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Single-cycle-pulse passively-mode-locked laser with inhomogeneously broadened active medium
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Generation of single-cycle pulses from a laser passively mode locked by the technique of coherent mode
locking is theoretically demonstrated for the case when resonant lines of both the gain and absorbing media
are inhomogeneously broadened. In contrast to conventional mode-locked lasers, for which the inhomogeneous
nature of line broadening sets a severe limitation on their performance, here, the stable single-cycle pulse operation
is shown to persist even when the spectral widths of the inhomogeneously broadened lines of the amplifier and
the absorber become nearly as wide as the central resonance frequency of their two-level transitions. This study
is aimed at showing the potential for application of the coherent-mode-locking technique for quantum-dot lasers,
which are typically characterized by a great amount of inhomogeneous broadening.
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I. INTRODUCTION

It is well-known textbook material that the gain spectral
width of a laser medium sets the upper limit to the spectral
width of pulses generated by means of a mode-locking
mechanism. This explains the continuous quest for laser
materials with gain spectral widths as wide as possible.
The titanium-sapphire laser has the broadest gain spectrum.
However, even this laser is not capable of supporting pulses
shorter than two carrier oscillation periods; see Refs. [1–3].
In a recent paper [4] we theoretically demonstrated the
possibility of generation of single-cycle pulses directly from a
laser oscillator with a narrowband homogeneously broadened
gain medium. This counterintuitive demonstration became
possible due to the use of the technique of coherent mode
locking (CML) [5], which is conceptually different from the
widespread method of Kerr-lens mode locking [6].

All existing mode-locking methods, including the Kerr-
lens mode-locking mechanism, assume that the interaction
of a pulse circulating in the cavity with the gain medium is
linear, or at most, only weakly nonlinear. In contrast, the CML
technique requires that the pulse is strong enough to induce
substantial nonlinear effects in the amplifier. The field-induced
broadening of the gain spectrum is the key ingredient of the
CML technique. In other words, the pulse itself broadens the
medium. Such a nonlinearly broadened gain spectrum can
accommodate shorter pulses. The formulation and the proof-
of-principle demonstration of the CML technique can be found
in Ref. [5], its application to the mode-locking of quantum-
cascade lasers was theoretically tested in Ref. [7], while the
ultimate limit in terms of generation of pulses with the shortest
possible durations has been probed in Ref. [4]; see also the
precursors of this study, where few-cycle dissipative solitons in
the free-propagation regime were found [8–10]. In particular, it
was shown in Ref. [4] that the CML technique was capable of
delivering single-cycle pulses. Motivated by the expectation
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that a single-cycle mode-locked laser shows strong promise
for diverse applications throughout science and technology, in
particular in extreme nonlinear optics, attosecond science, and
few-cycle physics [11–14], our goal is to proceed with further
research on the CML technique.

In order to bring the CML idea close to practice, we
need to work with a medium with a value of the dipole
moment which is of the order of at least 1 D (a characteristic
value for dipole-allowed transitions in alkali-metal atoms)
or greater. The appropriate candidates for the realization
of such a single-cycle-pulse coherently-mode-locked laser
are semiconductor (bulk, quantum-well, quantum-dot) lasers.
Among these semiconductor structures, quantum-dot-based
lasers seem to be most promising, as quantum dots can
be engineered with dipole moments which are an order of
magnitude greater than those of the bulk semicoductors.

The geometric sizes of quantum dots embedded in a host
matrix are poorly controlled during the manufacturing process,
and as a result, the resonance frequency (of a two-level
transition of interest) varies greatly from one quantum dot to
another. Effectively, the resonance line of the entire ensemble
becomes inhomogeneously broadened. The width of this
inhomogeneously broadened line can sometimes reach a value
close to the central resonance frequency of the two-level
transition, and therefore becomes comparable to the bandwidth
of a single-cycle pulse. Such a substantial modification of the
properties of the gain (and also the absorbing) medium with
respect to our previous models based on the assumption of a
homogeneously broadened gain spectrum, requires a check as
to whether the CML method still retains its attractive features
and the capability of generating single-cycle pulses. This check
is the major goal of the present study.

Note also that lasers with gain media with predominantly
inhomogeneously broadened spectra are believed to be not well
suited for mode-locking operation. This problem is particularly
important for quantum-dot lasers; see, for instance, Ref. [15].
The inhomogeneous nature of the gain spectrum suppresses the
mechanism of mode competition for the gain, and as a result,
modes are no longer superposed coherently, thus preventing
stable mode-locked operation. Indeed, a laser mode locked
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in a conventional manner tends to lock only modes within
a bandwidth equal to the bandwidth of the homogeneously
broadened contour, γ21. Thus, the inhomogeneously broadened
spectrum of width (T ∗)−1 appears to be split into approxi-
mately (γ21T

∗)−1 portions. Modes within each of these spectral
portions are locked independently of each other. Such a regime
of generation of an incoherent superposition of multicolor
pulses cannot be characterized as a mode-locked operation,
because a mode-locked laser is required to deliver pulses that
are fully coherent over their entire spectral width.

The single-cycle-pulse CML laser is immune to the nature
of the broadening, as we show below. In particular, the
limitations set by the inhomogeneous character of the gain
spectral line, and inherent to conventional mode-locked lasers,
simply does not show up for a CML laser, thanks to the
ultrabroadband spectrum of single-cycle pulses. Indeed, even
if the spectrum of the gain medium is extremely wide, as is
the case for quantum-dot lasers, but still it is not as wide as the
central resonance frequency of the two-level transition. Thus,
virtually any gain medium appears to be narrowband for a
single-cycle pulse CML laser.

II. PHYSICAL CONSIDERATIONS

In its essential properties, the model exploited here re-
produces the theory developed in our previous study of
the homogeneously broadened CML laser in Ref. [4]. Such
continuity in modeling is also important from the viewpoint
of ease of a direct comparison of pulse characteristics (energy,
duration) of the two lasers, which are different only in the type
of line broadening, while the other parameters of the gain and
absorbing media are kept the same.

The details of the model can be found in Ref. [4], while
here we reproduce only its main features, which are necessary
for understanding the problem. The laser is a passively-mode-
locked laser, which requires an intracavity absorber. Typically,
absorbers are divided into two main categories: “fast” and
“slow.” Our absorber belongs to neither of these two classes.
Instead, it is a “coherent” absorber. The term “coherent” means
that the spectral width of the pulse circulating inside the
cavity is much greater than the homogeneous width of the
absorption line. Putting this differently, the pulse interacts with
the absorber in a coherent manner. A similar requirement, to
be coherent with respect to the intracavity pulse, is imposed
on the gain medium: the amplifier medium must have a re-
laxation time of polarization much longer than the duration of
the pulse. The coherent nature of the matter-field interactions
explains the name of the technique—coherent mode locking.

The important observation here is that the coherence of
the matter-field interaction is defined by the relation between
the relaxation times of a single two-level atom (or another
two-level system), and not by the optical response of the entire
ensemble. That is, if the ensemble itself is characterized by a
broad inhomogeneous line, the coherence of the matter-field
interaction will be still preserved, requiring only that the
homogeneously broadened spectrum of the individual two-
level system remains sufficiently narrowband. The survival
of this microscopic coherence even in the presence of the
fast decorrelation of the collective optical response on the
macroscopic (ensemble-averaged) level, lies at the heart of

well-known effects such as photon echo and self-induced
transparency (SIT); see Refs. [16,17].

This reasoning shows that the main feature of the
CML technique—the coherent character of the matter-field
interaction—extends also to the inhomogeneously broadened
systems, provided the homogeneous broadening of an individ-
ual two-level system remains narrowband. However, the ques-
tion of whether the performance of the CML technique will
remain on an acceptable level when we use inhomogeneously
broadened systems instead of homogeneously broadened ones
is still awaiting resolution and is the main question that
motivated this study. Along with the coherent gain medium,
the CML method assumes the presence of a coherent absorber.
It is reasonable to argue that if the interaction of the intracavity
pulse with the absorber was of the SIT type for the case
of the homogeneously broadened ensemble, as was shown
to be the case in Ref. [4], then the SIT type of behavior
will persist for the inhomogeneously broadened ensemble,
no matter how broad is its spectrum. In other words, if the
pulse propagated through the absorber with virtually no losses
in the homogeneously broadened ensemble, then the amount
of loss will not increase when the medium turns into an
inhomogeneously broadened one. From the viewpoint of our
laser system, this argument gives us encouragement to expect
that the use of the inhomogeneously instead of homogeneously
broadened absorbers will bring no additional losses to the
system. This argument indeed appears to be true, as supported
by the numerical results discussed below.

The consideration of the gain medium is less straightfor-
ward, and to our understanding, does not lead us to conclusions
as promising as for the absorber. In the CML laser, the pulse
circulating inside the cavity behaves as a π pulse with respect
to the gain medium. That is, the medium is left maximally
deexcited after the pulse has passed through it. However, if the
inhomogeneously broadened spectrum of the gain medium
is substantially wider than the pulse spectral width, then
we cannot expect the spectral wings of the pulse to be
powerful enough to fully deexcite the atoms having resonance
frequencies distant from the center of the inhomogeneously
broadened gain spectrum. This regime is not advantageous
energetically, because the efficiency of extraction of the energy
from the inhomogeneously broadened gain medium of width
(T ∗)−1 by a pulse with spectral width �ω is �ωT ∗ times
smaller than in the case of the homogeneously broadened
medium. In order to bring the laser back to the same point of the
gain-loss equilibrium as with the homogeneously broadened
gain medium, we need to enlarge the linear gain accordingly,
for example, by increasing the number of active centers.

Fortunately, such a supernormal amount of broadening is
not typical for the quantum-dot single-pulse laser under our
consideration, simply because no (known to us) semiconductor
samples are characterized by inhomogeneous spectra as wide
as the central resonance frequency itself. Even if such samples
can be engineered, they will be not suitable for our purposes.
Thus, we shall study here two cases, which we label for
convenience as “narrowband” [with (T ∗) = 7.1ω−1

21 , where
ω12 is the central frequency of the inhomogeneously broad-
ened gain spectrum] and “broadband” (with T ∗ = 1.77ω−1

21 ).
Basing on the reasoning given above, we anticipate that the
characteristics of the narrowband inhomogeneously broadened
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CML laser should not appear too different from those of its
homogeneously broadened partner, while for the broadband
inhomogeneously broadened laser the characteristics may
differ more substantially. This expectation is correct, as we
show below.

III. MODEL

The main requirement associated with the method of CML
is sufficient power of the intracavity field. More precisely,
it is not a requirement on the absolute power, but rather on
the strength of the matter-field interaction, expressed in terms
of the Rabi frequency (here the Rabi frequency �R is the
product of the atomic transition dipole moment dp and the
strength of the electric field E, divided by the Planck constant
h̄: �R = dpE/h̄). The condition for generating single-cycle
pulses amounts to getting the Rabi frequency equal to the
central resonance frequency of the two-level transition.

Another critical parameter of the coherently-mode-locked
laser is the level of linear intracavity losses. We assume that
all such losses are associated with the transmission of the
pulses through the outcoupling mirror, as shown in Fig. 1(a).
It is clear that the lower limit should appear on the amplitude
reflection coefficient of the outcoupling mirror. Indeed, if too
much energy leaks from the laser, then the pulse becomes less
intense and therefore longer (because of smaller nonlinearity-
induced broadening of the gain medium); the longer pulse
loses too much energy in the incoherent losses inside the
absorber and also cannot any longer efficiently deplete the
amplifier. Therefore the losses increase in an avalanche
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FIG. 1. (a) Schematic of the coherently-mode-locked laser. The
amplifier and absorber are implemented within the same sample, as
in the numerical model. If necessary, the gain and absorbing media
can be placed in different locations inside the cavity. (b) The seed
(input) pulse used to trigger the operation of the laser. The electric
field is the normalized Rabi frequency �, and time is normalized
to ω−1

21 .

manner, the feature which determines the sharp threshold in the
reflection coefficient R of the outcoupling mirror. In support
of this reasoning, we indeed observed an abrupt termination
of the mode-locked operation when R dropped below 0.9
for the homogeneously broadened gain medium, and 0.92
for the narrowband, and 0.97 for the broadband inhomoge-
neously broadened gain media. These values of R are specific
to our choice of the linear gain coefficient of the amplifier and
the linear absorption coefficient of the intracavity absorber,
detailed below.

In the extreme situation of generation of single-cycle pulses,
the approximations commonly applied to conventional mode-
locked lasers break down, so that we have to abandon the
slowly varying, rotating-wave, and unidirectional-propagation
approximations altogether. The two Maxwell equations

∂D

c∂t
− ∂H

∂z
= 0 and

∂H

c∂t
− ∂E

∂z
= 0 (1)

for the electric E and magnetic H = B fields are coupled to
two systems of nonreduced Bloch equations. The first of such
systems describes the inhomogeneously broadened amplifier:

∂
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and the second system is associated with the inhomogeneously
broadened absorber:
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Here D = E + 4πP with the polarization P = Npdpρ
(p)
12 +

Nadaρ
(a)
12 + c.c.; Np,a are the concentrations of passive (ab-

sorber) and active (amplifier) two-level systems; dp,a are
the (real) dipole matrix elements of the transitions between
the upper (2) and lower (1) states; ω

(a,p)
21 are the transition

frequencies, which are taken to be equal to each other, as
well as to the carrier frequency ω0 of the seed pulse which
triggers the mode-locking operation; γ

(a,p)
21 , γ

(a,p)
2 , and γ

(a)
1

are the relaxation rates with obvious meanings; and finally
p is the pump rate. Note that the absorber is modeled by a
closed system, which implies a conservation law in the form
ρ

(p)
11 + ρ

(p)
22 = 1, whereas the laser amplifier is modeled as

usual by an open system, for which a similar conservation
law does not hold.

In our numerical simulations we used the following set of
parameters: The ratio of dipole moments

√
μ = dp/da was

1.5. This value was intentionally made different from the ideal
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case of
√

μ = 2, in order to test the relative insensitivity of
the CML operation to the precise value of this ratio, which
is important for the practical implementation of the CML
technique. The relaxation rates were γ

(a)
1 = 0.025, γ

(a)
2 =

0.005, γ (p)
2 = 0.006, γ (p)

21 = 0.0025, and γ
(a)
21 = 0.015, and the

pump rate was p = 0.004. All of these quantities are expressed
in units of the frequency ω

(a)
21 = ω

(p)
21 . Other parameters are

chosen in such a way that the coupling constants between the
field (which is expressed in terms of the dimensionless Rabi
frequency � = �R/ω

(p)
21 ) and the polarizations induced by the

passive and active systems read as β = 4πNpd2
p/h̄ω

(p)
21 = 0.1

and κ = 4πNadpda/h̄ω
(a)
21 = 0.02. As an estimate for the

intracavity intensity I we can write I = (104/x2) GW/cm2 for
�R = ω

(a)
12 = 1015 s−1, where dp = 1.6x × 10−28 C m; here

the spatial extension of the dipole x is expressed in nanometers.
Thus, for x = 10 the intracavity intensity becomes as small as 1
GW/cm2. This estimate shows the possibility of generation of
intracavity single-cycle pulses with duration ∼6 fs and energy
∼0.4 pJ, provided that the active area of the gain medium is
∼6 μm2.

The model equations (1)–(7) need to be supplemented
by appropriate boundary conditions. We considered a ring-
cavity configuration supporting predominantly unidirectional
propagation, and consisting of a number of mirrors, one of
which is partially transparent with the amplitude reflection
coefficient R; see Fig. 1(a). In this case, the relation �ref =
R�in establishes the connection between the wave which is
incident on the mirror �in and the reflected wave �ref. The
balance between the gain κ and the mirror outcoupling losses
(1 − R) provides a key relation in our model, as it ultimately
determines the intracavity pulse power. In order to generate
pulses of one carrier period in duration, i.e., with τp ≈ ω−1

12 ,
we need to ensure a large gain-to-loss ratio which permits the
condition � ≈ 1 to be reached. The next important parameter
is the strength of the absorber β: its large value is necessary
for the stability of the mode-locked operation. On the other
hand, the precise values of the various relaxation constants are
not very important (as long as they do not become too large).
The only requirement here (dictated solely by the intention of
easing the numerical modeling and having virtually no impact
on the physics of operation of a generic CML laser) is that the
total length L of the cavity is long enough in order to guarantee
full recovery of the equilibrium population differences of the
amplifier and the absorber before the pulse comes back after
completing the round trip along the cavity.

The way of modeling the effect of inhomogeneous broad-
ening of two-level ensembles implemented here is different
from the conventional approach. The conventional method
requires the introduction of a detuning term (which is the
frequency shift between the carrier frequency of the electric
field and the resonance frequency of the two-level transition)
into the equation for the nondiagonal density matrix element
of the two-level transition. Then the macroscopic polarization
of the entire ensemble (which is the driving term in the
wave equation) is obtained by averaging over all possible
detunings with an appropriate weighting function, which has
the shape of the inhomogeneously broadened spectrum. This
approach becomes resource consuming when implemented
numerically, because at each spatial step it requires spanning

over a representative number of detunings, typically 50–100,
and thus slows down numerical simulations by about two
orders of magnitude in comparison with simulations of similar
homogeneously broadened systems. In terms of computational
resources, it is nearly equivalent to adding a new dimension to
the problem.

An alternative approach to modeling the inhomogeneous
broadening was suggested in Ref. [9], and recently theoreti-
cally verified in Ref. [18]. Its implementation amounts to the
introduction of terms

�ωa(z) = (T ∗√2)−1Fa(z), (8)

�ωp(z) = (T ∗√2)−1Fp(z) (9)

into Eqs. (2) and (5), respectively, with Fa,p(z) being spatial
stochastic Gaussian processes with zero mean and unit
standard deviation (that is, distributed according to the normal
distribution). In other words, �ωa,p now becomes a function
of the spatial coordinate z, and at each subsequent z we take
a random Gaussian-distributed number (positive or negative)
and multiply it by a factor of (T ∗√2)−1. The stochastic process
is a Markovian one, since at each subsequent spatial step
�ωa,p are selected truly randomly and independently of the
value of �ωa,p in the preceding step. As shown in Ref. [18],
(T ∗)−1 is the characteristic width of the inhomogeneously
broadened spectrum. This way of modeling has been proved
to be statistically identical to the standard procedure, provided
that the shapes of the inhomogeneously broadened lines
are approximated by a Gaussian function, as is the case in
the present study. From the viewpoint of the computational
load, the stochastic approach to modeling the inhomogeneous
broadening adds neither complexity nor addditional resources,
and takes essentially similar running times, when compared
with simulations of homogeneously broadened systems. Here,
we choose to work with similar inhomogeneous contours for
both gain and absorbing media [note the same parameter
T ∗ in the expressions for �ωa(z) and �ωp(z)] in Eqs. (8)
and (9).

IV. RESULTS AND DISCUSSION

We performed numerical simulations of the approximation-
free Maxwell-Bloch equations based on the finite-difference
time-domain integration method. Our numerics mimics the
intracavity dynamics of the pulse circulating between mirrors:
starting from point 1 in Fig. 1(a), the seed many-cycle pulse,
which is shown in Fig. 1(b), experiences free propagation in
vacuum until point 2. Next the pulse experiences gain and
shaping in the amplifier as well as absorption and shaping in
the absorber until it reaches the point 3, where the pulse is
again subjected to free propagation towards point 1, where the
circulating pulse experiences partial transmission at the out-
coupling mirror. The round trip is thus completed. Typically,
fewer than 100 round trips are needed to reach the stationary
mode-locked regime. Additional losses appear as a result of
reflection of the pulse from the boundary between vacuum
and the resonant media. The back-propagating wave which is
generated in each round trip rapidly vanishes (numerically, it
is artificially absorbed), as we assume that the cavity contains
elements supporting only unidirectional beam propagation.
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The CML laser oscillation does not start from spontaneous
noise since the cavity is lossy for low-intensity cw radiation.
Therefore a relatively long and powerful many-cycle femtosec-
ond pulse [shown in Fig. 1(b)] was used for initiating the mode-
locked operation. Note that for R < 0.96 and T ∗ = 7.1ω−1

21 ,
as well as for R = 0.97 and R = 0.98 for T ∗ = 1.77ω−1

21 , the
amplitude of the seed pulse was doubled, to ensure that the
enhancement of losses of the radiation (particularly significant
in the transient regime) caused by the effect of line broadening
would not quench the laser operation in its initial stage.

We allowed the reflection coefficient R to vary between
0.89 and 0.98. We found that for the narrowband line with
T ∗ = 7.1ω−1

21 and for R < 0.92, the total intracavity losses
were too large, and the laser could not reach a stable
mode-locked operation, while for R � 0.92 it was possible to
initiate the desirable mode-locked regime. For the broadband
line with T ∗ = 1.77ω−1

21 , the minimal value of R, necessary
for sustaining the stable mode-locked operation became as
high as 0.97. Note that for the case of the homogeneously
broadened line the minimal value of R was as small as 0.9;
see Ref. [4]. The differences and similarities between all
these three regimes can be analyzed by looking at the energy
plots shown in Figs. 2(a) and 2(b). As long as the width of
the inhomogeneously broadened line remains substantially
narrower than the pulse spectral width in the stationary mode-
locked regime, the difference from the case of homogeneous
broadening is not essential; compare the black squares and red
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FIG. 2. (Color online) (a) Total intracavity energy and (b) fraction
of energy contained in the fundamental spectral band (between ω =
0 and ω = 1.77ω21) of a single pulse in a stationary mode-locked
regime as a function of reflectivity R of the outcoupling mirror for
three cases: (i) narrowband inhomogeneously broadened line with
T ∗ = 7.1ω−1

21 ; (ii) homogeneously broadened line; (iii) broadband
inhomogeneously broadened line with T ∗ = 1.77ω−1

21 . Note that in
(a) we plot the energy averaged over the round trip, while (b) shows
the energy at the location of the outcoupling mirror. Here T ′ = T ∗ω21.

(a
rb

.u
ni

ts
)

(a
rb

.u
ni

ts
)

.. . . .

(b)

(a)

FIG. 3. (Color online) (a) Spectra of the pulse in the stationary
mode-locked regime for two values of the reflection coefficient R

of the outcoupling mirror; (b) spectra of the pulses for different
values of the reflection coefficient R in the fundamental spectral
band. Frequency is measured in units of ω21. The gain and absorbing
media are both inhomogeneously broadened with T ∗ = 7.1ω−1

21 .

circles in Figs. 2(a) and 2(b). However, when the linewidth
(T ∗)−1 becomes comparable to the pulse spectral width, the
total intracavity energy is noticeably reduced; see the green
triangles in Fig. 2(a). At the same time, the fraction of pulse
energy contained in the “fundamental” spectral band (between
ω = 0 and ω = 1.77ω21) is approximately the same as in the
other two cases; see the green triangles in Fig. 2(b).

With increasing R, more and more energy is deposited
into higher harmonics of the fundamental frequency ω21.
This tendency can be clearly seen from Fig. 3(a), where
two spectra, for R = 0.92 and R = 0.98, are compared. The
efficient generation of the third and higher harmonics arises
from the fact that our model implies that the cavity contains
no dispersive elements in addition to the intrinsic dispersion of
the resonant media. In practice, extra sources of dispersion are
always present (if not in the band of interest below 2ω21 due
to a careful design of dispersion-compensating schemes, then
at least for frequencies greater than 2ω21), and therefore the
generation of the higher harmonics will be totally suppressed
(unless phase-matching conditions are provided intentionally),
and only the generation in the fundamental spectral band
will survive. Based on this reasoning, we believe that the
fraction of energy contained in the fundamental spectral band
is more important than the total amount of intracavity energy.
Figure 3(b) shows the spectra of pulses in the spectral band
of interest for different values of R. In order to complete the
picture, we plot in Fig. 4 the temporal shapes of pulses for
different values of R. Clearly, for all shown values of R we
obtain genuine single-cycle pulses.

Note the peculiarity of the spectrum shown in Fig. 3(a) for
R = 0.98. Two strong peaks appearing at 3.2ω0 and 4.4ω0
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(a) (b)

(c) (d)

FIG. 4. Temporal shapes of intracavity pulses in the stationary
mode-locked regime after they passed through a broadband low-pass
filter with the transmission band between ω = 0 and ω = 1.77ω21, for
different values of the reflection coefficient R (shown on each plot).
The gain and absorbing media are both inhomogeneously broadened
with T ∗ = 7.1ω−1

21 . Time is measured in units of ω−1
21 .

are attributed to multiple-wave frequency-mixing processes
(in our model the central frequency ω0 of the spectrum of the
intracavity pulse in the fundamental band coincides with ω21).
If the intracavity pulse had a narrowband spectrum, then these
peaks would appear exactly at the third and fifth harmonics
of the fundamental frequency ω0. In our case, the pulse has
an ultrabroadband spectrum, for which generation of the third
and the fifth harmonics is suppressed in favor of generation
of peaks at 3.2ω0 and 4.4ω0, appearing due to a broadband
continuum of four-wave mixing processes (and higher-order
mixing processes, as well) like ω4 = ω1 ± ω2 ± ω3, where the
frequencies ω1, ω2, and ω3 all lie within the ultrabroadband
spectrum of the single-cycle pulse. Each of these frequencies
has its own nonlinear phase shift. The coherent superposition
of all possible sets of triples E(ω1), E(ω2), and E(ω3) with
their individual phase shifts results in the appearance of the
spectral pattern shown in Fig. 3(a).

The (theoretical) observation of the “abnormal” shift of the
sum- and difference-frequency components from their canon-
ical positions (at 3ω0 and 5ω0), expected on the basis of the
standard nonlinear optics intuition developed predominantly
for quasimonochromatic fields, has been reported recently
in Ref. [19] in connection with propagation of single-cycle
pulses through a Kerr medium. In our case, the physics of
the nonlinear frequency conversion has a similar origin, but
with two important differences. First, for the case of the
Kerr medium only four-wave mixing processes are active
in the system, while in our model the resonant nature of
the nonlinearity initiates not only four-wave but also all
higher-order mixing processes as well. Second, and most
important, is that in contrast to the conservative nature of
the free-propagation problem of an intense single-cycle pulse
through a Kerr medium, studied in Ref. [19], here we are
dealing with a dissipative system with feedback. Thus, on
each round trip the pulse circulating inside the cavity gets
energy from the amplifier and deposits a part of this energy into
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FIG. 5. (Color online) Population differences for the absorbing
and gain media for the case when both media are (a) and (b) inhomo-
geneously broadened with T ∗ = 7.1ω−1

21 ; (c) and (d) homogeneously
broadened. The profiles shown are obtained after the laser reaches the
stationary mode-locked regime. The temporal profiles are taken at the
point exactly at the center of the combined absorbing-gain medium.
Values of the reflection coefficients are shown on the plots.

higher harmonics through the process of nonlinear frequency
conversion. The constant flow of energy into the pulse from
the amplifier can result in generation of very energetic higher
harmonics, in extreme cases even exceeding the energy in the
fundamental frequency band. Note also that similar abnormal
spectral shifts of higher harmonics have been reported recently
in our study of the CML laser with homogeneously broadened
gain and absorbing media in Ref. [20].

The physics of the CML laser shows up most distinctly
from analysis of the plots in Fig. 5, where we show graphs
of population differences at an arbitrarily chosen spatial
location inside the gain and absorbing media. Surprisingly,
in a wide range of parameters, and independently of the
intracavity power, the pulse always behaves as an ideal 2π

pulse with respect to the absorber, and simultaneously as a
nearly ideal π pulse with respect to the amplifier. The complete
excitation-deexcitation cycle (an analog of the 2π rotation of
the Bloch vector) of the absorber initiated by the pulse proves
the conjecture put forward in Sec. II that the inhomogeneous
broadening indeed does not bring additional losses with respect
to homogeneously broadened systems.

A long tail following the passage of the pulse through the
chosen point inside the amplifier appears as a result of the
pumping process [the term p in the right-hand side of Eq. (3)].
The pumping process is required to restore the initial level of
the population inversion fast enough to ensure that, until the
pulse returns to this point after completing the round trip, the
upper state will again appear as maximally populated.

V. CONCLUSION

We have reached the main goal of this study by way of
successful demonstration of the possibility of generation of
single-cycle pulses from the CML laser even in the case
when the inhomogeneous lines of the gain medium and the
intracavity absorber were extremely wide (with widths nearly
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equal to the central resonance frequencies). Essentially, the
laser keeps delivering single-cycle pulses under a rather broad
range of parameters. Moreover, the properties of these pulses
are only weakly dependent on the type of line broadening and
its width, provided the broadening is not wider than the spectral
width of the pulse. We did not explore the case of wider spectral
lines, because such a supernormal amount of broadening is not
characteristic of known semiconductor systems.
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