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Control of beam propagation in optically written waveguides beyond the paraxial approximation
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Beam propagation beyond the paraxial approximation is studied in an optically written waveguide structure.
The waveguide structure, which leads to diffractionless light propagation, is imprinted on a medium consisting
of a five-level atomic vapor driven by an incoherent pump and two coherent spatially dependent control and
plane-wave fields. We first study beam propagation in a single optically written waveguide and find that the
paraxial approximation does not provide an accurate description of the probe propagation. We then employ
coherent control fields such that two parallel and one tilted Gaussian beams produce a branched waveguide
structure. The tilted beam allows selective steering of the probe beam into different branches of the waveguide
structure. The transmission of the probe beam for a particular branch can be improved by changing the width of
the titled Gaussian control beam as well as the intensity of the spatially dependent incoherent pump field.
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I. INTRODUCTION

Diffractionless optical beam steering is of great interest in
optical imaging, laser machining, and optical communication.
A gradient of the refractive index provides the simplest way
to steer the optical beam. Such a refractive index gradient
can be achieved by various physical mechanisms such as
thermal gradients [1], acousto-optic interactions [2], and
electro-optic effects [3]. Similarly, light-matter interactions
can be used to control the optical beam propagation through the
atomic medium. More precisely, electromagnetically induced
transparency (EIT) [4] can provide beam steering since the
refractive index changes significantly near the center of the
transparency window [5,6].

Crucial obstacles in the above schemes are absorption
and diffraction. The effect of diffraction is inevitable as an
optical beam propagates through a medium. An optical beam
can be considered as a superposition of plane waves with
different wave vectors. Diffraction arises as each plane wave
acquires a different phase during its propagation. In free
space, a light beam will typically be distorted severely already
after propagation over a few Rayleigh lengths [7]. For all-
optical processing, this remains a major obstacle in practical
applications. In order to suppress or even eliminate diffraction,
researchers have developed many proposals based on different
physical mechanisms, such as EIT [8–16], coherent population
trapping (CPT) [17,18], coherent Raman processes [19,20],
or saturated absorption [21]. Most of the schemes employ
suitable spatially dependent structures of the control field to
prevent the optical beam from diffracting. Recently, it was
found that, alternatively, Dicke narrowing induced by atomic
thermal motion and velocity-changing collisions can be useful
to eliminate the diffraction of a probe beam that carries an
arbitrary image [22,23].

A particular class of beam steering devices is so-called
Y-branch waveguides, in which a single waveguide splits into
two output ports [24–27]. Y-branch waveguides can be used
to divide a single beam into two separate branches with a
certain intensity ratio. A desirable feature of such devices is a

dynamical control of the light beam intensity at the different
branches.

Motivated by this, here we propose a scheme for all-optical
beam steering in optically written waveguides. We facilitate
a five-level medium driven by spatially dependent control
fields, which was recently proposed as a method to achieve
large refractive index modulations with low absorption [28].
We start by analyzing the light propagation through a single
optically written waveguide. Comparing results obtained using
a split-operator method assuming paraxial approximation to
those from a finite-difference time-domain approach beyond
paraxial approximation, we find that already in this simple
case the paraxial approximation usually assumed in related
studies does not provide an accurate description of the beam
dynamics. Next, we consider an optically written branched
waveguide structure consisting of two parallel beams crossed
by a third tilted beam. This structure essentially consists of two
coupled Y-branched waveguides. We find that the tilted beam
can be used to switch the light propagation between either of
the two output ports formed by the two parallel light beams.
Our numerical results show that the coupling efficiency of
the probe beam into the different branches can be controlled
by changing the width and the angle of the tilted Gaussian
control field, and the transmission of the output probe beam
can be improved by increasing the amplitude of an additionally
applied incoherent pump field.

This article is organized as follows. In Sec. II, we introduce
the theoretical model, analytically derive the linear response
of the medium to the probe field from the master equation,
and discuss the propagation equations and numerical meth-
ods to calculate within and beyond paraxial approximation.
Section III describes the waveguide structure written by a
Gaussian control field inside the atomic medium and discusses
the possibility of controlling the optically written waveguide
structure by an incoherent pump field. In Sec. IV A, we
compare numerical results for the light propagation through
a single waveguide within or beyond paraxial approximation.
Section IV B presents our main results on the controlled light
propagation in a branched waveguide structure. Section V
summarizes the results.

043842-11050-2947/2013/87(4)/043842(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.043842
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II. THEORETICAL MODEL

A. Equations of motion

We consider the five-level atomic system shown in Fig. 1.
This model has been proposed previously in a different context
for high refractive index contrast with low absorption [28].
The transitions |2〉 ↔ |4〉 and |3〉 ↔ |5〉 are driven by two
far-detuned coherent laser fields with Rabi frequencies �s

and �c, respectively, and a weak probe is coupled to both
transitions |1〉 ↔ |4〉 and |4〉 ↔ |5〉 with Rabi frequencies �p1

and �p2, respectively. An incoherent pump field is applied to
transition |1〉 → |4〉 to provide a population inversion.

The electric fields of the three beams are defined as

�ξj (�r,t) = 1
2Ej (�r,t) �ej e−iωj t+i�k·�r + c.c., (1)

where Ej (�r,t) are the slowly varying envelopes and �ej are
the unit polarization vectors of the electric fields. The index
j ∈ {p,s,c} labels the three fields. In dipole and rotating-
wave approximation, the Hamiltonian of the system in the
interaction picture can be written as

HI/h̄ = −(�p1 − �s)|2〉〈2| − (�p1 + �p2 − �c)|3〉〈3|
−�p1|4〉〈4| − (�p1 + �p2)|5〉〈5| − (�p1|4〉〈1|
+�p2|5〉〈4| + �s |4〉〈2| + �c|5〉〈3| + H.c.), (2)

where �p1 = ωp − ω41, �p2 = ωp − ω54, �s = ωs − ω42,
and �c = ωc − ω53 are the detunings of the laser fields,
and the Rabi frequencies of the fields are defined as �p1 =
Ep �μ41 · �ep/2h̄, �p2 = Ep �μ54 · �ep/2h̄, �s = Es �μ42 · �es/2h̄,
and �c = Ec �μ53 · �ec/2h̄. Here, �μij are the dipole moments of
the respective transitions, and we have simplified the notation
Ej (�r,t) to Ej (j ∈ {p,s,c}). The master equation of motion
follows as

ρ̇ = − i

h̄
[HI ,ρ] − Lρ, (3)

|1>
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FIG. 1. (Color online) The five-level type scheme considered
in the analysis. The probe field couples to transitions |1〉 ↔ |4〉
and |4〉 ↔ |5〉, and the two coherent control laser fields �s,�c are
far detuned from respective transition frequencies in order to split
states |4〉 and |5〉 into suitable dressed states. An incoherent pump
control field is applied to |1〉 ↔ |4〉 to achieve a population inversion.
The control fields modify the probe field coupling to achieve high
refractive index contrast with low absorption.

and Lρ represents the incoherent contributions given by

Lρ = Lγ

41ρ + Lγ

42ρ + Lγ

53ρ + Lγ

54ρ + Ldρ + Lpρ, (4a)

Lγ

jkρ = �jk

2
(|j 〉〈j | ρ + ρ |j 〉〈j | − 2|k〉〈j | ρ |j 〉〈k|), (4b)

Ldρ =
∑
j �=k

γ d
jk |j 〉〈k|, (4c)

Lpρ = p

2
(|1〉〈1| ρ + ρ |1〉〈1| − 2|4〉〈1| ρ |1〉〈4|), (4d)

where Lγ

jkρ describes spontaneous emission from |j 〉 to |k〉
with rate �jk . The second term, Ldρ, models additional pure
dephasing for ρjk with rate γ d

jk , such that the total damping
rate of this coherence is γjk = γ d

jk + (�j + �k)/2, with �j =∑
k �jk being the total decay rate out of state |j 〉. The third

contribution Lpρ describes the incoherent pumping from |1〉
to |4〉 with rate p.

The equations of motion for the density matrix elements
can easily be derived to give

ρ̇11 = −pρ11 − i(�p1ρ14 − �p1ρ41) + �41ρ44, (5a)

ρ̇22 = −i�s(ρ24 − ρ42) + �42ρ44, (5b)

ρ̇44 = pρ11 − (�41 + �42)ρ44 − i(−�p1ρ14 − �sρ24

+�p1ρ41 + �sρ42 + �p2ρ45 − �p2ρ54) + �54ρ55,

(5c)

ρ̇55 = −i(−�cρ35 − �p2ρ45 + �cρ53 + �p2ρ54)

− (�53 + �54)ρ55, (5d)

ρ̇42 = i(�s + iγ42)ρ42 + i�s(ρ22 − ρ44) + i�p1ρ12

+ i�p2ρ52, (5e)

ρ̇54 = −γ54ρ54 − i(−�cρ34 − �p2ρ44 + �p1ρ51 + �sρ52

−�p2ρ54 + �p2ρ55), (5f)

ρ̇41 = − (p/2 + γ41) ρ41 − i(−�p1ρ11 − �sρ21 − �p1ρ41

+�p1ρ44 − �p2ρ51), (5g)

ρ̇34 = −γ43ρ34 − i{�p1ρ31 + �sρ32 + (�c − �p2)ρ34

+�p2ρ35 − �cρ54}, (5h)

ρ̇52 = −γ52ρ52 − i{−�cρ32 − �p2ρ42 − (�s + �p2)ρ52

+�sρ54}, (5i)

ρ̇21 = −(p/2 + γ21)ρ21 − i{(−�p1 + �s)ρ21 + �p1ρ24

−�sρ41}, (5j)

ρ̇32 = −γ32ρ32 − i{(�c − �s − �p2)ρ32 + �sρ34

−�cρ52}. (5k)

The remaining equations follow from the constraints∑
i ρii = 1 and ρij = ρ∗

ji .
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B. Steady-state solution

We assume the probe field to be weak enough to be treated
as a perturbation to the system in linear order. The related
zeroth-order [superscript (0)] and first-order [superscript (1)]
contributions for ρij are obtained as

ρ
(0)
11 = 2γ42�41�

2
s

pγ 2
42�42 + p�42�2

s + 2γ42(2p + �41)�2
s

, (6a)

ρ
(0)
22 = p

(
γ 2

42�42 + �42�
2
s + 2γ42�

2
s

)
pγ 2

42�42 + p�42�2
s + 2γ42 (2p + �41) �2

s

, (6b)

ρ
(0)
44 = 2pγ42�

2
s

pγ 2
42�42 + p�42�2

s + 2γ42 (2p + �41) �2
s

, (6c)

ρ
(0)
55 = 0, (6d)

ρ
(1)
41 =

(
ρ

(0)
44 − ρ

(0)
11

)
�p1

�p1 + i
(
γ41 + p

2

) + �2
s

�s−�p1−i(γ21+p/2)

, (6e)

ρ
(1)
54 = A

(
ρ

(0)
44 − ρ

(0)
55

)
�p2

B
. (6f)

The detailed expressions for A,B are provided in the
Appendix.

C. Interpretation of the level scheme

To elucidate the role of the different couplings, we reduce
the level structure to a three-level ladder system by switching
off the two far-detuned laser fields. Then, the linear suscepti-
bility for the probe simplifies to

χ (ωp) = 3Nλ3
p

8π2

(
�41(ρ44 − ρ11)

�p1 + i
(
γ41 + p

2

) + �54(ρ55 − ρ44)

�p2 + iγ54

)
,

(7)

where N is the atomic density and λp is the wave length of
the probe field. The terms on the right-hand side of Eq. (7)
describe the two individual contributions coming from the
two two-level subsystems in the three-level ladder structure.
To achieve the desired refractive index modulation without
absorption, three conditions should be satisfied in Eq. (7) [28].
First, the population inversions on the two transitions should be
matched. Second, the decoherence rates should be comparable.
Third, the two-photon resonance should be fulfilled for the two
transitions. These conditions can be expressed as �41(ρ44 −
ρ11) = �54(ρ55 − ρ44), γ54 = γ41 + p/2, and �p1 + �p2 = 0.
A maximum refractive index modulation can then be realized
if γ41 = ±�p1 − p/2. In this ideal case, the refractive index
is increased by a factor of 2, with absorption canceled at the
same time. However, it is hard to find a real atomic system in
which these conditions are satisfied simultaneously. To relax
the stringent conditions, Ref. [28] suggests introducing the
two far-detuned laser fields coupling |4〉 and |5〉 to auxiliary
states to induce Stark shifts. The Stark shifts of |4〉 and |5〉
together with modifications to the decoherence rates of the
Stark sublevels can be controlled by tuning the intensities and
detunings of the two laser fields. This way, the two transitions
for the probe can be modified to one’s advantage. This leads
to the five-level scheme shown in Fig. 1, in which the two
upper states are coupled by two external far-detuned laser fields

�s,�c. By appropriately choosing the parameters of these
laser fields, one can achieve strong refractive index modulation
with minimized absorption or even gain, even in realistic level
schemes.

D. Propagation dynamics with and without
paraxial approximation

The propagation dynamics of the probe field is governed by
Maxwell’s equations. Without applying the paraxial approx-
imation, the wave equation for the probe field propagating
along the z direction can be derived as [29]

∂Ep

∂z
= ic

2ωp

(
∇2

⊥ + ∂2

∂z2

)
Ep + ikp

2
χ (ωp)Ep, (8)

where kp = ωp/c, with c being the speed of light in vacuum,
and ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2. In Eq. (8), the diffraction of the
probe, which is induced by the term ic∇2

⊥Ep/2ωp, may be
reduced or even eliminated by the other term, ikpχ (ωp)Ep/2,
if the real part of the susceptibility has a waveguide-like
structure.

To evaluate Eq. (8) without the paraxial approximation,
we make use of the finite-difference time-domain (FDTD)
technique [30] provided by the software package MEEP [31].
In order to compare the results to those obtained in paraxial
approximation, we drop the term (ic/2ωp)∂2Ep/∂z2, which
introduces effects beyond the paraxial approximation, and
solve the resulting reduced equation using the Strang split
operator method [32]. In both simulation techniques, all fields
are chosen as continuous-wave fields.

III. REALIZING SPATIAL WAVEGUIDE-LIKE
STRUCTURES

A. Basic analysis

From Eqs. (6), the linear susceptibility of the probe field
can be written as

χ (1) = 3Nλ3
p

8π2

(
�41ρ

(1)
41

�p1
+ �54ρ

(1)
54

�p2

)
. (9)

We now assume a control field with spatial intensity depen-
dence modeled as a Gaussian:

�s = �s0 e
− x2

2w2
s , (10)

where ws is the width of the intensity profile. This spatial
dependence of the control field creates a modulation of the
medium susceptibility in space, which can be used as a
waveguide. In order to achieve maximum refractive index
modulation, the peak Rabi frequency of the laser field �s

should meet the condition �s0 = √
2γ41�s . Assuming these

conditions, an example for the real and imaginary parts of
the susceptibility, which correspond to the medium dispersion
and absorption, respectively, is shown in Fig. 2(a). Clearly, the
real part of the susceptibility resembles a waveguide structure,
whereas absorption is low.

The parameters in Fig. 2 are chosen to fulfill
�p1,�s,γ54,γ41 
 �54,�41,p. In this limiting case, Eq. (6e)
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FIG. 2. (Color online) Real (blue solid line) and imaginary (red
dashed line) parts of the linear susceptibility obtained from Eq. (9) as
a function of the position in the presence of a control laser field
�s with a Gaussian intensity profile. (a) Results for a constant
incoherent pump rate; (b) results for spatially dependent pumping
as explained in the main text. The inset in (b) depicts the detailed
structure of the linear susceptibility in the central area, which is
similar to that in (a). Note that the profile of the real part in the
central region forms a waveguide structure. Parameters are chosen
as N = 1.4 × 1027 m−3, λp = 813.2 nm, γ d

54 = 0.8 GHz, γ d
41 =

γ d
42 = 0.3 GHz, γ d

43 = 0.2 GHz, γ d
52 = γ d

21 = γ d
32 = 0, �41 = �42 =

45 Hz, �54 = 15 Hz, �p1 = −γ41, �p2 = 19.7 GHz, �s = 10.0 GHz,
�c = 18.0 GHz, �s0 = √

2γ41�s , �c = 5.2 GHz, ws = 1.0 μm, and
p = 45.9943 Hz.

can be simplified to

ρ
(1)
41 =

(
ρ

(0)
44 − ρ

(0)
11

)
�p1

−γ41 + iγ41 + �2
s

�s+γ41

. (11)

In the central area of �s defined by Eq. (10), the part
�2

s /(�s + γ41) − γ41 � γ41 in the dominator of Eq. (11), and
the refractive index is maximized as desired together with
gain. At the same time, the transition |5〉 ↔ |4〉 will give the
maximum refractive index together with absorption. Those two
transitions together result in a maximum refractive index for
the probe with almost canceled absorption in the central area of
�s , as shown in Fig. 2(a). In contrast, in the two wings of �s ,
the refractive index is minimized for transition |4〉 ↔ |1〉 with
gain since �2

s /(�s + γ41) − γ41 � −γ41. Simultaneously, a
minimal refractive index with absorption is obtained for the

transition |5〉 ↔ |4〉. In total, a minimal refractive index with
little absorption is obtained for the probe.

In order to check the validity of the perturbation approx-
imation in the far-detuned case, we also obtained the probe
field susceptibility to all orders by numerically solving Eq. (5)
at steady state. For a weak probe field �p1 ∼ �41, it is
virtually indistinguishable from the linear susceptibility shown
in Fig. 2(a).

B. Incoherent pumping

In this section, we discuss the possibility of controlling
the optically written waveguide structure by means of an
incoherent pump field. As shown in Fig. 2(a), the absorption
becomes weaker in the two wings than in the central area. In
practical implementations, this may lead to stray fields outside
the waveguide region caused by the part of the probe field
leaking out of the waveguide-like structure in the central part
into the weakly absorbing wings. In order to eliminate this
leaking light, we propose a spatially dependent incoherent
pump field given as follows:

p(�s) =
{

p if
(

�s

�s0

)2 � e−4,

0 if
(

�s

�s0

)2
< e−4.

(12)

The resulting linear susceptibility is shown in Fig. 2(b), where
the parameters are otherwise the same as in (a). It can be seen
that the central region featuring the waveguide-like structure
remains the same as in Fig. 2(a), as expected. In contrast, in
both side wings, where (�s/�s0)2 < e−4, the incoherent pump
vanishes, such that the atoms remain in the ground state |1〉
according to Eq. (6a). Thus, the medium acts as an absorber,
and stray fields outside the waveguide region are reduced. In
the following, the spatially dependent incoherent pump is used
in the numerical simulations.

IV. RESULTS

A. Validity of the paraxial approximation

As a first step, we study two-dimensional (2D) light
propagation of a Gaussian probe field along z. The probe field
width is wp = 1.0 μm at z = 0. The medium is prepared by
a Gaussian control laser field �s with width ws = 1 μm at
z = 0. The respective beam profiles are as in Eq. (10). Note
that we do not take into account the spreading of the field �s .
Figure 3 shows results for the normalized intensity of the probe
at different positions for a propagation distance of z0 = 20 μm
(about 2.59 Rayleigh lengths zR = 2πw2

p/λp � 7.73 μm).
The three panels compare different cases. Figure 3(a) shows the
free-space case without a control field. Clearly, the diffraction
spreading of the probe beam can be seen. In Fig. 3(b), results
are shown for the FDTD simulation beyond the paraxial
approximation. It can be seen that the diffraction is suppressed
by the waveguide structure introduced by the control beam.
Finally, in Fig. 3(c), results in the paraxial approximation from
the Strang propagation technique are shown. While again a
waveguide-like propagation without diffraction, surprisingly,
the results differ considerably from those obtained in Fig. 3(b)
beyond the paraxial approximation. In particular, the paraxial
approximation leads to higher maximum intensity, and the
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FIG. 3. (Color online) Normalized intensity of the probe field as
a function of propagation distance z. (a) The free-space case, (b) the
propagation in a medium prepared with a control field and evaluated
beyond the paraxial approximation, and (c) the corresponding results
evaluated in paraxial approximation. The maximum propagation
distance is z0 = 20 μm. The initial width of the probe is wp = 1.0 μm
at z = 0. Other parameters are as in Fig. 2.

“breathing” -like width modulation throughout the propaga-
tion is slower than in Fig. 3(b).

Figure 4(a) compares the transverse intensity profiles at
the medium entrance and exit for the different cases shown
in Fig. 3. It can be seen that in free space, the maximum
intensity is considerably attenuated together with a substantial
increase in the width to wp(z0) � 2.85 μm. With the control
field beyond the paraxial approximation, the width is slightly
narrowed compared to the input width to wp(z0) � 0.75 μm,
together with a moderate reduction of the maximum intensity.
In the paraxial approximation, the width is underestimated,
and the maximum intensity is overestimated.
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FIG. 4. (Color online) (a) Intensity profile of the propagating
probe field at the medium entrance (dashed black line) and output
after a propagating distance z0 = 20μm. The dot-dashed green line
shows propagation in free space, the dotted red line propagation in
the medium with control field evaluated in paraxial approximation,
and the solid blue line corresponding results beyond paraxial
approximation. (b) Transversal width of the probe field as a function
of propagation distance z evaluated within (dashed red) and beyond
(solid blue) paraxial approximation. Parameters are chosen as in
Fig. 3.

An intuitive way to understand the observed diffractionless
light propagation is to model the probe as an ensemble of rays
propagating in a medium rendered by the applied control field
into a waveguide structure. As the probe is propagating in
the medium, total reflection at the medium boundaries occurs,
as the refractive index is larger in the central area than in
the two wings, as shown by the solid blue line in Fig. 2(a).
Thus, the main part of the probe intensity is confined in the
central area. To substantiate this interpretation, we calculated
the width of the probe as a function of propagation distance z

and show the result in Fig. 4(b). It can be seen that the width of
the probe oscillates periodically throughout the propagation.
These oscillations in the width arise from the total refraction.
Those rays in the probe which do not meet the condition
for total internal reflection leave the central area and are
absorbed in the wings. This leads to the reduction in both the
energy density and the width of the probe as the propagation
distance increases. Note that Fig. 4(b) again shows the
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difference in the spatial structure of the probe beam with and
without the paraxial approximation.

We thus conclude that even when confined to a waveguide-
like structure and when propagating only a few Rayleigh
lengths, the paraxial approximation does not provide an
accurate description of the probe field propagation.

B. All-optical switching of light in a branched
waveguide structure

We now turn to our main results on applying the waveguide-
like structures obtained in the previous section for all-optical
switching. For this, we consider light propagation in a more
complicated branched waveguide structure formed by a field
�s consisting of three Gaussian laser beams with different
geometries, defined as

�s = �s1 + �s2 + �s3, (13a)

�s1 = �s0e
− (x−x0)2

2w2
s , (13b)

�s2 = �s0e
− (x+x0)2

2w2
s , (13c)

�s3 = �s0e
− [(x−xt ) cos θ+z sin θ ]2

2k2w2
s . (13d)

The spatial profile of the field �s is plotted in Fig. 5(a). It
consists of two parallel beam structures, intersected by a tilted
one. In Fig. 5(a), the width ws , the displacement x0 of the
parallel beams, and the displacement xt of the tilted beam are
chosen as 1.0, 3.0, and 18.0 μm, respectively. k is a factor by
which the width of the tilted control beam differs from that of
the parallel beams. The maximum propagation distance is z0 =
200 μm, and the tilting angle for �s3 is tan θ = 2xt/z0. Using
Eqs. (6), (9), and (13), we can obtain the linear susceptibility
for the probe, which has real and imaginary parts as shown in
Figs. 5(b) and 5(c), respectively. It can be seen that branched
waveguide-like structures are generated in the optical response
corresponding to the three beams of �s . Note that in regions
in which two of the fields �s1, �s2, and �s3 overlap, the
total magnitude of �s is considerably larger than �s0 of a
single field, which means that the conditions for the desired
maximum reflective index modulation are not satisfied. This
deviation leads to lower spatial dispersion with weak gain, as
shown in the corresponding regions in Figs. 5(b) and 5(c). As
a consequence, refraction will take place when the probe field
enters these regions.

We found that the branched waveguide structure can be
used to guide the probe light selectively into any of the three
output ports on the right-hand side. For this, we consider a
Gaussian probe field which is launched into the waveguide
formed by �s1 left of the intersection point with the tilted
control beam. As a first step, we have calculated the light
propagation without the tilted control field (�s3 = 0), such
that the probe light remains in the upper of the two parallel
waveguide structures. We denote this transmitted power after
propagation of a single optically written waveguide as P0. We
will normalize part of the results of the following analysis to
this reference value P0, and it is important to remember that
P0 is smaller than the incident power due to attenuation in the
waveguide.

FIG. 5. (Color online) Sketch of the branched waveguide struc-
ture. (a) The spatial profile of �s for k = 1 and the corresponding
position-dependent (b) real and (c) imaginary parts of the linear
susceptibility in the medium. The labels i ∈ {1,2,3} in (a) indicate the
three output ports corresponding to the ith control beam �si . The size
of the medium is chosen as 60 μm × 200 μm. The other parameters
are as in Fig. 2.

We then switch on the tilted control beam and calculate
the field power at the three output ports after the propagation,
which we denote as Pi . From these quantities, we calculate
the relative transmitted powers Ti = Pi/P0. Here, i = 1 cor-
responds to the upper parallel waveguide, i = 2 corresponds
to the lower parallel waveguide, and i = 3 corresponds to the
tilted waveguide.

Results are shown in Figs. 6(a)–6(c) for two different tilting
angles tan θ ∈ {0.18,0.26} as a function of the tilted beam
width k. Additionally, in Fig. 6(d), the visibility V = (T1 −
T2)/(T1 + T2) is shown, which can be seen as a figure of merit
for the switching between the two parallel output ports. While,
for k → 0, all light is emitted at output port 1 as expected,
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FIG. 6. (Color online) Transmitted powers (a) T1, (b) T2, and (c)
T3 at the three output ports indicated in Fig. 5(a) after the propagation
through the branched waveguide medium. (d) The visibility V =
(T1 − T2)/(T1 + T2) for the switching of light between output ports
1 and 2. All results are plotted against the relative width of the tilted
control beam k. The blue solid (red dashed) line shows results for
tilting angle tan θ = 0.18 (tan θ = 0.26). The probe beam initially
has a Gaussian shape with wp = 1.0 μm. Other parameters are as in
Fig. 2.

with increasing k, the light is rerouted towards port 2, with
a visibility below −0.6. This indicates that switching of the
output port by means of the tilted control field is possible. The
corresponding output probe field structure after propagating
through the branched waveguide structure without tilted field
(k = 0) and with k = 4 is shown in Fig. 7, which clearly
shows that the probe pulse in output 2 exceeds that in port 1.

Figure 7 also shows that the output power can be larger
than P0. This is also shown in Figs. 6(a)–6(c). The origin of
this increase is the slight gain in the field overlap regions.
It should be noted, however, that overall the sum of the
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FIG. 7. (Color online) Spatial field configuration in the plane
transverse to the propagation direction at the output of the medium
at z0 = 200 μm. The red solid line shows results without a tilted
control beam, whereas the blue dashed line shows results including
a tilted control with relative width k = 4. The vertical green dashed
lines indicate the positions of the three output ports. The tilting angle
is chosen as tan θ = 0.18. Other parameters are as in Fig. 6.

total transmitted probe intensity in all three output ports is
lower than the input power. Values larger than P0 only indicate
that the transmitted power is larger than the power transmitted
through a single optically written waveguide, as part of the
absorption is compensated by the gain in the overlap region.

In the following, we provide a simple explanation for the
observed light switching to different output ports. If the tilted
beam is switched off, the probe field propagates without
diffraction to output port 1, as discussed in the previous
section. When the tilted beam �s3 is turned on and if suitable
parameters are chosen for the tilting angle, the tilted beam
width, and the atomic density N , the probe field can be
refracted into the tilted beam �s3. To understand this, one
should note that the region in which two of the three control
fields overlap has a real part of the susceptibility varying
with the propagation direction z. Due to this variation, as
well as the missing guiding in the perpendicular direction in
the overlap region, parts of the probe field can be redirected
into the tilted beam. Starting from a tilted beam of vanishing
thickness, initially the proportion of redirected light increases
with increasing thickness. After the first intersection point, at
the second intersection point, light can in turn be redirected
out of the tilted beam into the lower parallel control beam.

Note that the transmitted power T1 at output port 1 oscillates
with the thickness of the tilted control beam determined by
k. This is likely an interference effect. As discussed above,
the refractive index varies along the propagation direction z

in the waveguide formed by �s1 in the intersection point. When
the probe field enters this area, some part of it is refracted back
and forth repeatedly along the z direction. Depending on k,
the interference of the different channels possible for the light
changes between (partly) constructive and destructive, thus
resulting in the oscillations in T1.

Qualitatively, one would expect that the probe field could
more easily be redirected from �s1 into the tilted beam �s3

and subsequently into the lower parallel guide �s2 if the tilting
angle θ is smaller and if the atomic density N is larger. We
have verified this by plotting the transmitted power Ti and
visibility V versus the width of �s3 also for a larger tilting

0.20 0.25 0.30 0.35 0.40
1.0

0.5

0.0

0.5

1.0

tanΘ

V
is

ib
il

it
y

T
1

T
2

T
1

T
2

k 2
k 3
k 4

FIG. 8. (Color online) Visibility V = (T1 − T2)/(T1 + T2) as a
function of the tilting angle of the control field for three different
relative widths of the tilted beam. The top red solid line shows k = 2,
the middle blue dashed line shows k = 3, and the bottom green dotted
line shows k = 4. Other parameters are as in Fig. 6.
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FIG. 9. (Color online) The effect of the incoherent pump on the
output of the probe. The angle and width of the probe are chosen
as tan θ = 0.18 and k = 4, respectively. Other parameters are as in
Fig. 6.

angle tan θ = 0.26 in Fig. 6. It can be seen that the probe
transferred into output ports 2 and 3 is generally smaller at
tan θ = 0.26 compared to that at tan θ = 0.18. We then further
calculated the visibility V as a function of the tilting angle
tan θ for several different widths of the tilted control. Results
are shown in Fig. 8. It can be seen that V increases as the
tilting angle θ increases for all widths of the tilted beam.

It should be noted that since the tilting angle in our
case is relatively large (tan θ ∈ {0.18,0.26}), the paraxial
approximation cannot be applied. This is clearly indicated
by the nonvanishing transmitted power T3 which arises due
to effects beyond the paraxial approximation described by the
term (ic/2ωp)∂2Ep/∂z2 in Eq. (8).

As discussed in Sec. IV A, since we have chosen a
relatively weak incoherent pump, the probe will be absorbed
as it propagates in the medium. This is an obstacle in
experimentally realizing the proposed scheme. However, the
output of the probe can be improved by applying stronger
incoherent pumping. Figure 9 shows the transmitted power
Ti(i = 1,2,3) and visibility V as a function of the incoherent
pump rate p. It can be seen that the transmitted powers Ti can
be sensitively controlled via the intermittent gain introduced
via p over a wide range of output powers. Note that due
to the slightly longer propagation distance to output port 2
compared to the path to 1, the transmitted power T2 grows
faster than T1 as the incoherent pump increases. For the same

reason, T3 grows even more rapidly. It is important to note that
while the transmitted powers can be controlled, the visibility
for the switching remains approximately the same over the
whole range of p. This suggests that the visibility is mainly
determined by the geometry of the optically written structure,
consistent with the waveguide interpretation. In contrast to
the absorption and gain properties, this geometry is largely
independent of the pumping p, with the exception of slight
changes in the beam profiles with p.

V. CONCLUSION

We have investigated light propagation in an optically
written waveguide structure. The waveguide structure is
prepared in a medium tailored with coherent control fields
and an incoherent pump field. A spatially dependent Gaussian
control field is applied to create a waveguide-like spatial
refractive index variation within the medium, such that a probe
beam can propagate within the waveguide structure essentially
without diffraction. Our initial calculations show that already
in a single optically written waveguide, accurate results for
the beam propagation cannot be obtained within the paraxial
approximation. To analyze the propagation dynamics, we
therefore numerically integrate the corresponding equations
without paraxial approximation for the probe fields.

As our main result, we have demonstrated that a controllable
branched-waveguide structure can be optically formed inside
the medium by applying a spatially dependent control field
consisting of two parallel and one tilted Gaussian beams. The
tilted beam can be used to selectively steer a probe beam
between two different output ports. In the overlapping regions
of the Gaussian control beams a rapidly varying refractive
index is created that guides the probe beam to propagate in
a particular output branch. Increasing the amplitude of the
incoherent pump beam can be used to reduce the absorption
of the medium.
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APPENDIX

The explicit expressions for A,B in Eqs. (6) are as follows:

A = −i[−γ32 − i(�c − �p2 − �s)]
[
(−iγ32 + �c − �p2 − �s)(iγ52 + �p2 + �s) + �2

c − �2
s

] (
γ43 + i(�c − �p2)

+ �2
s

γ32 + i(�c − �p2 − �s)
+ �2

s

[
(iγ43 − �c + �p2)(−iγ32 + �c − �p2 − �s) − �2

c + �2
s

]
[γ32 + i(�c − �p2 − �s)]

[
(−iγ32 + �c − �p2 − �s)(iγ52 + �p2 + �s) + �2

c − �2
s

]
)

,

(A1a)

B = [γ32 + γ54 + i(�c − 2�p2 − �s)]�
2
s

[
(iγ43 − �c + �p2)(−iγ32 + �c − �p2 − �s) − �2

c + �2
s

]
+ [

(−iγ32 + �c − �p2 − �s)(iγ52 + �p2 + �s) + �2
c − �2

s

]{
[γ32 + i(�c − �p2 − �s)]

× [
(−iγ43 + �c − �p2)(iγ54 + �p2) + �2

c

] + (γ54 − i�p2)�2
s

}
. (A1b)
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