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Using the collective variable approach technique, we analyze propagation of elliptical Gaussian beams in
nonlinear waveguides with a parabolic graded-index (GRIN) profile. We considered both saturable and cubic-
quintic models to describe the nonlinearity, taking into account both linear and nonlinear absorption. For lossless
media, we construct diagrams, which define regions of self-focusing and self-diffractive beam propagation for
both models in GRIN waveguides and compare them with those for nongraded waveguides. The widths of the
propagating elliptic beam exhibit an oscillatory pattern, similar to the “breathing” and “beating” behavior found
in nongraded media. Two types of beating oscillations are observed in both models. We calculate the dependence
of Lbeat/Lbr, the ratio of the “beating” to “breathing” oscillation periods, on the beam ellipticity ρ and the GRIN
index g. We find that there is a remarkable difference in this dependence between saturable and cubic-quintic
media: in the saturable model, Lbeat/Lbr is a monotonic function of ρ, whereas in the cubic-quintic model, it is
characterized by singularities, which correspond to transitions between the types of beat oscillations. For lossy
media, we discuss the difference between the breathing behavior in nongraded and GRIN waveguides.
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I. INTRODUCTION

The propagation of a laser beam in a nonlinear fiber is the fo-
cus of many theoretical and experimental investigations [1–3]
because of possible applications in optical communication
technology and signal processing [4,5]. Optical sensors using
optical fibers are increasingly being applied to the monitoring
of acoustic waves, pressure, and magnetic and electric fields.
Recently, there have been several attempts to incorporate
nonlinear effects in fiber-optical sensing [6–8]. As is well
known, the performance of photonic devices strongly depends
on the refractive indices of the constituent materials, hence the
recent surge of interest in using new Kerr media for ultrafast
optical switching [9]. For typical fiber materials, the Kerr
coefficient is of the order 5 × 10−15–5 × 10−16cm2/W, and
thus the critical intensity for self-focusing is of the order
0.44 − 4.4 MW/cm2 for a wavelength of 1.5 μm [10]. In
contrast, some new optical materials are characterized by Kerr
coefficients of the order 10−11–10−12cm2/W [11–13], making
the critical intensity for self-focusing four orders of magnitude
smaller so that it can be reached using microsecond pulses
and possibly even CW laser beams. The (linear and nonlinear)
absorption coefficients of these materials are higher compared
to those of typical fibers, and the propagation of laser beams
through such media is of great interest. In this paper, we will
discuss the propagation of elliptical Gaussian laser beams in
nonlinear fibers, which are characterized by a graded-index
(GRIN) refractive index and absorption.

In GRIN fibers, the refractive index n is high at the center
and gradually decreases towards the cladding. It can be written
in the form

n2 =
{

n2
0 − Gr2 r < r0

n2
1 r > r0.

(1)

Here, n0 is the refractive index at the center of the waveguide
r = 0, G > 0 is the graded-index constant, and n1 is the

refractive index of the cladding. If the beam is confined to
a region in which Gr2 � n2

0 and the width of the propagating
laser beam a is small compared to r0, Eq. (1) becomes
valid for all values of r . This is often referred to as the
infinite-medium approximation [14,15]. The use of graded-
index linear waveguides, in which the refractive index variation
is of the form given by Eq.(1), avoids scattering on surface
imperfections at the waveguide edges (r = r0).

Although the GRIN fibers are mainly multimode, their
refractive index profile generates differences in the average
group velocities for the various modes. An axial mode
propagating at small angles relative to the optical axis mostly
experiences a high refractive index. Higher-order modes,
propagating at larger angles relative to the axis, propagate
close to the fiber cladding for a significant portion of their path
and thus experience a lower refractive index. The differences
in propagation speed compensate for the phase differences due
to different propagation distances. With suitable index profiles
the phase difference between the modes can be completely
eliminated [5].

For a linear lossless medium in a parabolic GRIN waveg-
uide, it has been shown analytically [14,15] that a cylindrical
Gaussian beam with initial waist a � r0 propagating along the
axis of the graded-index waveguide remains Gaussian while its
width oscillates (breathes) at a frequency that depends on

√
G.

This occurs due to competition between the beam diffraction
and focusing caused by GRIN. If the beam axis and the origin
of the index profile are not aligned, the beam width oscillates
around the index origin at a walk-off frequency that also
depends on

√
G. When Gr2 � n2

0, all the propagating modes
have the same group velocity [14,15]. Elliptical Gaussian beam
propagates in the linear medium with the same breathing and
walk-off frequencies as a cylindrical beam [14].

The propagation of cylindrical and elliptical Gaussian
beam has also been analyzed for GRIN fibers consisting of
a Kerr medium. The analysis was performed both numerically
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and semianalytically. Numerical solutions [16] obtained for
relatively low-intensity cylindrical Gaussian beams aligned
along the fiber axis have displayed breathing of the waist.
It was also shown that the fundamental nonlinear mode was
stable; however, for higher-order modes, symmetry-breaking
instabilities were observed.

Semianalytical solutions [17–26] for Kerr GRIN fibers
have also shown that propagating beams of sufficiently low
intensities exhibit breathing and walk-off behavior, as in
a linear medium [14,15,27]. However, at higher intensities
where the Kerr effect leads to self-focusing, collapse of the
beam takes place [17,20,22,23]. Similar results were obtained
for the propagation of elliptic Gaussian beams (EGBs). The
power at which collapse occurs increased with the initial
ellipticity of the incident EGB [19,21,24,28]. Recently, it was
shown that beam collapse in Kerr media can be prevented by
nonlocality of the material [29], whereas the power threshold
for collapse can be altered by introducing partial coherence of
the beam [30], or temperature fluctuations [31]. The conditions
for collapse prevention in nonlinear media, for different
dimensions of the nonlinear Schrödinger equation (NLSE),
were defined in Refs. [1,32,33]. Thus, it seems that beam
collapse in real materials can be prevented by nonlinearities of
higher order (compared to the Kerr nonlinearity), due to their
defocusing effect at high intensities.

It is worth noting that the problem of collapse and how to
prevent it appears in the field of Bose-Einstein condensation
(BEC), which is described by the same NLSE. In trapped
BEC, it is well known that collapse occurs when the two-body
interaction is attractive and if the number of atoms N exceeds
a critical value Nc [34], so that the overall sign of the effective
many-body interaction is negative. The nonlinear terms present
in the NLSE (cubic, quintic, and so on) define the stability of
the BEC when the number of atoms is restricted [35].

Here, we take these higher-order nonlinearities into ac-
count, and consider two models for GRIN fibers: the saturable
model and the cubic-quintic (CQ) model. We study the effect
of the beam ellipticity on the propagation dynamics for both
these models and show striking differences between them.

First, for simplicity, we analyze the propagation of cylin-
drical Gaussian beams in lossless media. For this case, we
construct diagrams, which define various regions of the beam
behavior in both nongraded and GRIN waveguides for the
saturable and cubic-quintic models. The diagrams define the
regions of self-diffractive and self-focusing types of breathing
in both media as a function of the GRIN constant. Moreover,
for the cubic-quintic model, we find analytical solutions for
the breathing period Lbr, and for the beam waist a during
the propagation, which can be expressed in terms of elliptic
functions.

Second, we study elliptical Gaussian beams in lossless
media, distinguishing between the oscillation of the beam
about the fiber axis that occurs when the beam axis is
displaced from the fiber axis (displacement frequency) and
the oscillations of the beam widths caused by the beam
ellipticity (beat frequency). We compare the propagation in
GRIN waveguides with that in nongraded nonlinear media,
which we have previously described [36–39] for both saturable
and cubic-quintic models, taking into account both linear and
nonlinear absorption. In our previous work, we identified two

types of beats caused by the ellipticity: Type 1, in which the
orientation of the major and minor axes of the elliptic beam
remains constant during propagation, and Type 2, in which the
major and minor axes interchange on propagation.

Here, we study the dependence of the beat dynamics on
the beam ellipticity and show how the ratio of the beating
to breathing periods varies with the ellipticity and the GRIN
constant. We find remarkable differences between the saturable
and cubic-quintic models. In the saturable model, the ratio is
a monotonic function of the ellipticity, whereas in the cubic-
quintic model, its behavior as a function of the ellipticity is
characterized by singularities, which correspond to transitions
between the types of beat oscillations. With increasing GRIN
index, these singularities move to higher ellipticity.

Finally, we analyze the propagation of an elliptic beam
behavior in lossy, saturable, and cubic-quintic media, and
compare its behavior in GRIN waveguides with that in
nongraded waveguides.

II. MODELS AND COLLECTIVE-VARIABLE APPROACH

We consider two different models of the media: the
saturable and cubic-quintic models. In the saturable model,
the nonlinear refractive index n in a GRIN waveguide can be
expressed as

n2 = n2
0 + n0α1|E|2

1 + n0α1|E|2/(n2
sat − n2

0

) − G(x2 + y2), (2)

where n0 is the linear refractive index, α1 is the nonlinear Kerr
coefficient, nsat is the saturated index, and E is the envelope
of the electric field.

In the cubic-quintic model, the refractive index of graded
waveguides can be written in the form

n2 = n2
0 + n0α1|E|2 − n0α2|E|4 − G(x2 + y2). (3)

In both cases we assume that the GRIN constant G does not
depend on the light intensity and that the nonlinear coefficients
are nongraded in the finite-medium approximation.

Equation (3) can be obtained from the Taylor expansion
of Eq. (2) at low intensities with α2 = α2

1n0/(n2
sat − n2

0).
Both α1 and α2 are positive, and this form of nonlinearity
describes competition between self-focusing at low intensities
and self-defocusing at high intensities. However, it is worth
noting that, in general, the cubic-quintic model cannot be
considered as a special case of the saturable model [1,40],
which is characterized by cubic and quintic terms of the same
order of magnitude in the generalized nonlinear Schrödinger
equation (GNLSE). As here we consider rather long laser
pulses or CW beams, we can neglect the dispersion terms in
our models [1,2,14,15].

For saturable media, the GNLSE that governs the evolution
of the electric field of the beam in the slowly varying envelope
approximation is given by

2iβ
∂E

∂z
+ ∇2

⊥E + k2
0n0α1|E|2E

1 + (αk0w0)2n0α1|E|2 − k2
0G(x2+y2)E

= −2iβ�E − 2iβ�|E|2E, (4)
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where α = (k0w0

√
n2

sat − n2
0)−1 is the saturation constant, k0

and β are the wave numbers in the vacuum and medium, x,
y, and z are the transverse and longitudinal coordinates, w0

is a transverse scaling parameter related to the input beam
width, and � and � are the linear and nonlinear absorption
coefficients. Introducing the diffraction length LD = βw2

0,
the normalized nonlinear amplitude ψ = √

k0LDα1E, and the
normalized coordinates x,y = η1,2w0, z = ζLD , g = k2

0Gw4
0,

γ = β�w2
0, and κ = �(k0α1)−1 [1], we can rewrite Eq. (4) in

the form

2i
∂ψ

∂ζ
+ ∂2ψ

∂η2
1

+ ∂2ψ

∂η2
2

+ |ψ |2ψ
1 + α2|ψ |2 − g

(
η2

1 + η2
2

)
ψ

= −2iγψ − 2iκ|ψ |2ψ. (5)

The term ∇2
⊥ψ describes diffraction and the terms |ψ |2ψ/(1 +

α2|ψ |2) and gη2
1,2ψ describe self-trapping in the transverse

directions.
For the cubic-quintic model with the same normalized

parameters and Q = n0α2(α2
1β

2w2
0)−1, the GNLSE equation

is written as

2i
∂ψ

∂ζ
+ ∂2ψ

∂η2
1

+ ∂2ψ

∂η2
2

+ |ψ |2ψ − Q|ψ |4ψ − g
(
η2

1 + η2
2

)
ψ

= −2iγψ − 2iκ|ψ |2ψ, (6)

where the diffractive terms are ∇2
⊥ψ and Q|ψ |4ψ , and the

terms |ψ |2ψ and gη2
1,2ψ describe self-trapping.

Due to the absence of exact analytical solutions of the
GNLSE, approximate techniques can applied to Eq. (5) in
order to find spatially localized solutions that preserve their
shape during propagation. Although numerical solutions are
preferable, they encounter difficulties caused by dependence
of the speed and accuracy on the number and form of the
nonlinear terms included in the GNLSE [2]. Careful selection
of the step sizes in the propagation coordinates is required in
order to achieve the necessary accuracy. Additional difficulties
appear due to monotonic increase of the parabolic term with the
radial distance. These can pose serious convergence problems
for beam propagation algorithms [21]. The advantage of
using explicit analytical or semianalytical solutions rather than
numerical methods is that they give an overall picture of the
behavior of the system thereby enabling increased physical
insight [1,2].

To solve Eqs. (5) and (6) we use the collective variable
approach (CVA), introduced by Anderson [41,42]. The CVA
technique is based on a trial function—a simple analytical
function whose amplitude and phase are as close as possible
to the real solution. In our case, this is a Gaussian function
with a finite number of variables, which are functions of the
propagation coordinate that evolves subject to the constraints
of the system. This choice is convenient because the Gaussian
is the exact solution of the linear Schrödinger equation for
GRIN waveguides.

Details of the method were previously described [43–46].
We first rewrite Eqs. (5) and (6) in the form F̂ [ψ] =
FNC where F̂ [ψ], the conservative part, is expressed by
the left-hand side (lhs) of Eqs. (5) and (6), and FNC, the
nonconservative part, by the right-hand side (rhs) of the
equation. We then define a Lagrangian density L[ψ,ψ∗] such

that δL/δψ∗ = F̂ [ψ]. According to the CVA method, for the
trial function ψT [η1,η2,fi(ξ )], we need to solve the following
set of extended Euler-Lagrange equations for the variational
parameters fi(ξ ) with i = 1, . . . ,N

d

dz

(
∂L

∂
(

∂fi

∂ξ

)
)

− ∂L

∂fi

= 2Re
∫ ∫

FNC
∂ψ∗

∂fi

dη1dη2.

Here, L is the average conservative Lagrangian obtained by
integration of L over the transverse coordinates η1,2.

To solve Eq. (5) we define a Lagrangian density

L = i

(
ψ

∂ψ∗

∂ξ
− ψ∗ ∂ψ

∂ξ

)
− |ψ |2

α2

+ ln(1 + α2|ψ |2)

α4
+

∑
m={1,2}

∣∣∣∣ ∂ψ

∂ηm

∣∣∣∣
2

+ gη2
m|ψ |2, (7)

such that δL/δψ∗ is the lhs of Eq. (5). We use a trial function
in the following form

ψT (η1,η2,ξ ) = A(ξ ) exp

⎛
⎝iφ(ξ ) +

∑
m={1,2}

− [ηm − ζm(ξ )]2

2a2
m(ξ )

+ ibm(ξ )η2
m + icm(ξ )ηm

⎞
⎠ , (8)

where A(ξ ) is the normalized amplitude of the electric field,
ζ1,2(ξ ) defines displacements of a Gaussian along the η1,2

axes from the origin of the coordinates, a1,2(ζ ) are the
normalized widths of the beam in the η1,2 directions, b1,2 are
the normalized curvatures of the beam wave front, c1,2(ζ ) are
the tilt of inclination of the Gaussian beam along the ξ axis, and
φ(ζ ) is the longitudinal phase; all are real functions of ζ . Here,
for simplicity, we don’t take into account possible coupling
between η1 and η2 (term proportional to the product η1η2) that
could result in orbital angular momentum of elliptical beam as
has been shown [47–49].

Using the CVA method for the variables A, a1,2, ζ1,2, b1,2,
c1,2, and φ in our trial function, we obtain the following set of
coupled ordinary differential equations:

dA

dξ
= −(b1 + b2 + γ )A − 3κA3/4, (9)

da1,2

dξ
= 2a1,2b1,2 + κa1,2A

2/4, (10)

dζ1,2

dξ
= c1,2 + 2b1,2ζ1,2, (11)

db1,2

dξ
= 1

2a4
1,2

− 2b2
1,2 − g

2

+ ln(1 + α2A2) + Li2(−α2A2)

2α4A2a2
1,2

, (12)

dc1,2

dξ
= − ζ1,2

2a4
1,2

− 2b1,2c1,2

− ζ1,2[ln(1 + α2A2) + Li2(−α2A2)]

α4A2a2
1,2

, (13)
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dφ

dξ
= 1

2α2
+

∑
m={1,2}

ζ 2
m − a2

m

2a4
m

+
(
ζ 2
m − a2

m

)
ln(1 + α2A2)

2α4A2(ξ )a2
m

− c2
m

2
+

(
2ζ 2

m − a2
m

)
Li2(−α2A2)

4α4A2a2
m

. (14)

Here, Lis(x) = ∑∞
k=1

xk

ks is the Spence’s or dilogarithm func-
tion [50].

For the cubic-quintic model, we change the nonlinear term
of Eq. (2) to that of Eq. (3) and using the same CVA technique
as before, we again obtain Eqs. (9)–(11) for A, a, and ζ1,2, and
new equations for b1,2, c1,2, and φ in the form

db1,2

dξ
= 1

2a4
1,2

− 2b2
1,2 − g

2
− A2

a2
1,2

[
1

8
− QA2

9

]
, (15)

dc1,2

dξ
= −2b1,2c1,2 + ζ1,2

a2
1,2

[
A2

4
− 1

a2
1,2

− 2QA4

9

]
, (16)

dφ

dξ
=

[
3

8
− 5QA2

18

]
A2 −

∑
m={1,2}

1

2a2
m

− c2
m

2

− ζ 2
m

a2
m

[
1

2a2
m

− A2

8
+ QA4

9

]
. (17)

III. RESULTS AND DISCUSSION

In order to understand the propagation of an elliptic beam
in absorbing media, it is necessary to consider first some
simpler cases and analyze the behavior of the beam in various
propagation regimes as a function of the parameters which
characterize the beam shape.

A. Elliptic beam in a lossless medium

Here, we analyze the propagation of an elliptic beam in
lossless GRIN waveguides using both saturable and cubic-
quintic models for the waveguide material to find the main
parameters that define regions of periodic and nonperiodic
solutions. For an elliptic beam propagating in a lossless
medium where γ = κ = 0, Eqs. (9) and (10) can be simplified
to

2A(ξ )a1(ξ )a2(ξ )
dA

dξ
+ A2(ξ )a2(ξ )

da1

dξ

+A2(ξ )a1(ξ )
da2

dξ
= 0. (18)

After integration over ζ , we obtain the following solution to
Eq. (18)

E = A2(ξ )a1(ξ )a2(ξ ) = A2(0)a1(0)a2(0), (19)

which shows that the energy E is conserved during propagation
along the ξ coordinate.

For the saturable model, we combine Eqs. (10), (12),
and (19), and obtain the set of coupled ordinary differential

equations

d2u1,2

dξ 2
= 1

a4
1,2(0)u3

1,2

+ u2,1 ln
(
1 + Ksat

u1u2

)
α2Ksata

2
1,2(0)

+ u2,1Li2
( − Ksat

u1u2

)
α2Ksata

2
1,2(0)

− g1,2u1,2, (20)

d2ζ1,2

dξ 2
+ gζ1,2 = 0, (21)

where Ksat = α2A2(0), a1,2(ξ ) = a1,2(0)u1,2(ξ ). Integrating
Eq. (21) over ξ , we obtain

1

2

(
dζ1,2

dξ

)2

+ gζ 2
1,2

2
= 0, (22)

Equation (22) defines the displacement ζ1,2(ξ ) of the unaligned
beam relative to the grade index origin. The solution of
Eq. (22) gives a sinusoidal dependence of ζ1,2(ξ ) on the
frequency

√
g, similar to that for linear media [14,15].

In some cases, the index profile needs to be modified by
the addition to Eq. (1) of higher-order terms such as G1r

4 or
G2r

6 [51]. Analysis of the appropriate equations show that
due to higher-order terms, coupling between the breathing
and displacement frequencies takes place in both linear and
nonlinear media, similar to that reported previously for planar
GRIN waveguides [39].

When we integrate Eqs. (20), we find that the beam
widths satisfy the dynamical equation for the two-dimensional
problem

a2
1(0)

2

(
du1

dξ

)2

+ a2
2(0)

2

(
du2

dξ

)2

+ �(u1,u2) = 0, (23)

where

�sat(u1,u2) = Li2(−Ksat) − u1u2Li2
( − Ksat

u1u2

)
α2Ksat

+
∑

m={1,2}

1

2a2
m(0)

(
1

u2
m

− 1

)

+ ga2
m(0)

(
u2

m − 1
)

2
. (24)

For the cubic-quintic model, we combine Eqs. (10), (15),
and (19), and obtain a set of coupled ordinary differential
equations similar to Eqs. (20) and (21) with the potential
function

�CQ(u1,u2) = QA4(0)

9

(
1

u2
1u

2
2

− 1

)
− A4(0)

4

(
1

u1u2
− 1

)

+
∑

m={1,2}

1

2a2
m(0)

(
1

u2
m

− 1

)

+ ga2
m(0)

(
u2

m − 1
)

2
. (25)

In both models, the behavior of the beam widths u1,2(ξ ) during
propagation is controlled by the two-dimensional potential
function �(u1,u2) and can be interpreted as the motion of
a “point mass” under the influence of a two-dimensional
potential with �(1,1) = 0. As was previously shown [36,37],
this motion is rather complicated and essentially depends on
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FIG. 1. (Color online) Schematic plots of the potential functions
�(w). Curves 1 and 2 correspond to PSF and PSD regimes for GRIN
waveguides, respectively. Curve 3 corresponds to diffractive regime
in nongraded waveguides but does not exist for GRIN waveguides.

the initial power and geometry of the laser, and the nonlinear
properties of the media.

To explain the behavior of the elliptic beam in the GRIN
media in a simple way, we write u1,2 = w and first consider
propagation of a cylindrical Gaussian beam aligned along the
fiber axis. In Fig. 1, we plot the potential function �(w)
schematically for a GRIN medium in comparison with a
nongraded medium. The �(w) is qualitatively similar for
both saturable and cubic-quintic media, and also to that of
nongraded media [36,37]. The potential defines two different
regions of parameter space for the propagation of the beam:
periodic self-focusing (PSF) and periodic self-diffracting
(PSD). The potential function �(w) has two roots. One of
the roots is w1 = 1, and the other root w2 can be either larger
or smaller than 1. The beam width oscillates between w1 and
w2. When w2 < 1 (curve 1), the beam width oscillates in the
PSF regime, whereas when w2 > 1 (curve 2), it oscillates in the
PSD regime. For the special case in which d�(w)/dw|w=w1 =
�(w1) = 0, the potential well degenerates into a single point,
so that a point mass released at this point will remain there. This
implies confined beam propagation owing to the exact balance
between the competitive forces of self-defocusing and self-
focusing. The main difference in �(w) between GRIN media
and nongraded media is as follows: the potential function in
nongraded media can have either one or two roots, whereas in
the GRIN media it has always two roots. This is caused by the
asymptotic behavior of limw→∞ �(w) in nongraded media:
limw→∞ �(w) tends to a constant value, and depending on the
sign of the constant, the beam demonstrates either diffracting
behavior [when limw→∞ �(w) < 0, see curve 3] or PSF and
PSD behavior [when limw→∞ �(w) > 0]. In the GRIN media,
due to the last (parabolic) term in Eqs. (24) and (25), we have
parabolic behavior of lim �(w), and thus �(w) always has
two roots. This means that from a formal point of view, no
diffractive regime exists for the GRIN media.

1. ε,K diagrams for GRIN and nongraded media

The behavior of an elliptical beam in a nonlinear
medium can be described using ε-K diagrams [37–39] where

FIG. 2. (Color online) ε,K diagram for GRIN waveguides:
(a) saturable model; (b) cubic-quintic model. The curve 1 shows
the boundary between PSF and PSD regions for cylindrical beam in
GRIN waveguides with ga4

r (0) = 0.3. For an elliptical beam no sharp
boundary exists between these regions [36,37]. The MD regime in
GRIN waveguides is formally absent both for cylindrical and elliptical
beams. At the curves 2 and 3 the final beam widths becomes six times
greater than the initial widths for both elliptical and cylindrical beams.

ε = A2(0)a1(0)a2(0)/4 is the beam energy and K is written
as Ksat = αA(0)2 for the saturable model and KCQ = QA(0)2

for the cubic-quintic model. In Fig. 2, we present diagrams
for [Fig. 2(a)] saturable and [Fig. 2(b)] cubic-quintic media,
which define various regions of the beam behavior in GRIN
waveguides for an elliptical beam in comparison with a
cylindrical beam. In the diagrams, ε = 1 corresponds to the
critical energy which leads to filamentation of the beam in a
Kerr medium (Ksat,CQ = 0).

For nongraded waveguides, the parameter space is divided
into PSF, PSD, and MD regions, as we discussed previously
for cubic-quintic [36] and saturable [37] models. The curve
1 shows the boundary between PSF and PSD regimes in
GRIN waveguides with ga4

r (0) = 0.3 for cylindrical beam.
With the increase of g the curve 1 moves downwards, similarly
to our previous calculations for planar waveguides [39]. For
an elliptical beam, as was previously shown [36,37], no
sharp boundary exists between the PSF and PSD regions.
As was shown numerically, the potential function �(u1,u2)
has a minimum value, which is always negative, and is
independent of the values of ε and K . Due to this fact,
the elliptical beam widths a1 and a2 never reach constant
values but oscillate throughout propagation so that it is
impossible to completely distinguish between the diffracting
and self-focusing oscillatory regions for elliptical beams, as
was possible for cylindrical beams.

In the region below the curve 1, the cylindrical beam
oscillates in the PSD regime and as ε decreases, the maximum
width of the beam increases. Formally, the MD regime is absent
in GRIN waveguides. However one can define a line in the
diagram that corresponds to a given maximal width. In Fig. 2,
the curves 2 and 3 define the lines for the maximal beam
widths, which are six times wider than the initial widths for
both elliptical and cylindrical beams. The positions of the
curves 2 and 3 is very sensitive to g: it moves downwards
with increasing g. The curves 2 and 3 in Fig. 2 are shown
for ga4

r (0) = 0.02. With the increase in the eccentricity of the
ellipse, curve 2 moves up relative to curve 3, which relates to
a cylindrical beam.
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Along curve 1 the cylindrical beam width stays con-
stant due to the exact balance between the competing
forces of diffraction and self-focusing. As one can obtain
from Eqs. (24) and (25) with η1,2 = w (for cylindrical
beam), curve 1 for the saturable model is defined by
the expression: 4ε = [−K2

sat + K2
satga4

r (0)]/[ln(1 + Ksat) +
Li2(−Ksat)], whereas for the cubic-quintic model, it is defined
by 4ε = [1 − ga4

r (0)]/[1/4 − 2KCQ/9]. When g = 0 we ob-
tain the appropriate expressions for nongraded waveguides
[36,37].

2. Breathing and beating periods

Using numerical methods, we have solved Eqs. (9)–(14) for
the saturable model and Eqs. (9)–(13) and (15)–(17) for the
cubic-quintic model to find η1,2 as a function of propagation
distance, ξ . To compare the solution with that for cylindrical
beam, we defined initial conditions as A2(0)a1(0)a2(0) =
A2

r (0)a2
r (0), a2(0) = ρa1(0), and b1,2(0) = c1,2(0) = φ(0) =

0. The first condition means that the energies of the cylindrical
and elliptical beams are conserved throughout propagation
[see Eq. (18)]. Here, Ar (0) and ar (0) are the amplitude of
electric field and the width of the cylindrical beam, and
a2(0)/a1(0) = ρ > 1 is the ratio between the widths of the
beam in the η1,2 directions.

Numerical solution of Eqs. (9)–(17) gives a distance Lbr,
which characterizes the oscillations of the beam widths during
propagation in either saturable or cubic-quintic media. Lbr

defines a distance between two adjacent minimal (or maximal)
width diameters, which vary during propagation along the ξ

axis (breathing period). For cylindrical beam in cubic-quintic
model the value of Lbr can be found by solving the appropriate
equations analytically (see Appendix).

Previously we showed for nongraded media that in contrast
to the cylindrical beam [52–56] whose width oscillates during
propagation with constant amplitude, oscillations of both
widths a1 and a2 occur with periodically varying amplitudes
[36,37]. This phenomenon is called “beats”. The maximum of
a1 corresponds to the minimum of a2 and vice versa, due to the
condition of energy conservation [see Eq. (18)]. In addition,
we found that there are two main types of behavior of the
elliptical beam, Type 1 where the orientation of the ellipse
does not change on propagation, and Type 2 where the major
and minor axes interchange during propagation. We found that
the type of beats in the saturable model depends on the ε and
K of Fig. 2 and at low ε is not very sensitive to the ellipticity
ρ. For the cubic-quintic model, the beating type is controlled
not only by ε and K but also by the ellipticity of the incident
beam, and is extremely sensitive to small changes in ρ.

Here, we extend this approach to GRIN media and calculate
both breathing (Lbr) and beating (Lbeat) periods for various
ellipticities ρ at some specific (ε,K) points on the diagram
shown in Fig. 2. The dependence of the ratio Lbeat/Lbr on the
parameter ρ for both saturable and cubic-quintic models is
presented in Fig. 3 for the case where the beating is initially
of Type 2.

We see, for the saturable model [Fig. 3(a)], that the ratio
increases slightly with increasing g and decreases monoton-
ically with ρ; the same behavior is obtained for Type 1. In
addition, it can be shown that the beating type remains constant

FIG. 3. (Color online) Typical dependencies of the ratio Lbeat/Lbr

on the parameter ρ for (a) saturable and (b) cubic-quintic models,
which are characterized by various values of the GRIN index g.
Curve 1 relates to ga2

1 (0)a2
2 (0) = 0, curve 2 to ga2

1 (0)a2
2 (0) = 0.01,

and curve 3 to ga2
1 (0)a2

2 (0) = 0.02. The plots correspond to (ε,K) =
(2.822,0.682) for the saturable model and (ε,K) = (2.039,0.682) for
the cubic-quintic model.

throughout. In contrast, for the cubic-quintic model, we see
in Fig. 3(b) that the ratio Lbeat/Lbr varies nonmonotonically
with ρ and displays singularities. It can be shown that these
singularities are accompanied by transitions between different
beating types: Type 2 transfers to Type 1 and then reverts to
Type 2. These singularities move to larger values of ρ with
increasing GRIN index g. It should be noted that the same
general behavior is obtained for different values of (ε,K). In
addition, the curves remain unchanged provided the values of
ε, K and ga2

1(0)a2
2(0) are kept constant.

Type 1 and Type 2 behavior of a beam as it propagates
through the lossless medium can be seen in the movies [59].

B. Elliptic beam in a lossy medium

Using Eqs. (9)–(17) we can describe the propagation of
elliptical Gaussian beam in both saturable and cubic-quintic
GRIN waveguides, taking into account linear and nonlinear
absorption, which are characterized by the values of γ and κ .
A potential well in the lossy media cannot be defined and the
regions for the motion of a point mass cannot be separated as
was done in Fig. 2 for lossless media. However, it is clear that
due to the energy dissipation during the propagation, the beam
has to cross the oscillatory region PSF towards the PSD region
of the (ε,K) parameter space.

In Fig. 4, we show the propagation of an elliptical beam
in an absorbing medium. It is qualitatively similar for both
the saturable and cubic-quintic models. In Fig. 4(a), we
compare the oscillations of the beam width a1(ξ ) for GRIN
and nongraded media, whereas in Fig. 4(b) we show typical
oscillations of a1,2(ξ ) in a GRIN medium. The propagation
begins from the PSF region of Fig. 2 where beats exist. After
some propagation distance, the beam widths a1,2(ξ ) in the
nongraded media increases monotonically with ξ , whereas in
the GRIN medium the oscillations of the beam widths a1,2(ξ )
are stabilized. When the beam energy becomes low enough,
so that one can neglect nonlinear processes, the CVA method
gives the following formula for the beam widths:

a1,2(ξ ) ∝ a1,2(0)
√

cos2(
√

gξ ) + sin2(
√

gξ )/
[
a4

1,2(0)g
]
.

(26)
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FIG. 4. (Color online) Variation of the beam widths (a) and (b),
amplitudes of electric field (c), and phases (d) in GRIN waveguides
in absorbing cubic-quintic media in comparison with nongraded
waveguides.

As one can see, the width oscillates with amplitude and
frequency that depend on g and the initial widths a1,2(0).

The variations of the amplitude of the electric field A(ξ )
and the phase φ(ξ ) are presented in Figs. 4(c) and 4(d) for
GRIN and nongraded media. With the decrease of the beam
energy ε(ξ ), the amplitude of the oscillations of A(ξ ) decreases
monotonously in both GRIN and nongraded media; in the
GRIN media this occurs more slowly than in the nongraded
one. The amplitude A(ξ ) decreases exponentially according to
the expression

A(ξ ) ∝ A(0)
√

ge−γ ξ

×
∏

m=1,2

am(0)

/
4

√
a4

m(0)g cos2(
√

gξ ) + sin2(
√

gξ ).

(27)

The phase [Fig. 4(d)] approaches a constant value asymp-
totically for the case of a nongraded medium. However, for
a GRIN medium, the phase decreases linearly and at some
propagation distance becomes negative, similar to that reported
previously for planar GRIN waveguides [39].

IV. CONCLUSION

We have analyzed the propagation of elliptical Gaussian
beam in GRIN waveguides with parabolic index profile
for both cubic-quintic and saturable models of a nonlinear
media, and compared the results with those for nongraded
waveguides. We constructed diagrams, which define regions
of self-focusing and self-diffractive beam propagation for
both types of media in the absence of loss. We found that
propagating pulses exhibit an oscillatory pattern, similar to
the breathing and beating behavior in nongraded waveguides
[36,37]. We distinguished beats of Type 1 for which the
orientation of the ellipse does not change on propagation, and
beats of Type 2 where the major and minor axes interchange
during propagation. We calculated the dependence of the ratios

of breathing and beating frequency oscillations Lbeat/Lbr on
the beam ellipticity ρ, and the GRIN index g. We have found
a marked difference in the dependence of Lbeat/Lbr on ρ

between the saturable and cubic-quintic media: in the saturable
model, Lbeat/Lbr is a monotonic function of ρ, whereas in
the cubic-quintic model, the dependence of Lbeat/Lbr on ρ is
characterized by singularities, which correspond to transitions
between the two types of beat oscillations. The positions of
these singularities move to higher ellipticity with increasing
values of the GRIN index. We have also investigated breathing
and beating of an elliptical Gaussian beam, taking into account
both linear and nonlinear absorption. We have calculated the
variation of the beam widths, amplitudes and phases, as func-
tions of the propagation distance and demonstrated the differ-
ences between the breathing behavior in GRIN and nongraded
waveguides. If the spatial profile of the beam and the center
of the index profile are not aligned, the pulse oscillates around
the index origin at a displacement frequency proportional to√

g, similar to the behavior found in linear media [14,15].

APPENDIX: ANALYTICAL SOLUTION FOR
CYLINDRICAL GAUSSIAN BEAM IN

CUBIC-QUINTIC GRIN MODEL

For a GRIN cubic-quintic medium interacting with a
cylindrical Gaussian beam, in which a1,2(0) = ar (0) and
u1,2(ξ ) = w(ξ ), one can find an analytical solution of the
dynamical equation, which can be written in the form

1

2

(
dw

dξ

)2

+ �CQ(w) = 0, (A1)

where

�CQ(w) = μr

w2(ξ )
− νr

w2(ξ )
+ λr

w4(ξ )

+ gw2(ξ )

2
−

(
μr − νr + λr + g

2

)
, (A2)

with

μr = 1

2a4
r (0)

, νr = A(0)2

8a2
r (0)

, λr = QA(0)4

18a2
r (0)

.

It can be shown that the potential function
�CQ(w) has two real roots: w1 = 1, and w2 =√

[μr − νr + λr +
√

(μr − νr + λr )2 + 2λrg]/g. The
analytical solution of Eq. (A1) can be written as follows: For
2(νr − μr − 2λr ) + g < 0 (PSD regime),

ξ =
�

(√
d1(w2−1)
w2(d1−1) ,

d1−1
d1

,

√
d1d2−d2
d1d2+d1

)
√

(d1 + d1d2)g
. (A3)

For 2(νr − μr − 2λr ) + g > 0 (PFD regime),

ξ =
(d2 + 1)�

(√ (d1+d2)(1−w2)
(1−d1)(d2+w2) ,

d1−1
d1+d2

,

√
d2−d1d2
d1+d2

)
√

(d1 + d2)g

−
d2F

(√ (d1+d2)(1−w2)
(1−d1)(d2+w2) ,

√
d2−d1d2
d1+d2

)
√

(d1 + d2)g
. (A4)
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Here, d1,2 = [±(μr − νr + λr ) +
√

(μr−νr+λr )2 + 2λrg]
/g; F,K,� are the incomplete and complete elliptic in-
tegrals of the first, second, and third kinds, respectively
[57].

The distance L equals 2ξ when w → w2, so that

L =
2�

(
d1−1
d1

,

√
d1d2−d2
d1d2+d1

)
√

(d1 + d1d2)g
PSD regime, (A5)

and

L =
2(d2 + 1)�

(
d1−1
d1+d2

,

√
d2−d1d2
d1+d2

)
√

(d1 + d2)g

−
2d2K

(√
d2−d1d2
d1+d2

)
√

(d1 + d2)g
PSF regime. (A6)

It is easy to show from Eq. (A6) that in the nongraded
medium, for which the boundary between PSD and diffractive

regions is defined as νr = μr + λr , the distance L can be
expressed in the form

L =
4
√

8�
(
1 −

√
g

2λr
,

√
2λr−g√

2λr+√
g

)
√√

2λr + √
gλr

, (A7)

so that when g → 0, L → ∞ as in a diffractive regime.
Moreover, substituting g → 0 in Eqs. (A3)–(A6), one

obtains an analytical solution identical to that previously
reported for a nongraded cubic-quintic medium [52–56],
whereas substituting νr ,λr → 0 in Eqs. (A3)–(A6), we obtain
the analytical solution for a linear medium [14,15,27]: w =√

cos2(
√

gξ ) + sin2(
√

gξ )/[a4
r (0)g].

Recently, an analytical solution for the breathing period was
obtained for Kerr GRIN media [48,58] using the Ermakov-
Ray-Reid reduction method. These results can easily be
obtained from our Eqs. (A5) and (A6) by substituting the
quintic variable λr = 0.
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