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Unconventional Fano effect and off-resonance field enhancement in plasmonic coated spheres
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We investigate light scattering by coated spheres composed of a dispersive plasmonic core and a dielectric
shell. By writing the absorption cross section in terms of the internal electromagnetic fields, we demonstrate
it is an observable sensitive to interferences that ultimately lead to the Fano effect. In particular, we show that
unconventional Fano resonances, recently discovered for homogeneous spheres with large dielectric permittivities,
can also occur for metallic spheres coated with single dielectric layers. These resonances arise from the
interference between two electromagnetic modes with the same multipole moment inside the shell and not
from interactions between the various plasmon modes of different layers of the particle. In contrast to the case
of homogeneous spheres, unconventional Fano resonances in coated spheres exist even in the Rayleigh limit.
These resonances can induce an off-resonance field enhancement, which is approximately 1 order of magnitude
larger than the one achieved with conventional Fano resonances. We find that unconventional and conventional
Fano resonances can occur at the same input frequency provided the dispersive core has a negative refraction
index. This leads to an optimal field enhancement inside the particle, a result that could be useful for potential
applications in plasmonics.
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I. INTRODUCTION

The Fano resonance, discovered in the realm of atomic
physics by Fano in 1961 [1], is one distinctive characteristic
of interacting quantum systems. The unique, asymmetric
Fano lineshape has its origin in the wave interferences
between a narrow discrete resonance and the continuum or
a broad resonance. As a signature of quantum interference,
the Fano effect has been extensively investigated in electronic
transport at the nanoscale, in systems such as quantum
dots, quantum wires, and tunnel junctions (for a review see
Ref. [2]).

Being an interference phenomenon, Fano resonances also
manifest themselves in classical optics. Historically, the first
observation of a Fano resonance in optics was probably
the Wood’s anomaly [3]. With the advent of metamate-
rials and plasmonic nanostructures, the Fano effect has
recently become an important tool to control electromagnetic
mode interactions [4]. Due to the sharpness of the Fano
asymmetric lineshape, systems exhibiting the Fano effect
are highly sensitive to the local dielectric environment.
As a consequence, in plasmonic systems the Fano effect
has been exploited in the development of optical sensors,
nonlinear devices, and low-threshold nanoscopic lasers [4].
Fano resonances have also been observed in several photonic
systems, such as micropillars, photonic crystals, subwave-
length apertures in polaritonic membranes, metallic films,
and random photonic structures (see Ref. [4], and references
therein).

In light scattering by small particles, Fano resonances
are also known to play an important role. Despite its long
history since the pioneer work of Mie in 1908 [5], light
scattering still reveals challenging surprises, and many among
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them are related to the Fano effect. Indeed, anomalous light
scattering phenomena such as giant optical resonances with
an inverse hierarchy (quadrupole resonance is stronger than
the dipole one), near-field pattern exhibiting vortices, and
unusual size and frequency dependencies [6–8] were found
to be described in terms of an analogy with Fano resonances
of a quantum particle scattered by a potential with quasibound
levels [9]. According to this analogy, localized plasmons
(polaritons) excited by an incident radiation play the role of
quasibound levels and their radiative decay is equivalent to
the tunneling process from such levels [9]. The interference
between the incident and re-emitted radiation gives rise to
either enhancement (constructive interference) or suppression
(destructive interference) of the electromagnetic field. Fano
resonances have been shown to be at the origin of the so-called
“dark-states” in light scattering by coated spheres, where the
local electromagnetic field enhancement occurs in off-resonant
regions [10]. Light scattering by homogeneous particles can
also exhibit unconventional Fano resonances in the extinction
cross section beyond the Rayleigh approximation; they result
from the interference between different electromagnetic modes
with the same multipole moment [11]. This contrasts with
conventional Fano resonances, which arise from the spectral
overlap of broad and narrow electromagnetic modes with
different values of multipole moment [11].

The aim of this paper is to investigate conventional and
unconventional Fano resonances and their connection to off-
resonance field enhancement in coated spheres composed
of a plasmonic core and a dielectric shell. We demonstrate
that unconventional Fano resonances can also show up for
coated spheres even in the Rayleigh limit, which is in contrast
to the case of homogeneous spheres. These unconventional
Fano resonances are at the origin of an off-resonance field
enhancement within the scatterer, which can be even larger
than the one achieved with conventional Fano resonances. In
addition, we show that when the core has a negative refractive
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FIG. 1. The scatterer geometry: a sphere of radius a and op-
tical properties (ε1,μ1) coated with a spherical shell of thickness
(b − a) and optical properties (ε2,μ2); the embedding medium is
(ε0,μ0).

index, conventional and unconventional Fano resonances
can occur at the same input frequency, corresponding to
the condition for an optimal field enhancement within the
particle.

This paper is organized as follows. In Sec. II, we
describe light scattering by coated magnetic spheres within
a generalization of the Lorenz-Mie scattering. In Sec. III, we
investigate the behavior of conventional and unconventional
Fano resonances in coated spheres. The connection to off-
resonance field enhancement is discussed in Sec. IV, whereas
Sec. V is devoted to the case of cores with a negative refractive
index. Finally, in Sec. VI, we summarize our main results and
conclude.

II. LIGHT SCATTERING BY A COATED SPHERE

Let us consider the electromagnetic wave scattering by
a coated sphere within the framework of the Aden-Kerker
generalization of the Lorenz-Mie solution [5,12]. This theory
describes the scattering of a plane electromagnetic wave
(E,H)e−iωt , with ω being the angular frequency, by a coated
sphere with an inner radius, a, and an outer one, b [5,12].
We assume that the coated sphere is made of linear, spatially
homogeneous, and isotropic materials. The electric permittiv-
ities and magnetic permeabilities of the core (0 � r � a) and
the shell (a � r � b) are (ε1,μ1) and (ε2,μ2), respectively. For
simplicity, the scatterer is embedded in vacuum, with optical
properties (ε0,μ0) (see Fig. 1). The extinction and scattering
efficiencies (which are the respective cross sections in units of
πb2) are Qext = (2/y2)

∑∞
n=1(2n + 1)Re(an + bn) and Qsca =

(2/y2)
∑∞

n=1(2n + 1)(|an|2 + |bn|2), where y = kb is the size
parameter of the outer sphere (k being the incident wave
number) [5]. By energy conservation, the absorption efficiency
is Qabs = Qext − Qsca. In particular, the radar backscattering
efficiency is Qback = (1/y2)| ∑∞

n=1(−1)n(2n + 1)(an − bn)|2.
In all the Q factors, the Aden-Kerker scattering coefficients an

and bn are as follows [13]:

an = (D̃n/m̃2 + n/y)ψn(y) − ψn−1(y)

(D̃n/m̃2 + n/y)ξn(y) − ξn−1(y)
, (1)

bn = (m̃2G̃n + n/y)ψn(y) − ψn−1(y)

(m̃2G̃n + n/y)ξn(y) − ξn−1(y)
, (2)

where one defines the auxiliary functions

D̃n = Dn(m2y) − Anχ
′
n(m2y)/ψn(m2y)

1 − Anχn(m2y)/ψn(m2y)
, (3)

G̃n = Dn(m2y) − Bnχ
′
n(m2y)/ψn(m2y)

1 − Bnχn(m2y)/ψn(m2y)
, (4)

An = ψn(m2x) [m̃2Dn(m1x) − m̃1Dn(m2x)]

m̃2Dn(m1x)χn(m2x) − m̃1χ ′
n(m2x)

, (5)

Bn = ψn(m2x) [m̃2Dn(m2x) − m̃1Dn(m1x)]

m̃2χ ′
n(m2x) − m̃1Dn(m1x)χn(m2x)

, (6)

with x = ka being the size parameter of the inner
sphere and Dn(ρ) ≡ d[ln ψn(ρ)]/dρ. The functions ψn(ρ) =
ρjn(ρ), χn(ρ) = −ρyn(ρ), and ξn(ρ) = ψn(ρ) − iχn(ρ) are
the Riccati-Bessel, Riccati-Neumann, and Riccati-Hankel
functions, respectively, with jn and yn being the spherical
Bessel and Neumann functions, respectively. The refrac-
tive and impedance indices are mq = kq/k = √

εqμq/(ε0μ0)
and m̃q = μ0mq/μq = √

εqμ0/(ε0μq), respectively [14] (with
q = 1 for the core and q = 2 for the shell).

The angle-averaged electric 〈|E|2〉	 and magnetic 〈|H|2〉	
fields within the coated sphere can be explicitly calculated
[15]. Here, we define 〈|F|2〉	 ≡ ∫ 2π

0 dφ
∫ 1
−1 d(cos θ ) |F|2/4π ,

where F = F(r, cos θ,φ) is either the electric (E) or the
magnetic (H) field in the spherical coordinate system (r,θ,φ).
Using the exact expression for the electric field inside the core
region (0 � r � a), we obtain [13,16]

〈|E1|2〉	
|E0|2 = 1

2

∞∑
n=1

{(2n+ 1)|cn|2|jn(ρ1)|2 + |dn|2[n|jn+1(ρ1)|2

+ (n + 1)|jn−1(ρ1)|2]}, (7)

where ρ1 = m1kr and E0 is the incident wave amplitude. The
expression for the magnetic field is obtained by replacing
(E1,E0) with (H1,H0) (where H0 = E0

√
ε0/μ0) and (cn,dn)

with (m̃1dn,m̃1cn) in Eq. (7). For the shell region (a � r � b)
the angle-averaged electric field is [13]

〈|E2|2〉	
|E0|2 = 1

2

∞∑
n=1

((2n + 1)[|fn|2|jn(ρ2)|2 + |vn|2|yn(ρ2)|2]

+ |gn|2[n|jn+1(ρ2)|2 + (n + 1)|jn−1(ρ2)|2]

+ |wn|2[n|yn+1(ρ2)|2 + (n + 1)|yn−1(ρ2)|2]

+ 2Re{(2n + 1)fnv
∗
njn(ρ2)yn(ρ∗

2 )

+ gnw
∗
n[njn+1(ρ2)yn+1(ρ∗

2 )

+ (n + 1)jn−1(ρ2)yn−1(ρ∗
2 )]}), (8)

where ρ2 = m2kr . The expression for the angle-averaged
magnetic field within the shell is obtained by replacing (E2,E0)
with (H2,H0), (fn,gn) with (m̃2gn,m̃2fn), and (vn,wn) with
(m̃2wn,m̃2vn) in Eq. (8). In terms of the auxiliary functions
defined in Eqs. (3)–(6), the internal coefficients cn, dn, fn, gn,
vn, and wn read [13]

cn = m1fn[ψn(m2x) − Bnχn(m2x)][m2ψn(m1x)]−1, (9)

dn = m1gn[ψ ′
n(m2x) − Anχ

′
n(m2x)][m2ψ

′
n(m1x)]−1, (10)
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fn = im2/[Bnχn(m2y) − ψn(m2y)]

(m̃2G̃n + n/y)ξn(y) − ξn−1(y)
, (11)

gn = im2/[Anχn(m2y) − ψn(m2y)]

(D̃n + nm̃2/y)ξn(y) − m̃2ξn−1(y)
, (12)

vn = Bnfn, (13)

wn = Angn. (14)

The above expressions for the angle-averaged fields inside a
coated sphere agree with Ref. [15] in the nonmagnetic case
(μ1 = μ2 = μ0).

III. FANO-LIKE RESONANCES IN COATED SPHERES

The identification of conventional Fano resonances requires
observables that are sensitive to wave interference. As a
result, in light scattering by single homogeneous spheres,
Fano-like resonances do not occur in the extinction Qext and
scattering Qsca efficiencies (and consequently in the absorption
efficiency, Qabs) since these quantities are proportional to the
sum of intensities [4]. Also, since both Qext and Qsca are
averaged among all possible directions and polarizations, the
resonance properties are averaged as well. For this reason,
conventional Fano resonances in homogeneous spheres are
expected to occur only in the cross sections at a particular
direction, e.g., the backscattering cross section. However,
for coated spheres the wave interferences, which ultimately
lead to Fano-like resonances, can show up in the absorption
efficiency Qabs even though Qext and Qsca do not explicitly
contain interference terms. To demonstrate this, note that one
can explicitly write Qabs in terms of internal electromagnetic
modes [13,16,17]. Defining the volume Vq ≡ 4π (l3

2 − l3
1)/3,

where (l1,l2) = (0,a) for the core (q = 1) and (l1,l2) = (a,b)
for the shell (q = 2), one calculates the volume-averaged
field intensities using 〈|F|2〉Vq

≡ 3
∫ l2
l1

dr r2〈|F|2〉	/(l3
2 − l3

1)
[13]. Since εq = ε′

q + iε′′
q and μq = μ′

q + iμ′′
q and using the

relations between Qabs and the absorbed powers [17], PEq
=

ωε′′
q

∫
Vq

d3r|Eq |2/2 and PHq
= ωμ′′

q

∫
Vq

d3r|Hq |2/2, we obtain

Qabs = 4

3
y

[ (
ε′′

1

ε0

〈|E1|2〉V1

|E0|2 + μ′′
1

μ0

〈|H1|2〉V1

|H0|2
)

S3

+
(

ε′′
2

ε0

〈|E2|2〉V2

|E0|2 + μ′′
2

μ0

〈|H2|2〉V2

|H0|2
)

(1 − S3)

]
, (15)

with S ≡ a/b being the thickness ratio. Inspecting the
expression for the internal field [Eq. (8)], it is clear that
Eq. (15) explicitly contains cross terms such as fnv

∗
n and gnw

∗
n

that physically represent interference between internal modes
within the shell. This result suggests that Fano-like resonances
could be detected in Qabs as well for coated spheres.

For single homogeneous spheres, unconventional Fano
resonances result from the interference between different
electromagnetic modes with the same multipole moment so
that they show up in Qext [11]. These Fano-like resonances
are expected to exist either in homogeneous spheres with
large dielectric permittivity, i.e., beyond the Rayleigh approx-
imation, or in particles with spatial dispersion [11]. In the
former case, such resonances may occur due the interference
of, e.g., two dipole modes, the resonant one (excited at a large

dielectric permittivity) and the off-resonant Rayleigh one. The
unconventional Fano resonance behavior in coated spheres, to
the best of our knowledge, has been not reported so far.

To establish the conditions for the occurrence of Fano-like
resonances in coated spheres, let us examine resonances in the
multipolar moments an and bn, which are related to the surface
modes or localized plasmon (polariton) resonances (LPRs). In
Lorenz-Mie scattering, these LPRs are usually associated with
a strong enhancement of the electromagnetic field intensity
near the scatterer surface. Analytically, they are determined
when denominators of the scattering coefficients an and bn van-
ish [5]. For nonmagnetic (ε1,μ1 = μ0) homogeneous spheres
of radius R in the Rayleigh limit (kR 	 1 and |m1|kR 	 1),
the electric surface modes are ε′

1 = −(n + 1)ε0/n, with n

being the mode number. The lowest-order mode (n = 1)
corresponds to the mode of uniform polarization throughout
the sphere. The frequency in which it occurs, ε′

1(ωF) = −2ε0,
is often referred to as the Fröhlich frequency [5]. For coated
spheres in the Rayleigh limit (y 	 1, |m1|x 	 1 and |m2|y 	
1), the application of the Fröhlich condition for the first
surface mode (n = 1) results in the following dipole scattering
coefficient:

a1 ≈ 2iy3

3

[
(ε0 − ε2)(ε1 + 2ε2) − (ε0 + 2ε2)(ε1 − ε2)S3

(2ε0 + ε2)(ε1 + 2ε2) − 2(ε0 − ε2)(ε1 − ε2)S3

]

= −2iy3

3

[
ε2/ε0 − (1 − S3)/(1 + 2S3)

ε2/ε0 + 2(1 − S3)/(1 + 2S3)

](
ε1 − ε

(ant)
1

ε1 − ε
(res)
1

)
,

(16)

where we have kept up to O(y5). In Eq. (16), ε
(ant)
1 and ε

(res)
1

are the ε1 values which make the numerator (antiresonance) or
the denominator (resonance) of a1 vanish, respectively. Taking
into account that only the core is dispersive [ε1 = ε1(ω)] in our
geometry, the Fröhlich mode is determined for ε1(ωF) = ε

(res)
1 .

Assuming that the media are weakly absorbing (ε′′
q 	 ε′

q), we
obtain

|a1(ω)|2 ∝
[
ε1(ω) − ε

(ant)
1

ε1(ω) − ε
(res)
1

]2

= [X(ε1) + η(ε1)]2

X(ε1)2 + 1
,

where X(ε1) ≡ (ε1 − ω̃0)/
√

γ̃ 2 − 2γ̃ (ε1 − ω̃0) and η(ε1) ≡
γ̃ /

√
γ̃ 2 − 2γ̃ (ε1 − ω̃0), with ω̃0 = [ε(res)

1 + ε
(ant)
1 ]/2 and γ̃ =

[ε(res)
1 − ε

(ant)
1 ]/2. A small mismatch between the resonance

and antiresonance parameters, |γ̃ /ε0| 	 1 (achieved for S 	
1), implies that X(ε1) ≈ (ε1 − ω̃0)/|γ̃ | and η ≈ γ̃ /|γ̃ |, for
ε1(ω) ≈ ω̃0. In this situation, |a1|2, as a function of ε1(ω),
is a Fano-like resonance, characterized by the following
(normalized) lineshape [4]:

Fη(X) = 1

(1 + η2)

(X + η)2

(X2 + 1)
, (17)

with η being the asymmetry parameter.
In Fig. 2(a), the scattering efficiency Qsca for a coated

sphere in the Rayleigh limit (y 	 1, |m1|x 	 1, and |m2|y 	
1) is plotted as a function of the electric permittivity of the core
(ε1,μ1 = μ0) in the vicinity of the dipole resonance. This plot
confirms that |a1|2 exhibits an unconventional Fano resonance,
which is well described by the Fano lineshape, Eq. (17). Also,
the plot in Fig. 2(a) demonstrates that, for coated spheres
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FIG. 2. Scattering efficiency Qsca in the vicinity of the electric
dipole resonance for a plasmonic sphere (ε1,μ1 = μ0) coated with a
lossy dielectric shell (ε2/ε0 = 3.4 + 0.001i; μ2 = μ0) as a function
of ε1 in the the small-particle limit (size parameters ka = 10−4 and
kb = 10−2). (a) The dipole resonance for a lossless core (ε1 = ε ′

1)
is well described by the Fano lineshape, Eq. (17) (dotted line). The
inset shows the absorption efficiency as a function of ε1. (b) Qsca

as a function of the real part of the core electric permittivity (ε ′
1) for

different values of its imaginary part (ε ′′
1 ) in the vicinity of the electric

dipole resonances.

without spatial dispersion, the existence of unconventional
Fano resonances does not necessarily require large values of
the dielectric permittivities, a situation that is typically difficult
to achieve in natural media. This result is in contrast to the case
of homogeneous spheres, where such resonances are predicted
to occur only beyond the Rayleigh limit [11]. Indeed, the plot in
Fig. 2(a) shows that unconventional Fano resonances in light
scattering by coated spheres can exist even in the Rayleigh
limit (y 	 1, |m1|x 	 1, and |m2|y 	 1), corroborating the
previous analytical result.

The effect of finite dissipation is investigated in Fig. 2(b),
where Qsca is shown as a function of the real part of the core
electric permittivity (ε′

1), for different values of its imaginary
part (ε′′

1 ), in the vicinities of the dipole resonances that result in
the Fano lineshape in |a1|2. From this plot, it is clear that these
resonances are quite robust against losses so that they are not
completely washed out in the presence of finite dissipation.

For homogeneous spheres, unconventional Fano reso-
nances in |a1|2 are expected to manifest themselves not only
in the the scattering efficiency Qsca but also in the extinction

efficiency Qext even in the presence of finite dissipation [11].
For coated spheres in the Rayleigh limit with S 	 1, the plot
in Fig. 2(a) reveals that extinction is dominated by absorption,
i.e., typically Qsca 	 Qabs, so that Qext ≈ Qabs, even in the
weak absorption approximation. We have numerically verified
that Qsca ≈ (kb)3Qabs in off-resonant regions. A similar effect
is well known for sufficiently small homogeneous spheres of
radius R, where Qabs ∝ kR and Qsca ∝ (kR)4 [5]. As a result,
unconventional Fano resonances in Qsca tend to be unnoticed
in Qext, which, like Qabs, exhibits a Lorentzian profile in
the vicinity of the dipole resonance in |a1|2. Hence, the
observation of unconventional Fano resonances in extinction
for weakly absorbing coated spheres with S 	 1 requires that
Qext ≈ Qsca. This condition can be achieved by imposing that
ka 	 1 for the core and that kb is large enough to only amplify
the dipole resonance, but small enough to ensure the validity
of the first-order approximation.

We emphasize that the unconventional Fano resonances
in coated spheres are not a result of interferences between
plasmon modes in the different layers of the system (core and
shell), as is generally expected for multilayered particles, such
as nanoshells [4]. In contrast, here the Fano-like resonance
in Qsca in the Rayleigh limit [Fig. 2(a)] occurs due to
self-interferences between partial waves within the shell.
Mathematically, they arise from partial waves generated from
both Bessel and Neumann special functions. Within the core,
wave interferences are generated only from Bessel functions.
The existence of these wave interferences within the shell,
which eventually lead to Fano-like resonances in Qsca, is
confirmed by the analytical expressions for the angle-averaged
field intensities inside the core and shell, Eqs. (7) and (8),
respectively. Indeed, Eq. (8) explicitly encodes interferences
between internal field coefficients, which are associated with
the scattering ones by the boundary condition

an = ψn(y)

ξn(y)
− [ψn(m2y) − Anχn(m2y)]

ξn(y)μ2/μ0
gn. (18)

The corresponding condition for bn is obtained by replacing
(an,An) with (bn,Bn) and (μ2/μ0,gn) with (m2,fn). Inspecting
Eq. (18), one can see that |an|2 contains interference terms
between the internal coefficients gn and wn = Angn of the
shell. The presence of these interference terms, e.g., g∗

1w1 =
A−1

1 |w1|2, shows that an off-resonant A−1
1 may play the role

of a broad resonance that interferes with a sharp one in
w1. Since the denominators of a1 and w1 are the same [see
Eqs. (1) and (14)] and A1 	 1 in off-resonant regions provided
x 	 1, an unconventional Fano resonance in |a1|2 may occur
for coated spheres even in the Rayleigh limit. Indeed, for
a dielectric shell and dispersive core in the Rayleigh limit,
one has |γ̃ /ε0| 	 1 if S 	 1; in this case, A−1

1 plays the
role of the broad resonance in the Fano effect and a1 ≈
iy3[1 − (ε2/ε0)g1]/3, with |g1|2 = g∗

1w1A
−1
1 . To confirm that

unconventional Fano resonances are due to the presence of
these interference terms, in Fig. 3 the scattering efficiency
Qsca is calculated, in the vicinity of the dipole resonance,
with and without the interference terms of Eq. (18). From
Fig. 3 it is clear that, when Qsca is calculated using the
coefficients |an|2 and |bn|2 without the interference terms
associated with g∗

nwnA
−1
n , g∗

nwn, ψn(y)wnA
−1
n , ψn(y)wn, and

their complex conjugates from Eq. (18), the dipole resonance
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FIG. 3. Scattering efficiency Qsca as a function of the core electric
permittivity ε1. The metallic core is nonabsorbing (with μ1 = μ0) and
is coated with a lossy dielectric shell (ε2/ε0 = 3.4 + 0.004i; μ2 =
μ0) with size parameters ka = 0.2 and kb = 1 in the vicinity of
the dipole resonance. The solid line represents Qsca calculated from
Lorenz-Mie theory, showing that the dipole resonance exhibits a
Fano lineshape. The dotted line represents Qsca calculated using
the coefficients an and bn without the interference terms associated
with g∗

nwnA
−1
n , g∗

nwn, ψn(y)wnA
−1
n , ψn(y)wn, and their complex

conjugates in Eq. (18); in this case the dipole resonance has a
Lorentzian lineshape.

has a Lorentzian lineshape. In contrast, when these interference
terms are taken into account in the calculation, the dipole
resonance in Qsca exhibits a Fano lineshape, as can be seen
from Fig. 3. The corresponding interference terms in |bn|2
[i.e., f ∗

n vnB
−1
n , f ∗

n vn, ψn(y)vnB
−1
n , ψn(y)vn, and complex

conjugates] do not contribute to the Fano effect in this
nonmagnetic case. This result unambiguously demonstrates
that the origin of the unconventional Fano resonance is indeed
related to the presence of interference terms in Eq. (18).

IV. CONNECTION TO OFF-RESONANCE FIELD
ENHANCEMENT

For coated spheres consisting of metal-dielectric compos-
ites, it was demonstrated that conventional Fano resonances
are at the origin of an off-resonant field enhancement. Due
to the Fano effect, the maximal field enhancement inside the
scatterer does not necessarily correspond to a resonance in the
extinction efficiency, contrary to the common belief [10]. In
the plot in Fig. 4(a), we investigate whether unconventional
Fano resonances can also induce a similar effect. Since
Qext = Qsca + Qabs, only the efficiencies Qsca and Qabs are
calculated for a nonabsorbing metallic sphere (ε1 < 0; μ1 =
μ0) coated with a dielectric shell (ε2 = 3.4 + 0.004i; μ2 =
μ0) as a function of ε1. The asymmetric lineshape of Qsca

in the vicinity of the electric dipole resonance is a result
of the unconventional Fano effect, as it results from the
interference of two dipole resonances (i.e., a resonance in
|a1|2). The unconventional Fano resonance frequency occurs
for ε1/ε0 = −7.85, a value in between the ones corresponding
to maximal and minimal scattering (constructive and destruc-
tive interferences): ε1/ε0 = −7.91 (sharp dipole resonance)
and ε1/ε0 = −7.32 (antiresonance or minimum scattering),

FIG. 4. Fano-like resonances and off-resonance field enhance-
ment for a metallic nonabsorbing sphere (ε1/ε0 < 0; μ1 = μ0) coated
with a lossy dielectric shell (ε2/ε0 = 3.4 + 0.004i; μ2 = μ0) with
size parameters ka = 0.2 and kb = 1. (a) Qsca and Qabs as a
function of ε1. The dotted vertical line indicates the position of the
unconventional Fano resonance. The inset shows the backscattering
efficiency Qback as a function of ε1 in the vicinity of the quadrupole
resonance. (b) Angle-averaged electric field intensity as a function
of the distance to the center of the coated sphere for ε1/ε0 =
−7.91 (sharp dipole resonance), ε1/ε0 = −7.85 (unconventional
Fano resonance), ε1/ε0 = −7.32 (Fano dip), and ε1/ε0 = −5.27
(conventional Fano resonance).

respectively. For simplicity, we refer to the minimum scattering
in the Fano curve as the Fano dip. At the same time, the
value ε1/ε0 = −7.85 corresponds to a peak in Qabs which,
by Eq. (15), is related to maximal field enhancement inside
the system. This result demonstrates that unconventional Fano
resonances can also lead to off-resonance field enhancement.
This conclusion is corroborated by the analysis of the plot in
Fig. 4(b), which shows the angle-averaged electric field as a
function of the distance to the center of the coated sphere for
different values of ε1. The maximal field enhancement does not
correspond to maximal scattering, but rather it is achieved for
ε1/ε0 = −7.85, precisely the position of the unconventional
Fano resonance and the peak in Qabs.

The plot in Fig. 4(a) also reveals the existence of a
conventional Fano resonance at ε1/ε0 = −5.27. It appears in
the backscattering efficiency Qback [see inset in Fig. 4(a)] and
results from the interference between a broad dipole resonance
with a sharp quadrupole one, as expected from Ref. [10]. From
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Eq. (15) and since it does not appear as a peak in Qsca, this
conventional Fano resonance is related to an off-resonance
field enhancement inside the scatterer. For these parameters,
one can see from the plot in Fig. 4(b) that the off-resonance
enhancement of the electric field related to conventional Fano
resonances is approximately 1 order of magnitude smaller than
the one achieved with the unconventional Fano effect. One
can partially explain this result by the fact that the unconven-
tional Fano effect involves two dipole resonances while the
conventional one involves dipole and quadrupole (which is of
higher order) resonances. However, the amount of field stored
at the quadrupole resonance depends on the absorption in the
core (ε1,μ1 = μ0) and shell (ε2/ε0 = 3.4 + 0.004i; μ2 = μ0).
If ε′′

2 < 0.004 in our example of lossless core (ε′′
1 = 0), one

may obtain at the quadrupole resonance an electromagnetic
energy stored inside the particle even greater than the one
at the dipole resonance. In this nonrealistic case, nevertheless,
the quadrupole resonance would appear as a peak in Qsca. This
indicates that, for a lossless dielectric shell, a finite absorption
in the dispersive core is necessary to minimize the scattering
at the quadrupole resonance in the small-particle limit. Also,
for a metallic core and dielectric shell, an off-resonance field
enhancement near the quadrupole resonance emerges only for
S 	 1 [10], which is the same condition we have obtained for
unconventional Fano resonances in coated spheres. This leads
to the possibility of combining these two interference effects.

Although Fano-like resonances in Qback exist even for
homogeneous spheres [4], “hidden” quadrupole resonances
in Qsca (they appear only in Qabs and lead to an off-resonance
field enhancement) are usually achieved in layered particles,
as we show for coated spheres in the following. In the
Aden-Kerker solution, for a given kb in off-resonant regions,
ka 	 1 leads to |An| 	 1 and |Bn| 	 1, where An and Bn are
defined in Eqs. (5) and (6). Omitting the leading order O(x7)
in the Rayleigh limit, we obtain the following approximations:

A1 ≈ −2(m2x)3

(
ε1 − ε2

ε1 + 2ε2

)[
1

3
+ (m2x)2

5

(
ε1 − 2ε2

ε1 + 2ε2

)]
,

(19)

A2 ≈ − (m2x)5

15

(
ε1 − ε2

2ε1 + 3ε2

)
. (20)

Resonances in A1 and A2 are obtained when the real parts
of their denominators vanish: ε′

1(ω) = −2ε′
2 and ε′

1(ω) =
−3ε′

2/2, respectively. If we have no absorption (ε′′
1 = ε′′

2 = 0)
for finite x = ka, both A1 and A2 diverge at the resonance and
there is no “hidden” quadrupole resonance in Qsca. Instead, a
sharp resonance is observed in |a2|2. Consider now a weakly
absorbing media such that the first term in Eq. (19) does not
depend on ka at the dipole resonance: x3 ≈ (ε′′

1 + 2ε′′
2 ). This

leads to x5 	 (2ε′′
1 + 3ε′′

2 ) and Eq. (20) is partially suppressed
at the quadrupole resonance, whereas the second term inside
brackets in Eq. (19) yields A1 ∼ 1/x in off-resonant regions
(broad dipole resonance). Therefore, in this approximation,
the dipole resonance is huge compared to the quadrupole one
in Qsca and one may achieve interference between a1 and a2

in Qback. This result provides a simple condition to obtain the
so-called “dark states” in the small-particle limit. Indeed, in the
plot in Fig. 4, we have assumed x3 = (ε′′

1 + 2ε′′
2 ) = 8 × 10−3,

and similar conditions can always be fulfilled for dispersive
cores.

V. OPTIMAL FIELD ENHANCEMENT WITH NEGATIVE
REFRACTIVE INDEX MATERIALS

Many applications in photonics depend crucially on their
capacity of enhancing light confinement in small volumes with
low losses. In the previous section, we have demonstrated that
unconventional Fano resonances lead to a large off-resonance
enhancement of the electromagnetic field intensity, even larger
than the one achieved for conventional Fano resonances. To
achieve an optimal field enhancement inside the coated sphere,
let us investigate the conditions for simultaneous occurrence of
conventional and unconventional Fano resonances at the same
frequency. With this aim, we consider a plasmonic dispersive
core [ε1(ω),μ1(ω)] coated with a nondispersive dielectric
shell (ε2,μ2 = μ0) and impose that a dipolar antiresonance
in a1 coincides with a quadrupolar resonance in a2 at a
given frequency ω̄. The antiresonance in |a1|2 (Fano dip) for
ka 	 1 (i.e., S 	 1) and |m2| ≈ 1 approximately coincides
with the antiresonance in A1 (whose inverse plays the role
of a broad resonance in the unconventional Fano effect):
m̃2D1(m1x) = m̃1D1(m2x). From this expression, one can see
that in nonmagnetic media (m̃q = mq) the condition A1 = 0
can only be fulfilled for m1 = m2, i.e., for homogeneous
spheres. Since homogeneous spheres do not exhibit off-
resonance field enhancement due to the conventional Fano
effect [10], for the purpose of achieving maximal field
enhancement one should consider μ1 = μ2. For the sake of
simplicity, in the following we consider the approximation
D1(ρ) ≈ (2/ρ) − (ρ/5) [5]. Within this approximation, the
condition for the existence of an antiresonance in a1 is
x2 ≈ 10ε0μ0(ε′

2 − ε′
1)/[ε′

1ε
′
2(μ′

1 − μ′
2)] > 0. Since the core is

magnetic (μ1 = μ0) we also impose an antiresonance in
b1, which yields x2 ≈ 10ε0μ0(μ′

2 − μ′
1)/[μ′

1μ
′
2(ε′

1 − ε′
2)] >

0. Altogether, both antiresonance conditions for A1 (a1) and B1

(b1) are equivalent to (ε′
1μ

′
1)(ε′

2μ
′
2) > 0. For a dielectric shell

(ε′
2 > ε0 > 0) with thickness parameter 0 < S < 1, the second

Fröhlich mode occurs in the interval −3ε′
2/2 < ε′

1(ωF) <

−3ε0/2 [5]. Since ε′
2μ

′
2 > 0 and ε′

1 < 0, it follows from
these conditions that μ′

1 < 0. As a result, we conclude that
for ka 	 1 and a dielectric shell (m′

2 > 0) a sharp plasmon
resonance in a2 will only coincide with an antiresonance in
a1 provided the dispersive core has a negative refractive index
(m′

1 < 0).
Figure 5(a) shows the plots of the scattering Qsca and

absorption Qabs efficiencies for a nonabsorbing sphere with
a negative refraction index (ε1/ε0 < 0; μ1/μ0 = −21) coated
with a lossy dielectric shell (ε2/ε0 = 3.4 + 0.004i; μ2 = μ0)
as a function of ε1. We demonstrate that the dipole and
quadrupole resonances can be brought together provided the
core has a negative refractive index, confirming the previous
analytical result. Hence conventional and unconventional
Fano resonances can occur at the same value of ε1. As a
consequence, there is a huge field enhancement near these
resonances, as confirmed by the analysis of the plot in Fig. 5(b),
and one may achieve the maximum field stored inside the
particle with minimum scattering (Fano dip in ε1/ε0 = −4.27).
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FIG. 5. Fano-like resonances and off-resonance field enhance-
ment for a nonabsorbing sphere with a negative refractive in-
dex (ε1/ε0 < 0; μ1/μ0 = −21) coated with a lossy dielectric shell
(ε2/ε0 = 3.4 + 0.004i; μ2 = μ0) with size parameters ka = 0.2 and
kb = 1. (a) Qsca and Qabs as a function of ε1. The dotted
vertical line indicates the position of the unconventional Fano
resonance. (b) Angle-averaged electric field intensity as a function
of the radial distance for ε1/ε0 = −4.44 (sharp dipole resonance),
ε1/ε0 = −4.42 (unconventional Fano resonance), and ε1/ε0 = −4.27
(Fano dip).

VI. CONCLUSIONS

In this paper we have investigated Fano-like resonances in
light scattering by coated spheres composed of a dispersive
plasmonic core and a dielectric shell. Using the Aden-Kerker
solution, we have derived an analytical expression for the

absorption efficiency Qabs as a function of the internal
fields. This expression explicitly contains interference terms
between internal Aden-kerker coefficients of the shell that
are not washed out by the average among all possible
directions and polarizations. This result shows that Fano-like
resonances, which result from interference between electro-
magnetic modes inside the scatterer, can be identified in
the total cross sections, which contrasts with the common
belief that field interferences, and hence Fano resonances,
can only be identified in differential scattering spectra (e.g.,
the radar backscattering efficiency). In particular, we have
demonstrated that unconventional Fano resonances, recently
discovered for homogeneous spheres [11], can also occur for
coated spheres. These resonances arise from the interference
between two electromagnetic modes with the same multipole
moment within the shell and not from interactions between
various plasmon modes of different layers of the particle. In
contrast to the case of homogeneous spheres, the existence of
unconventional Fano resonances for coated spheres does not
require large electric permittivities so that they can occur even
in the Rayleigh limit. As for conventional Fano resonances
[10], unconventional Fano resonances in coated spheres can
induce an off-resonance field enhancement. This enhancement
is, nevertheless, approximately 1 order of magnitude larger
than the one achieved with conventional Fano resonances for
lossy scatterers, since unconventional Fano resonances involve
multipole moments with the same order. Finally, we have ex-
amined the conditions for an optimal field enhancement inside
the scatterer. We show that unconventional and conventional
Fano resonances can occur simultaneously provided the core
has a negative refraction index, leading to a maximal field
enhancement. We believe that our results could be relevant not
only for a better understanding of Fano resonances in light
scattering but also for the development of novel applications
in photonics.
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