energy between two oxy-
gen (zinc) atoms both adsorbed on an ideal metal surface (za =
zb = 1 Å), solid (dashed) curve. The field susceptibility for this case is
not described in the text. The different contributions can be obtained
using the Green’s functions given in the literature [7,8].

small atom-atom separations is dominated by the free space
contribution. However, as the distance between the atoms
increases repulsive surface corrections become increasingly
important, as can be seen in Fig. 4. In Fig. 3 we also compare
the total potential with the potential energy for two oxygen
atoms on a gold surface calculated within the Kohn-Sham DFT
model with a nonlocal van der Waals correlation functional
(rPW86/vdw-DF2) [24,25]. In the atomistic calculation the
Au(111) surface is modeled by a 6 × 6 × 6 supercell slab
structure with 44-Å vacuum layer. The fixed oxygen atom
is relaxed at the fcc hollow surface site, and the position of
the second atom is varied in the z direction. We find that the
nonresonant contribution to the interaction affects the result
for very small separations of the order of 3 Å or less. We have
in recent work found that this is also the limit where finite-size
corrections influence the interaction. Our results are therefore
only meaningful when the two atoms are at separations beyond
close contact.

Extending the theory presented above, we furthermore
calculated the retarded resonance interaction between two

atoms both adsorbed on an ideal metal surface. We show
the result in Fig. 5 as a function of the lateral distance x

between the two atoms. Surface corrections to the resonance
interaction between atoms near an ideal metal surface may
result in a significant repulsion. The DFT calculations of zinc
and oxygen on the gold surface reveal that these atom pairs
have a very weak chemical bond when both atoms are adsorbed
on the true gold surface.

We have discussed how the presence of a surface influences
the retarded dipole-dipole resonance interaction between two
identical atoms in an isotropically excited state. For very
small atom-atom separations, close to direct contact, there
will be important finite-size corrections and influence from
nonresonant contributions such as nonretarded van der Waals
forces. Beyond these limiting separations the excitation-
induced interaction between two atoms near an ideal metal can
produce a repulsive energy of the same order of magnitude as
the bonding energy of diatomic molecules. Catalytic effects
due to the presence of a surface may induce large enough
energies to break up or form molecules. The O2 reduction
reaction is one of the most studied, not only because it
is interesting scientifically but also important for practical
purposes. Such catalytic effects occur, for example, at the
cathode electrode of fuel cells, where Pt, Au, and related
alloys have been used or suggested as the catalyst. Yotsuhashi
et al. [26] studied dissociative adsorption of O2 molecules on
Pt and Au surfaces. They found that the chemical reactivity
is substantially larger on Pt as compared to on Au surfaces.
Another interesting surface is Cu(110), where the energy
gain by dissociation of an O2 molecule on the surface is
approximately 1.3 eV per molecule [27]. There are several
diatomic molecules and metallic surfaces that will show
varying strengths of the chemical interactions. For instance, we
observe that the O2 molecule has much larger bond enthalpy
in vacuum (∼5 eV) compared to the bond enthalpy of the Zn2

molecule (∼0.3 eV). Also, we regard Au to be somewhat more
comparable to an ideal metal than, for example, Pt, and we
therefore complement the calculation of resonance interactions
with atomistic modeling of O2 on Au(111) surfaces.
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