
PHYSICAL REVIEW A 87, 043837 (2013)

Multistable regime and intermediate solutions in a nonlinear saturable coupler
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We show, theoretically and experimentally, the existence of a multistable regime in a nonlinear saturable
coupler. In spite of its simplicity, we found that this model shows generic and fundamental properties of extended
saturable lattices. The study of this basic unit becomes crucial to understanding localization mechanisms and
dynamical properties of extended discrete nonlinear saturable systems. We theoretically predict the regions
of existence of intermediate solutions and experimentally confirm them by observing a multistable propagation
regime in a LiNbO3 saturable coupler. This constitutes an experimental evidence of the existence of these unstable
symmetry-broken stationary solutions.
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I. INTRODUCTION

Nonlinear discrete systems appear in several branches of
science and have found a fruitful field of development and
realistic implementation in recent years [1–4]. Many results
obtained in very different physical settings can be extrapolated
to other areas of research, generating a broader and deeper sci-
entific impact. Different techniques and methods to study such
systems experimentally, for example, in the context of photonic
lattices, have been developed with many possibilities to change
and control the key parameters. Here, merely Kerr-like (cubic)
nonlinear systems have been the main subject of theoretical and
experimental research. As a result, the corroboration of several
former theoretical predictions and different new findings have
been performed. However, a different type of nonlinearity
has opened new challenges with new interesting dynamical
properties, the so-called “saturable nonlinearity.” On one hand,
from a dynamical point of view, this type of nonlinearity
allows for a more complex and richer phenomenology than
typical cubic systems [5–9]. For example, in a saturable
nonlinear regime an exchange of stability properties be-
tween fundamental solutions is allowed, promoting improved
mobility for high-power solitons. This is certainly opposite the
phenomenology observed for cubic systems [10,11], where an
increment in power induces localization only. On the other
hand, only a very few experimental realizations showing the
specific behavior of saturable systems have been performed.
So far, mainly gradual changes from the behavior of Kerr-like
systems have been observed: for example, suppression of
modulation instability [12], stabilization of discrete vector
solitons [13], and higher-order gap solitons [14].

A nonlinear coupler (dimer) is the simplest discrete system
where there are just two identical nonlinear waveguides (sites),
placed in close proximity, which evanescently interact. Thirty
years ago, Jensen [15] showed the main features for the
corresponding cubic system, i.e., a periodic exchange of light
for low power and high transmission (localization) for larger
powers. In Ref. [16] the authors explored the dynamics and
stationary behavior of a cubic coupler which presents only one
bifurcation point for stationary solutions and no exchange of
stability properties [similar to larger one-dimensional (1D)
cubic systems]. On the other hand, Ref. [17] shows the

appearance of an extra bifurcation point, a change in the
stability properties, and richer dynamics when considering a
saturable nonlinearity. However, very recently, the concept
of “intermediate solutions” (IS) was introduced to explain
the properties of extended saturable 1D and two-dimensional
(2D) lattices [7–9] (this concept was introduced before for
other models [18,19]). These kinds of “unstable” symmetry-
broken solutions appear when two fundamental modes are
simultaneously stable (in other settings, the IS can also be
stable [19–21]). Therefore, it becomes natural to formulate a
question about the minimum number of sites, in a saturable
array, for which this phenomenology emerges.

In the present work, we will show that the fundamental
saturable properties are already present in a system of just two
waveguides. Moreover, we show evidence for the existence of
IS by observing a multistable propagation in an experiment
performed in iron-doped LiNbO3 samples.

II. MODEL

The propagation of light in a system composed of two
identical weakly coupled waveguides, with a defocusing
saturable nonlinearity, can be described as follows:

−i
∂u1

∂z
= u2 + γ u1

1 + |u1|2 , −i
∂u2

∂z
= u1 + γ u2

1 + |u2|2 , (1)

where un represents the light amplitude at site n, γ ≡ γ̄ /V >

0 corresponds to the strength of the defocusing nonlinearity
(γ̄ ) with respect to the coupling coefficient (V ) between the
two sites, and z describes the normalized propagation distance
along the waveguides. Model (1) possesses two conserved
quantities, the power

P ≡ |u1|2 + |u2|2 (2)

and the Hamiltonian

H ≡ (u2u
∗
1 + u∗

2u1) + γ ln[(1 + |u1|2)(1 + |u2|2)]. (3)

Stationary solutions of model (1) have the form un(z) =
un exp(iλz), where λ represents the spatial frequency. First
of all, we look for linear solutions of model (1) that, due to the
saturation, exist in two different regions [7–9]. In a low-power
regime, we find that there are two solutions, with frequencies
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FIG. 1. (Color online) (a) P vs λ diagram for γ = 10. The
symmetric, stable and unstable antisymmetric, asymmetric, and
intermediate solutions are plotted as black, solid and dashed blue
(dark gray), red (light gray), and red (light gray) dashed lines, respec-
tively. Vertical lines indicate linear frequencies. (b) Antisymmetric,
asymmetric, and intermediate mode profiles for P = 20.

γ + 1 and γ − 1. For higher powers, the nonlinear response
vanishes, and frequencies become +1 and −1. The spatial
profiles for these two modes are equal in both regimes, the sym-
metric (u1 = u2) and the antisymmetric (u1 = −u2) modes.

III. NONLINEAR MODES

Now, we look for general nonlinear solutions of the form
u1 = A and u2 = αA, where A is a positive amplitude and
α describes the ratio between these two site amplitudes.
We found that the symmetric (α = 1) and the antisymmetric
(α = −1) modes are also solutions in the nonlinear regime.
They bifurcate from the low-power linear solutions and diverge
when approaching the high-power linear modes:

Psym = 2

[
(γ + 1) − λ

λ − 1

]
, Pant = 2

[
(γ − 1) − λ

λ + 1

]
.

In Fig. 1(a) these two families are plotted with thick
black and blue (dark gray) lines, respectively, including their
corresponding profiles (to visualize them, we used a Gaussian
profile with amplitude un at site n). In addition, we found two
nonsymmetric solutions:

α(γ,A) = −γA2 ±
√

γ 2A4 − 4A2(1 + A2)2

2A2(1 + A2)
. (4)

Without loss of generality, we restrict ourselves to the case
|α| < 1. The plus sign in (4) corresponds to the asymmetric
solution (|αasy| �= 1) that exists only for γ > 4, bifurcating
from the antisymmetric mode [see Fig. 1(a) at λ ∼ 8].
Once this asymmetric solution appears, the antisymmetric
one becomes unstable [a standard linear stability analysis
[22] was performed, and solid (dashed) lines indicate stable
(unstable) solutions in Fig. 1]. Figure 1(a) shows a monotonic
increment of the asymmetric power up to some maximum
value. All this branch [solid red (light gray) line] is stable.
However, after achieving this maximum, the branch changes
its curvature (power decreases), and the solution becomes
unstable until it fuses with the antisymmetric branch [this

unstable branch corresponds to the minus sign in Eq. (4)]. For
saturable systems, this always unstable nonsymmetric solution
is called the intermediate solution [7–9]. The case where
two fundamental solutions are simultaneously stable, sharing
the same Hamiltonian value, was initially suggested [5] as
a vanishing Peierls-Nabarro barrier [23,24]. However, recent
works [7–9,19] have shown that there is a nonzero effective
energy barrier, which also considers the IS. Surprisingly,
the dimer model also shows this phenomenology, which
is fundamental to understanding deeply the properties of
nonlinear saturable arrays. Examples for some profiles are
sketched in Fig. 1(b). The intermediate and asymmetric modes
correspond to nonsymmetric solutions of model (1); they have
quite similar profiles and would be identified only by directly
observing their unstable or stable dynamical propagation.

A. Effective potential

Now, we go deeper into the dynamical properties of
this model by computing an effective potential [7–9,25,26].
Model (1) is integrable; therefore the effective potential can
be obtained analytically. First of all, by fixing the power
P , we define the center of mass as x ≡ u2

2/P (x = 0 or
1 ⇒ P = u2

1 or u2
2, and x = 0.5 ⇒ u2

1 = u2
2 = P/2). Then,

as we are considering a defocusing nonlinearity, we study
staggered solutions (α < 0) and express the amplitudes as

u1 = ±
√

P (1 − x), u2 = ∓
√

xP .

With these expressions inserted into the Hamiltonian (3), we
get

H (x,P,γ ) = −2P
√

x − x2 + γ ln[1 + P + P 2(x − x2)].

(5)

The critical points ∂H/∂x = 0 represent different stationary
solutions. The first one corresponds to xant ≡ 0.5 (α = −1),
a solution existing for all level of powers P [see blue (dark
gray) line in Fig. 1(a)]. There are four additional solutions,

x = 1

2
± 1

2P

√
P 2 − 2γ 2 + 4(P + 1) ± 2γ

√
γ 2 − 4(P + 1),

(6)

where asymmetric modes correspond to the plus sign in front
of the inner square root. They are symmetrically located,
to the right and to left, in relation to the antisymmetric
solution (xant = 1/2). Asymmetric solutions exist only for
γ > 4, bifurcating from the antisymmetric mode at power
Pmin ≡ γ − 2 −

√
(γ − 2)2 − 4. Unstable IS correspond to

the minus sign in front of the inner square root in (6). They exist
above the power threshold Pth ≡ γ − 2 +

√
(γ − 2)2 − 4. The

asymmetric and the intermediate solutions exist up to an upper
power value given by Pup ≡ (γ /2)2 − 1 [for γ = 10, Pmin =
0.254, Pth = 15.746, and Pup = 24; see Fig. 1(a)]. IS also exist
for γ > 4; i.e., the intrinsic saturable phenomenology would
only be observed above some critical nonlinearity.

Figure 2(a) shows the effective potential H (x,P,γ ) versus
the center of mass for γ = 10 and for four different levels
of power (H values have been normalized for comparison).
Below Pmin (dotted line), the potential looks like a typical
potential well with a minimum located at xant. In the range
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FIG. 2. (Color online) (a) Effective potential (5) for P = 0.15
(dotted line), P = 15 (dashed line), P = 19 (thin solid line), and
P = 26 (thick solid line); circles indicate the stationary solutions in
each case. (b) Bifurcation diagram x vs P , following the color and
line convention applied in Fig. 1 [vertical lines indicate the power
values used in (a)]. In this plot we set γ = 10.

{Pmin,Pth} the effective potential is cubiclike (dashed line);
i.e., the antisymmetric solution is unstable (maximum) while
the asymmetric solution is stable (minimum). The saturable
nature of this model manifests for powers above Pth (thin
solid line). The antisymmetric and the asymmetric solutions
become a local minimum and therefore simultaneously stable.
The unstable symmetry-broken IS appears as a maximum
in this potential, located in between the stable solutions.
Therefore, at Pth the IS has a center of mass xIS = xant

that evolves in the direction of an asymmetric configuration
when approaching Pup. Finally, above Pup, both nonsymmetric
solutions disappear, and the antisymmetric mode is the only
critical point in the effective potential (thick solid line). This
is a direct consequence of the saturable nature of the system,
where the nonlinear term vanishes for powers above a critical
value (P > Pup). In Fig. 2(b) we show a plot of the center of
mass x vs P for the stationary solutions found in Eq. (6) and
the constant solution xant = 0.5. Stable and unstable modes are
denoted with solid and dashed lines. This bifurcation diagram
clearly illustrates the supercritical and subcritical pitchfork
bifurcations at Pmin = 0.254 and Pth = 15.746, respectively,
and saddle-node bifurcations at Pup = 24.

B. Numerical propagation

Now, in order to test these stationary properties and their
dynamical consequences, we numerically study model (1)
by considering the general initial condition u1(0) = A and
u2(0) = αA, with −1 � α � 0. This input condition allows

FIG. 3. (Color online) Density plot of xout vs |α| and P for γ =
10. Solid and dashed white lines correspond to the asymmetric and
intermediate solutions, respectively.

us to excite all different staggered solutions. Figure 3 shows
the output center of mass, defined as xout ≡ |u2(zmax)|2/P ,
measured after a given propagation distance zmax = 5lc, with
lc being the coupling length (it is important to mention that
similar density maps were obtained for different propagation
distances). Purple-blue (dark gray) colors (xout � 0.2) repre-
sent solutions localized close to site n = 1, green (light gray)
colors (0.4 � xout � 0.6) represent antisymmetric profiles,
and orange-red (gray) colors (xout � 0.8) represent solutions
localized close to site n = 2. For P � 1, asymmetric profiles
(|α| ∼ 0) do not correspond to any stationary solution, and the
light just oscillates between the two sites (see the appearance
of multiple colors as an indication of strong oscillation, i.e.,
switching [15]). On the other hand, for |α| ∼ 1 we see a
greener (light gray) color, which indicates a small oscillation
in the vicinity of the antisymmetric solution (xout = 0.5), the
only stationary solution at this power regime. The dotted line
in Fig. 2(a) shows the potential at this parameter region,
where it becomes evident that the light oscillates around
the antisymmetric mode (minima). At the bifurcation point
power [when H changes its shape from dotted to dashed
in Fig. 2(a)], both solution profiles are quite similar, and
the antisymmetric mode is slightly unstable. Then, in the
range P ∈ {1,15} for |α| � 0.4, the light is well trapped
at the vicinity of site n = 1. This is an indication of the
excitation of an asymmetric stationary state (see solid white
line in Fig. 3). For |α| → 1, there is an oscillation of
the light in the interval xout ∈ {0,0.5}, as expected for an
unstable antisymmetric configuration. The respective effective
potential is represented by the dashed line in Fig. 2(a), from
which it is simple to predict the evolution of different input
profiles by using simple dynamical arguments. In the region
of power ≈{16,24}, a very interesting behavior is observed:
we found a simultaneously stable dynamical propagation of
asymmetric (|α| ≈ 0.15) and antisymmetric (|α| ≈ 1) input
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FIG. 4. (Color online) Experimental setup for observing the
multistable regime in a saturable nonlinear coupler.

profiles. The constant value of x (constant color) when increas-
ing P indicates a stable dynamical evolution. This numerical
result is well described by the potential sketched by a solid
line in Fig. 2(a), where unstable input conditions correspond
to any position in between two consecutive minima. This
constitutes dynamical and indirect evidence of the existence of
the intermediate solutions as a fundamental entity for saturable
systems: if both staggered solutions are stable simultaneously,
an extra unstable intermediate solution must exist. The dashed
white line in Fig. 3 corresponds to the intermediate solution
and shows a clear connection in parameter space between
the asymmetric and the antisymmetric staggered solutions.
For P � 24, we observe an oscillation of energy between
sites 1 and 2 for the input condition 0 � |α| � 0.8, while an
antisymmetric configuration is stable for |α| � 0.8. All the
dynamical results are in perfect agreement with the stationary
picture sketched in Figs. 1 and 2, including the region of
multistability and the existence of the IS.

IV. EXPERIMENTAL RESULTS

To verify our theoretical and numerical predictions we
use the experimental setup sketched in Fig. 4. A cw laser
with a wavelength of 532 nm propagates through a phase
mask (PM) covering half of the beam along the transverse
direction x (coinciding with the crystallographic c axis of the
sample). So the phase relation of the left and right halves
of the beam can be switched to be either in phase or out
of phase. With a 4f imaging system, composed of lenses L1
and L2, the beam is imaged onto a double-hole amplitude
mask (AM). By using a microscope objective, the beam is
injected into a saturable nonlinear coupler (SNC) fabricated
by titanium in-diffusion on an x-cut lithium niobate substrate
doped with iron. The end facet of the sample is monitored
by a high-resolution CCD camera. The length of our sample
along the propagation z direction is 18 mm with lc = 3.6 mm
(about five diffraction lengths). The waveguide channels are
4.0 μm wide with a separation of 2.2 μm. Our photovoltaic
samples have a nonlinearity which grows exponentially in
time, γ (t) = γ (1 − exp[−t/τ ]), where τ is the dielectric
response time [27]. In order to reach a steady state, saturation
of the photovoltaic nonlinearity is required, which typically
occurs, in our samples, for t ∼ 25 min. Figure 5 shows some
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FIG. 5. (Color online) Center-of-mass evolution at the sample
output for asymmetric (solid lines) and antisymmetric (dashed lines)
input conditions for input powers 100 nW (black) and 500 nW [orange
(gray)]. The filled rectangular area denotes the region where we
experimentally observe (define) an antisymmetric configuration.

examples of the evolution of the center of mass in time. We
see how some input conditions propagate in a very stable way
for the whole measurement period [black solid, orange (gray
solid), and black dashed lines], while the orange (gray) dashed
curve tends to stabilize for t � 25 min.

We repeat the experiment for several input powers and
for the asymmetric and the antisymmetric input profiles and
average the center-of-mass values for the last 10 min of each
experiment. Compiled results are shown in Fig. 6, with a

FIG. 6. (Color online) Averaged center of mass at the sample
output vs input power for a LiNbO3 saturable coupler. Red (light gray)
and blue (dark gray) symbols connected by solid lines correspond to
the experimentally measured value of xout for an asymmetric and an
antisymmetric input condition (symbols connected by dashed lines),
respectively. The bottom panel shows some (nonaveraged) experi-
mental output profiles for the indicated powers with antisymmetric
(ant) and asymmetric (asy) input profiles. The filled area is the same
as in Fig. 5.
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fairly good agreement between the theoretically predicted
phenomenology and what is observed in direct experiments.
The initial conditions are indicated by dots connected with
dashed lines. The deviation of the output values (dots con-
nected by solid lines) from the initial conditions can be
understood as the degree of stability. In addition, the error
bars (obtained in the averaging process) also indicate how
stable the profile is: a smaller bar indicates a dynamically
stable profile, while a larger bar means a stronger oscillation
around some minimum (stationary solution). For a low level
of power, we observe that both solutions are essentially stable.
This coincides with our analysis in the region of the first
bifurcation point, where the appearance of the asymmetric
solution weakly destabilizes the antisymmetric mode. Then,
for powers in the region ∼{300,1300} nW, a typical cubiclike
picture is observed: the asymmetric solution is stable, while
the antisymmetric one is not. However, above ∼1300 nW a
saturable phenomenology emerges. The saturable nature of the
nonlinearity allows oscillation of the stability properties, with
a richer dynamics when comparing with usual cubic systems.
For this sample, the region ∼{1300,2300} nW corresponds to a
regime where the two fundamental nonlinear solutions of this
problem become simultaneously stable (as an example see the
profiles for 1500 nW). Therefore we experimentally observe
a multistable regime as indirect evidence of the existence of
intermediate solutions in a saturable dimer. This observation
gives strong support to the theory (and model) developed for
this type of lattice. Above some given power (∼2300 nW),
the only stable solution is the antisymmetric one, as shown
in Fig. 6. The large bar for the last asymmetric (red) point
indicates that the system has saturated and that the effective
potential has a shape like the thick line in Fig. 2(a). It is
important to mention that our experimental output profiles
in the bottom panel in Fig. 6 have a staggered phase, which
is evident by observing the zero amplitude in between the
two waveguides. This gives us extra support for relating the

observation of the multistable regime to the existence of an
unstable IS because the observed profiles are well connected
in phase space.

V. CONCLUSIONS

In conclusion, we have observed a multistable regime
of fundamental modes in a nonlinear saturable coupler. A
complete map of nonlinear solutions has been constructed,
including their stability properties and effective potential.
Numerically, we have determined the regions where the
fundamental profiles are expected to be stable, showing
excellent agreement with the developed theory. We fabricated
a nonlinear saturable coupler in LiNbO3 and observed sta-
ble propagation of fundamental modes for an intermediate
level of power. This constitutes experimental evidence of
the existence of intermediate solutions in discrete nonlinear
lattices. Moreover, for larger powers we observed the ab-
sence of the asymmetric solution as a clear indication of
the saturation of the nonlinearity. All these results strongly
support recent theoretical and numerical developments based
on Discrete Nonlinear Schrödinger-like models in several
contexts of physics and open, as a direct consequence, new
opportunities for research on nonlinear discrete systems. In
addition, understanding small systems becomes very crucial
when thinking about the implementation of photonic lattices
for realistic applications.
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