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Two-soliton and three-soliton molecules in optical fibers
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An experimental study of bound states of two solitons and of three solitons in dispersion-managed fibers is
presented. The existence regime and stability of such soliton molecules is investigated. With a programmable
pulse shaper we can flexibly shape launch signals; received signals are detected in amplitude and phase, and in
relative position and velocity. An equilibrium separation is demonstrated for both two-soliton and three-soliton
soliton molecules. It is also shown that stable molecules are possible only with antiphase pulses. Both types
of soliton molecule are viable for transmission in the same fiber, at the same wavelength. Together with single
solitons this opens the possibility of quaternary data transmission in a soliton-based format.
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I. INTRODUCTION

Today’s telephone and internet traffic is accommodated
by massive streams of short light pulses passing through
optical fibers. To keep up with the ever-increasing demand by
data-hungry applications, the data-carrying capacity of fibers
must be pushed up further. A useful benchmark is Shannon’s
theorem [1] which, however, was written with amplitude
modulation of an rf carrier in mind. Optical fibers provide
the additional possibilities of coherent (phase) detection and
of polarization multiplexing to improve the capacity over
Shannon’s discussion. On the other hand, optical fiber is a
nonlinear medium, and mixing products between signals are
a detriment. All told, the improvement over Shannon’s result
is not dramatic [2,3]. As was recently pointed out, however,
nonlinearity may also be put to an advantage so that an
improvement over the Shannon limit becomes possible [4].

According to Shannon’s theorem, the capacity is given by
the available bandwidth and by a factor depending on the
coding in the presence of noise. The bandwidth in optical fibers
can be estimated as 30–50 THz depending on how much loss
one deems acceptable; it is not anticipated that this figure can
be substantially improved by any available means. The other
factor is the binary logarithm of either the signal-to-noise ratio
(in an analog system) or the number of symbols distinguished
in the transmission (which is always less than the former). In
the particularly simple case of binary coding, which is used in
the bulk of all transmission systems in operation today, there
are just two symbols, typically the absence of light (logical
Zero) within a clock period, or a single pulse (logical One).
The clock period is often 25 ps, corresponding to a 40 Gbits/s
transmission rate. Without invoking further refinements, in
such a system the numerical value of the capacity equals that
of the bandwidth, i.e., 30–50 Tbits/s.

No single data source can ever provide such an enormous
data rate. In today’s transmission systems one employs wave-
length division multiplexing of many data sources where mul-
tiple channels at different optical frequencies are used simulta-
neously. This technique allows one to come close to the Shan-
non limit for binary coding using a multitude of manageable
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40 Gbits/s channels. However, the demand grows so rapidly
that one is now faced with a “capacity crunch” [5]. Economic
considerations favor the continued use of existing (legacy)
fibers. But then the only option for further improvement is to
find coding schemes which go beyond the binary format.

Current suggestions include the use of pulses with different
polarization, phase, and peak power as different symbols.
Two orthogonal states of polarization provide an extra bit
of information per clock period, provided that the cross
talk between the orthogonal states is kept in check. The
arrangement of phase and amplitude values is often displayed
as the “configuration space,” a complex plane in which each
symbol is represented by a point. If all symbols are on
a circle around the origin, they all have the same power
so that a minimum of nonlinear distortion is expected. For
example, quaternary phase-shift keying successfully provides
one extra bit per clock period. If more states are added
(as in quadrature amplitude modulation, etc.), however, one
has to keep in mind that each symbol is affected by noise;
just as in Shannon’s case they must not get too close to
each other in configuration space. Typically the power is
kept quite low to avoid nonlinear effects, or some complex
correction is employed—and often a combination of both.
Highly respectable results have been obtained along these
lines by using sophisticated coding schemes combined with
complex error-compensation techniques (for a recent review
see [6]), and some of these methods are in commercial use
already. But ultimately the available number of symbols is
limited to the available configuration-space area, divided by the
“noise ball” assigned to each symbol. When one approaches
this limit, basically one returns to an analog system. This is
peculiar as it was precisely the robustness of binary systems
that led to the abandonment of linear systems many years ago.

The central idea of Ref. [4] is that as the noise builds up
gradually during transmission, nonlinearity can be employed
to repeatedly collapse each noise ball to its center point; then
symbols can be packed more densely in configuration space
so that the capacity is increased. In this way, nonlinearity can
be used to exceed the Shannon limit.

The following presentation is organized as follows: After
outlining the soliton molecule concept in general in Sec. II, we
introduce the experimental setup for the multipulse generation,
pulse propagation, and measurement in Sec. III. In Sec. IV
we present experimental results concerning the two-soliton
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molecule. In this detailed study the existence regimes and
relative phase dependencies of these soliton pairs are deter-
mined. Section V is similar to Sec. IV but for the three-soliton
case. Section VI deals with the possibility of a simultaneous
transmission of four soliton-based coding symbols in the same
transmission line; this is followed by some conclusions in
Sec. VII.

II. THE SOLITON MOLECULE CONCEPT

Here we suggest an alternative approach in which also
nonlinearity is put to good use. In our proposal the fiber’s
nonlinearity is used to form soliton molecules; a brief account
was already given in Ref. [7]. Soliton molecules are based
on solitons, a stable kind of light pulse in fibers that was
predicted in 1973 [8] and first demonstrated in 1980 [9]. They
are stable solutions of the underlying nonlinear propagation
equation, the nonlinear Schrödinger equation (NLSE) [10,11],
and therefore they have been considered by many to be
the natural bits for optical telecommunication. Solitons rely
on a stable balance between the nonlinearity-induced phase
modulation and linear dispersive effects. They are robust in
the presence of perturbations: the fact that they are stable
solutions of the wave equation implies that perturbations can
heal out to some degree. Around the year 2000 solitons began
to be used in a few commercial systems, but in most recent
research they were discounted as supposedly useful for binary
coding only. This may have been premature.

For a discussion of possible coding formats we first need
to point out that the preferred type of fibers is now the
so-called dispersion-managed (DM) fiber. DM fibers consist
of fiber segments with alternating positive and negative group-
velocity dispersion coefficients. The combined length of one
positive and one negative dispersion segment is called the
dispersion period. Typically, DM fiber lines begin and end
with a half segment of one of the fibers. The advantage of
DM fibers over conventional constant-dispersion fibers is that
they simultaneously have high local and small path-average
dispersion. The former is beneficial for suppression of four-
wave-mixing effects whereas the latter helps keeping overall
dispersive effects low (in linear systems; in soliton systems
it keeps the power requirements low). Several groups have
shown almost simultaneously that in DM fibers solitonlike
pulses exist [12–16]; they are called DM solitons. Their
shape is different from that of standard solitons (closer to
a Gaussian rather than a hyperbolic secant [17,18]), and all
pulse parameters “breathe” in the dispersion period. As they
periodically return to their initial values, the pulse shape is
stable in the stroboscopic sense (i.e., when sampled once per
dispersion period).

Interaction forces between copropagating pulses are medi-
ated by the Kerr effect in the fiber. It has been known for a long
time that, depending on the relative phase of the solitons, there
can be attraction or repulsion [19,20]. In constant-dispersion
fibers two pulses of the same energy and velocity can,
depending on their relative phase ϕ, either attract (ϕ = 0)
or repel each other (ϕ = π ), or exchange energy (ϕ �= 0,π ).
Equal-energy soliton pairs with constant temporal separation
do not exist in constant-dispersion fibers. In DM fibers the
situation is much more complex: there is not even a fixed

phase relationship as the width and chirp breathe. It has turned
out, however, that a stable bound state of DM solitons exists.
We have experimentally demonstrated the existence of stable
antiphase soliton pairs [21]; this had also been noted before
in theoretical work [22–25] and was recently also pursued in
Refs. [26,27]. The pairs have a favored temporal separation
which is characterized by a stable equilibrium of attracting
and repelling forces. This is reminiscent of the equilibrium
spatial separation of two nuclei in a diatomic molecule;
we therefore called this structure a “soliton molecule.” The
binding mechanism is based on the interaction forces, which,
however, are strongly modified in DM fibers; this was shown
in detail in Ref. [28]. It remained open in Ref. [21] whether
soliton molecules of more than two solitons exist, but there
had been numerical indications [23,24,27,29].

The core of our present suggestion is that such a three-
soliton molecule exists, and may be suitable for enhanced
coding of data. This basic idea has already been raised in
Ref. [30] where a solution of the NLSE (constant-dispersion
fiber) was found that is basically a well-separated three-soliton
compound. However, given the large separation of the pulses
the binding forces in that situation must have been quite weak
(if nonzero at all [31]). Also, two-pulse molecules in the
same fiber would need to have two very unequal pulse powers
which is awkward from the technical standpoint of detection
at the receiver. A recent more detailed theoretical work deals
with two-soliton compounds in constant-dispersion fibers [32].
While these compounds are also called soliton molecules they
are qualitatively different from soliton molecules in the DM
case. Also, Ref. [30] is silent about molecules containing more
than two pulses. DM fibers, now the commonly deployed fiber
type, are not treated in Refs. [30,32].

It must further be mentioned that soliton molecule
formation has been observed inside the resonator of fiber lasers
[33–42]. However, in these systems the underlying equation
is not the nonlinear Schrödinger equation but the complex
Ginzburg-Landau equation [42,43]; these compounds (with
properties different from the ones studied here) therefore do
not exist in passive fibers. Here we restrict ourselves to the
nonlinear Schrödinger case because we consider it to be better
compatible with actually employed real-world transmission
systems.

In this paper the question of whether soliton molecules
of more than two pulses exist is answered in the affirmative.
We report here the experimental observation of single solitons
and of two- and three-soliton molecules existing under the
same circumstances in the same DM fiber. To describe all
propagation effects of a pulse u(t,z) in our experimental fiber
line we use the following generalized dispersion-managed
nonlinear Schrödinger equation:

∂

∂z
u = i

K∑
k=2

{
ik

k!
βk(z)

∂k

∂tk
u

}
+ iγ (z)|u|2u

− α(z)

2
u − iγ (z)TR

∂

∂t
|u|2u. (1)

Here βk(z) are the z-dependent dispersion parameters, and
we use K = 5. γ (z) is the nonlinearity parameter, α(z)
describes the fiber and splice losses, and t is time in a
comoving frame. The Raman effect is included in linearized
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FIG. 1. (Color online) Experimental setup. The pulse shaper consists of a liquid-crystal-based spatial light modulator (SLM) with amplitude
and phase masks in a 4f setup with two diffraction gratings (G). The desired initial shape is carved from the OPO pulses; the result is monitored
by an optical spectrum analyzer (OSA). λ/2, half-wave retarder; PBS, polarizing beam splitter. The DM fiber link is described in the text.
Flip mirrors (FM) steer either the fiber input or the fiber output signal towards data acquisition. BS, beam splitter; BBO, frequency-doubling
β-BaB2O4 crystal; CCD, camera. Both second-harmonic generation (SHG) frequency-resolved optical gating (FROG) and blind FROG
measurement is provided; the latter requires a sample of the OPO pulse as a reference. Both pulse shaping and data acquisition are computer
controlled for automated parameter scans.

form, an approximation well justified for pulse durations of
a few hundred femtoseconds; TR is the corresponding Raman
response time.

III. EXPERIMENTAL SETUP

The experimental setup for studies of soliton molecules is
shown in Fig. 1. As a light source we use a commercial system
consisting of a solid-state laser (Verdi V10 by Coherent, Inc.)
pumping a combination of a Ti:sapphire laser and an optical
parametric oscillator (OPO) (Mira by Coherent, Inc.). The
output wavelength, tunable between 1480 and 1600 nm, is set
to λ0 = 1540 nm; the average output power is 200 mW. The
system is mode locked and produces nearly Gaussian pulses,

uOPO(t) =
√

P exp

[
−1 + iC

2

t2

T 2

]
, (2)

where P is the peak power (typically P = 30 W), C is the
chirp (C ≈ 0.4), and T is the pulse duration (here, T = 150 fs,
corresponding to a full half-width τFWHM ≈ 250 fs). This pulse
duration was required for correct scaling of the experiment (see
below); it was obtained after modification of the laser system
which also brought the repetition rate to νrep = 57 MHz. A
λ/2 wave plate in combination with a polarizing beam splitter
is used for power adjustments and outcoupling of a reference
signal used for cross-correlation measurements (see below).

Desired pulse shapes suitable for soliton interaction mea-
surements are carved from uOPO(t) with a pulse-shaper setup.
It consists of two gratings (G), two achromatic lenses (focal
length +250 mm), and a spatial light modulator (SLM) in a
symmetric 4f setup [44]. The SLM (CRI, Inc. model SLM-
128D-NM) has two phase masks with 128-pixel resolution and
allows amplitude and phase modulation in the spectral domain.
In this configuration the frequency resolution is 75 GHz/pixel.
This limits the shaped temporal wave forms to a duration of
13.3 ps.

As a reasonable approximation to the shape of soliton
molecules we prepare a temporal complex field u(t) consisting
of n pairwise-antiphase Gaussian pulses with peak power
P0, pulse width T0 (we use T0 = 178 fs throughout), and

separation σin. This is described by

u(t) =
√

P0

n∑
k=1

uk(t) with

(3)

uk(t) = exp

[
− [2t + (n − 2k + 1)σin]2

8T 2
0

+ i
(−1)kπ

2

]
.

The center of this structure is at t = 0 in the frame of
reference of the original laser pulses. Numerical Fourier
transform of Eq. (3) provides the target spectrum to be fed as
control signal to the SLM (see Fig. 1). We correct this control
signal according to the linear spectral chirp of the initial laser
pulses. We monitor both the spectral profile of the laser pulse
and the generated structure with an optical spectrum analyzer
(OSA), and check the latter against the desired spectral profile.
The spectral information is also used for fine-tuning of the
pulse energy and for compensation of fluctuations and drift of
laser power and wavelength during extensive parameter scans.

A microscope objective (20× numerical aperture 0.35
Infrared Apochromat by Nachet Vision, Dijon, France) is used
to couple the pulse groups thus prepared into a custom-made
DM fiber. This fiber line is a scale model of a typical
commercial fiber line with 40 Gbit/s bit rate using τFWHM =
7.5 ps pulses. When the pulse duration τFWHM is scaled down,
fiber length must be reduced accordingly in proportion to
τ 2

FWHM. With the ≈250 fs pulses used here the dispersion
period is therefore scaled down 900-fold. Our fiber link has
ten dispersion periods, or 460 m of fiber, and corresponds to a
real-life version with a span of just over 400 km.

Each dispersion period consists of a half segment of
anomalously dispersive fiber (OFS Fitel TrueWaveSRS), a full
segment of normally dispersive fiber (OFS Fitel TrueWaveRS),
and another half segment of TrueWaveSRS fiber. Power losses
are mostly due to the 20 splices. Each splice was assessed
individually; the total loss comes to αsplice = 1.55 dB. We
intentionally do not use amplifiers in order to preclude any
possibility of influence from gain dynamics; in exchange we
must accept that the pulse shapes are affected somewhat by the
loss. In the scaled system pulse energy is somewhat elevated:
Pulse energies of ≈10 pJ as used here correspond to ≈0.3 pJ in

043834-3



P. ROHRMANN, A. HAUSE, AND F. MITSCHKE PHYSICAL REVIEW A 87, 043834 (2013)

TABLE I. Fiber parameters as obtained from measurement and
used for numerical simulations. All dispersion values βi are given in
units of psi/km.

Individual fibers Finished DM fiber

TrueWave SRS TrueWave RS (10 periods)

L 24 m 22 m L 460 m
β2 − 5.159 4.259 β2 − 0.654
β3 7.778 × 10−2 5.948 ×10−2 γ 1.72 W−1 km−1

β4 − 2.524 ×10−4 − 5.636 ×10−4 TR 5.8 fs
β5 7.251 × 10−14 1.005 ×10−5 αsplice 1.55 dB

a real-world system. Note that some perturbations grow faster
than τ−2

FWHM, e.g., the Raman effect as τ−4
FWHM; this implies that

in assessing complications from these effects our experiment
is very conservative. All fiber parameters are listed in Table I.

Mirrors in flip mounts make it possible to switch rapidly
between assessment of the shapes of either the pulses launched
into the fiber link or the ones emerging from the distal end.
As we are interested in obtaining both amplitude and phase
information, data acquisition is centered around a homemade
frequency-resolved optical gating (FROG) setup [45] which
allows one to take either a second-harmonic generation (SHG)
FROG spectrogram or a blind FROG spectrogram—again by
flipping a beam splitter (BS). Blind FROG involves a cross cor-
relation of the pulse under test with the reference which is taken
from the otherwise unused output of the attenuator described
above; note that this is a single pulse as in Eq. (2). The complex
temporal and spectral field is obtained from the raw data
with a standard principal components generalized projections
(PCGP) pulse reconstruction algorithm [45]. For extensive
parameter scans a reduced data representation was preferred,
for which the SHG and blind FROG spectrograms are reduced
without reconstruction to the intensity autocorrelation (IAC)
or the intensity cross correlation (ICC), respectively. Both
pulse shaping and data acquisition are computer controlled
with LABVIEW software (National Instruments Corporation,
Austin, TX, USA) for rapid data gathering in sequential runs.

The fiber length of nearly 460 m introduces a delay between
the signal and reference pulses of blind FROG. One might use
another delay line for the reference; however, its length would
introduce stability issues. We chose to derive the reference not
from the same laser pulse but from its 129th successor, so that
no further delay is required. Some jitter is introduced into our
measurements due to laser fluctuations on time scales from
the 2μs delay to the camera exposure time of 1 s. Tests show
that in comparison of IAC and ICC, the latter systematically
finds the pulse duration longer by (4.8 ± 1.2)%. This error was
considered a minor detriment which can be neglected. Slower
fluctuations, on the time scale of 1 min, cause an apparent
temporal shift of the center position of pulses which can
amount up to ≈400 fs, but is easily removed from the data later.

Experimental tests were accompanied by full numerical
simulations. We use a split-step Fourier algorithm to calculate
Eq. (1). The Kerr parameter γ is obtained from pulse energy
measurements and comparisons between experimental and
simulated data. The dispersion parameters β±

2–5 were measured
using white-light interferometry. Splice losses were included
as measured individually during the fiber link assembly. The

Raman response time TR was taken from fits performed on
data from former experiments on Raman-shifting soliton trains
[46]. The pulse-shaper setup introduces a slight spectral chirp
into the launch pulses, which is also taken into account.

IV. STABILITY AND EXISTENCE REGIME OF THE
TWO-SOLITON MOLECULE

In this section we present experimental evidence for the
stability of the two-soliton molecule. This presentation goes
beyond descriptions given earlier in Refs. [21,28,47], and
serves for comparison with the description of three-soliton
molecules in the next section.

Soliton pairs can be considered a stable entity (“molecule”)
when there is a particular equilibrium separation σeq at which
interaction forces take a net zero value, and when closer pairs
experience repulsion and more distant pairs attraction. To test
whether this is the case we prepare pairs of Gaussian pulses in
antiphase and launch them into the fiber. Data acquisition at the
distal fiber end employs intensity cross-correlation measure-
ments. As described above, an unmodified laser pulse is used
as reference signal. We obtain data known as blind FROG
spectrograms [45] which are easily reduced to ICC traces
by integration over the frequency axis. ICC data offer direct
information about the peak power ratio, the relative peak posi-
tions (expressed as their temporal separation σ ), and—relevant
in the three-soliton molecule case below—asymmetry of the
separations. Moreover, shifts of the central frequencies of
individual peaks �ω can be assessed, and with the conversion

∂σ

∂z
= β2�ω = v (4)

are translated to relative (average) velocities v; note the
peculiar dimension of s m−1.

Figure 2 shows measured data when input separation is
varied, at three energy levels: from the left to the right column,
the individual pulses have 9.8, 11.7, and 14.4 pJ, respectively.
From cross correlations (top panels) the separation is extracted
and shown in the left part of the lower panels. The pertaining
velocity is shown adjacently in the right part. For comparison,
the dashed lines repeat the initial separation (the initial velocity
is zero throughout); intersections of the data with these lines
indicate the absence of net change.

Note that trivially there is always an indifferent equilib-
rium at very large separations because interaction eventually
becomes negligible. Consequently all data must tend towards
the dashed lines for large initial separation. Indeed they do,
but we will disregard these trivial equilibria in the following
discussions. In the low-energy case there is no nontrivial
equilibrium; indeed, for σin > 0.9 ps the interaction becomes
negligibly weak. In the elevated-energy case one sees a
collision near 0.95 ps (close distance and velocity zero), but no
equilibrium. On the other hand, in the intermediate case there
is an unchanged separation and simultaneously a zero velocity
at σin = 0.72 ps: this is an equilibrium. More specifically, one
sees that for input separations narrower than the equilibrium
value the output separation is increased (i.e., there is net
repulsion), whereas for wider input separations there is net
attraction. Therefore this equilibrium is a stable one. The signs
of the velocity above and below the equilibrium point support
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FIG. 2. (Color online) Evolution of separation between pulses in a pair when the initial separation is varied. Data are shown for three
different launch energies (left, center, and right columns); the indicated numbers refer to single-pulse energies. Upper row: Cross-correlation
traces measured at fiber end, color coded. The left pulse was centered on t = 0 to remove timing fluctuations. Lower row: Measured separation
and velocity (data points) compared to initial separation (dashed lines). Stable equilibrium σeq ≈ 0.72 ps is characterized by the separation
crossing the input separation in the appropriate direction (see text), and simultaneously the velocity being equal to zero.

this conclusion. We have also convinced ourselves that such
measured data correspond very well to simulation results [7].

A. Global parameter dependence

We proceed to map out further parameter dependencies,
both close to and far away from the equilibrium position. In
doing so experimentally, we have to observe one restriction.
One might plot σ vs σin as a function of propagation distance
along the fiber. This was done, e.g., in numerical investigations
in Ref. [48] (see Fig. 4 therein). However, in an experiment it
would require one to cut back the DM fiber link, destroying
it in the process. It would then be impossible to repeat
the investigation or test for other parameter dependencies
in the same fiber. Rather than cutting back the fiber length we
vary the soliton energy. Higher-energy solitons have a shorter
duration and vice versa, and the overall effect is similar.

Figure 3(a) shows, at the fixed fiber length of ten dispersion
periods as before, measured data of the output separation
σ as a function of the initial separation σin and the pulse
energy. The pulse pair energy here is twice the individual
pulse energy; corrections due to destructive interference would
apply for much closer separations but are minimal here. These
data were obtained from 1600 individual measurements of the
output-signal SHG FROG spectrograms from which the output
separations are extracted. For each energy we calculated the
soliton width; values 132 < T0 < 212 fs occurred. We then
prepared the pair accordingly as two Gaussians in antiphase
with the desired initial separation σin.

There are two auxiliary curves in Fig. 3(a). The dotted
curve marks the equilibrium separation as predicted from
calculations using an iterative averaging method. It is based on

propagation simulations of the unperturbed DM NLSE [Eq. (1)
with K = 2, α = TR = 0] and represents the ideal case. The
long-dashed curve is similar, but from the full Eq. (1) solved
numerically, and represents the realistic case. In either case
the equilibrium separation decreases with increasing energy.
At low energy a deviation between the two predictions is
apparent. The “realistic” case requires more initial energy,
with everything else the same, because it takes into account
energy losses. Below ≈7 pJ there is no molecule formation at
all: a threshold energy exists. Below this threshold DM solitons
show only repulsion for all initial separations; they then behave
similarly to fundamental solitons in constant-dispersion fibers.

In Fig. 3(b), left part, the same data set as in Fig. 3(a) are
shown in a rescaled manner. The input and output separations
are normalized to the numerically predicted equilibrium
separation (realistic case). Therefore the equilibrium situation
is now found along the horizontal dashed line. It is clearly
distinguished from another regime of small output separation
near the dash-dotted line: here the solitons collide right at
the end of the fiber. With increasing pair energy a higher
initial separation is necessary to observe a soliton collision
at the fixed distance of the fiber length. Both branches split at
Esol ≈ 9 pJ, just above the threshold of ≈7 pJ. The splitting
point marks the lower boundary of energy where DM soliton
attraction becomes dominant. The soliton molecule found at
the splitting point is somewhat degenerated because there is
no binding energy or restoring force.

The corresponding full numerical simulation of Eq. (1) is
shown in the left part of Fig. 3(c). The two major branches
are reproduced in good agreement. Differences occur in the
space between: subsequent collisions can occur after the
first. In each collision details of the chirp and phase affect
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FIG. 3. (Color online) Global interaction pattern of a pair of dispersion-managed solitons. (a) Separation of DM solitons after ten dispersion
periods when the pulse energy Esol and initial separation σin are varied. Data are obtained from 1600 individual autocorrelation measurements.
Also shown are numerically predicted equilibrium separations for the realistic (dashed line) and ideal (dotted line) cases. (b) Left side: Same
data as in (a) but normalized to the respective equilibrium separation σeq of the realistic case. The branches of first collision (diagonal) and
equilibrium separation (horizontal) are marked by dash-dotted and dashed lines, respectively. Right side: example of measured autocorrelation
traces at Esol = 25.5 pJ in gray scale. A periodic breakup of the soliton pair is observed at 2.1σeq < σin < 3.1σeq. (c)As (b) but from full
numerical simulation for comparison.

subsequent behavior, and the complex interplay may result in
a self-similar (fractal) structure of the parameter space. This
behavior has been studied before [48]. Both Figs. 3(b) and
3(c) are accompanied to their right by IAC traces taken at
Esol = 25.5 pJ (this position is marked in the main part of
the figures). The repetitive collisions are reflected in periodic
changes of the output separation. Agreement is good except
that the finer detail is not resolved in the experimental data.

With a view to applications of soliton molecules for
data transmission, the energy region near Esol ≈ 11–16 pJ is
preferred. In this regime any complicated dynamics is absent:
there is just a wide capture range for the soliton molecule.

B. Relative phase dependence

Numerical results indicate that for the stability of the
two-soliton molecule their relative phase must be π . This
prediction is now tested experimentally. In Fig. 4 ICC traces of
fiber output signals are shown for two different single-soliton
energies and for relative phases of 0 and π , respectively. For
better visibility the time frame is centered on the “center of
mass” of the soliton compounds. This center was determined
by numerically calculating the position of maximum overlap
with a broad smooth reference pulse; the necessary adjustment
eliminated the timing fluctuations mentioned above. In the
antiphase case the double-pulse structure is preserved for
all initial separations; the repulsive regime at σin < 700 fs
is clearly visible. For same-phase pulses a repulsive regime
is not observed; instead, pulses merge and interfere. As
the center column shows, an increased energy leads to
somewhat narrower equilibrium separation, but otherwise has
little impact. We obtain further information about the phase
dependence by continuously varying the phase difference (the
phase of the leading pulse minus that of the trailing pulse)
through a 2π interval at σin = 750 fs (close to the equilibrium

separation). This is shown in the right column. The structure
is almost invariant under phase variations near both ϕ = 0 and
ϕ = π . However, the strong dependence on σin betrays that the
former lacks stability in the presence of perturbations; only the
latter is quite insensitive to all parameter variations shown.

A combination of continuous phase variation and energy-
level variation is given in Fig. 5. At Esol = 14.4 pJ (left panel) a
deviation from ϕ = π does not seriously disturb the two-pulse
structure over our link length of ten dispersion periods. At
somewhat higher energy (Esol = 20.3 pJ, center panel) the
energy transfer rate due to the Raman effect is increased, but
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Left column: Opposite-phase pulse pairs with 11.7 pJ pulse energy
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at 14.4 pJ. Opposite-phase pulse pairs maintain their double-pulse
structure, whereas in-phase pairs tend to merge. Right column:
Continuous variation of phase difference at 14.4 pJ. Markers indicate
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FIG. 5. (Color online) Timing of fiber output signals when the
relative phase is continuously varied. Shown are ICC traces of fiber
output signals at σin = 750 fs. From left to right the (single-)pulse
energy is increased. At low energy the double-pulse structure remains
intact at all phases; at higher values there is clear phase dependence.
The pair is preserved best at the medium energy and at ϕ = π or just
above.

a two-pulse structure is still maintained. At Esol = 27.9 pJ
(right panel) there is a strong phase dependence. In a region
−π/4 < ϕ < 3π/4 the pulses merge together; at other values
they repel. As a qualitative explanation we offer the following
consideration: Under the conditions here the relative phase
evolves rapidly during propagation; once the pulses are in
phase they mutually attract strongly and merge into a single
pulse. In any event, the double-pulse structure is preserved at
all energy levels shown as long as the relative phase is ϕ = π .

V. STABILITY AND EXISTENCE REGIME OF THE
THREE-SOLITON MOLECULE

In this section we present an experimental demonstration of
the existence of three-soliton molecules. They were predicted
in Refs. [23,24,27,29] based on numerical simulations. We
recently succeeded with an experimental verification, and have
given a preliminary report in Ref. [7]. Here we give a full
account.

Following Eq. (2), all three pulses in the triplet are prepared
with the same peak power and width; they have alternating
phases and are initially equidistant. We denote by σL the
distance obtained after propagation between the leading and
center pulses, and σT that between the trailing and center
pulses. In Ref. [7] we compared autocorrelation measurements
with simulations (and found close agreement). However, it
takes cross correlation to do full justice to possible changes of
the two separations. Figure 6 shows blind FROG data for three
different pulse energy values.

The initial separations σin of the antiphase triple pulse were
varied and compared with the resulting output separations
σL and σT. Blind FROG traces were obtained at the fiber
output; timing fluctuations described in Sec. III were removed
by centering the time frames of the individual ICC traces
on the maximum of the central peak. Figure 6 shows pulse
separations and velocities for three different energy levels.
The upper row shows the cross-correlation traces; the lower
the extracted separations (left) and velocities (right). Again
(compare Fig. 2), at low energy (left column) and at large
separation the interaction vanishes beyond σin = 0.8 ps. At
high energy collisions can occur (witness the right column
at σin = 0.9 ps). However, in the intermediate case (center
column) at σin = 0.73 ps there is clear indication of a stable
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FIG. 7. (Color online) Cross-correlation measurements of fiber
output signals when the parameters of the pulse triplets are varied.
Left column: Soliton triplets at 9.9 pJ pulse energy with opposite (top)
and same (bottom) phase. Center column: Similar but at 11.7 pJ.
Opposite-phase triplets maintain their structure, whereas in-phase
groups tend to collapse except for sufficiently large initial separations.
Right column: Continuous variation of the phase difference at 11.7 pJ.
Markers indicate corresponding parameters in the center column. The
triplet structure is maintained for relative phases 0.9π � ϕ � 1.2π ;
else it decays. Launch conditions: σin = 750 fs, Esol = 11.7 pJ.

equilibrium. Only the velocity of the trailing pulse, vT, has
not fully died down yet, a consequence of the fact that
in a realistic fiber a perfectly constant pulse shape can
only be approximated. The existence of a stable equilibrium
establishes the existence of three-soliton molecules.

A. Relative phase dependence

In a manner resembling that used for Fig. 4 we determined
the phase dependence by comparing ϕ = 0 and ϕ = π ;
see Fig. 7. For two different energies the ICC traces of
opposite-phase triple pulses are shown top left and center. The
corresponding measurements for in-phase pulses are shown

bottom left and center. The triple-pulse structure is maintained
for ϕ = π and all initial separations, but in the case of ϕ = 0
the structure collapses. Only for large initial pulse separations
above σin ≈ 1 ps is the structure preserved, obviously on
account of the weak interaction at such large separation.

At the equilibrium separation (Esol = 11.7 pJ, σeq =
750 fs) we continuously varied the relative phase in the
range 0 � ϕ � 2π ; this is shown to the right. The triple-
pulse shape is best maintained for relative phase values in
the range 0.9π � ϕ � 1.2π , showing that the stability and
existence of the three-pulse molecules rely on a relative
phase near π . Remarkably, the preferred region appears to be
centered slightly above π . It is conceivable that this deviation
accomplishes a certain precompensation of additional phase
rotations due to higher-order dispersion and nonlinear effects.

VI. FOUR-SYMBOL TRANSMISSION

We have described so far how we combined two or three
Gaussian pulses in antiphase to create the compound shapes to
be launched into the fiber. We now proceed to a full amplitude
and phase reconstruction of the shapes at both fiber input
and output, as obtained from measured SHG FROG traces.
Unfortunately SHG FROG suffers from several ambiguities,
especially in the case of temporal or spectral zeros [47,49].
Therefore the field reconstructions from the measured FROG
traces were repeated several times, and a low FROG error
value [45], agreement between the measured and reconstructed
FROG traces, and a good agreement between independently
measured and reconstructed spectra were used as indicators for
a correct field retrieval. Ten correct reconstructions from the
same FROG trace were used to calculate the error bars shown
in Fig. 8. The figure shows a single soliton (a), a two-soliton
molecule (b), and a three-soliton molecule (c), respectively.
Together with the absence of a pulse this set constitutes four
symbols which allow quaternary coding of information. The
pulse amplitude shapes obtained from numerical simulations
of the generalized DM NLSE (1) are shown at the initial
position (gray area) and at the fiber end (hatched area); the
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black solid line presents the experimental output shape. The
corresponding phase data are shown in red (numerical) and
blue (experimental).

In each case the gray and the hatched areas are the numerical
input and output profiles, respectively. The power loss in the
fiber is apparent; some asymmetry is introduced, and some
pedestal is generated. The measured output amplitude (bold
line) follows the numerical data very closely even where the
shape is modified. This demonstrates that, while the shape is
not perfectly maintained (as was never expected in this lossy
fiber), all deviations are well accounted for. For example, the
Raman effect shifts the solitons in frequency depending on
their peak power so that differences in the peak powers cause
slightly different frequency shifts. This corrupts the initial
relative phase of π , and there is an energy transfer between the
solitons. By virtue of dispersion, however, the relative phases
keep evolving, and eventually this energy transfer reverses
itself. In this sense the Raman perturbation is not catastrophic
if unchecked: it limits its impact all by itself. Meanwhile these
multisoliton compounds hang together as entities and maintain
their equilibrium separation.

Note that for technical application, a FROG measurement
is certainly not required; straightforward energy detection
with thresholding is sufficient. For the data of Fig. 8 the
symbol energies were measured as 10.5, 22.2, and 35.1 pJ,
respectively; this corresponds to a ratio of 1:2.1:3.3, which is
fairly close to the ideal integer 1:2:3 relation.

VII. CONCLUSIONS

In conclusion we have experimentally investigated inter-
actions of adjacent dispersion-managed solitons and could
demonstrate stable equilibrium positions of neighboring
pulses. In this way we could demonstrate the existence and
determine regimes of stability for soliton molecules involving
two or three solitons. There is a range of pulse energies for
which the soliton molecules maintain their structure best.
Below that energy range the interaction is too weak to form
a stable equilibrium; at higher energies higher-order effects
become detrimental. Transmission without errors will not be
possible over unlimited distances, but for realistic long-haul
transmission lines soliton molecules appear feasible.

Our setup was designed to produce experimental evidence,
i.e., a proof of principle, that a molecule of three solitons

exists. It was supposed to provide detailed information about
pulse shapes and small perturbations thereof, in order to help
detailed understanding. It was not designed, nor is it suitable,
for actual transmission tests. The setup is limited in speed not
only by the time needed for data acquisition using a FROG
algorithm; it is also limited by the time it takes to set the pulse
shaper to parameters suitable for the next symbol. Both these
times are on the order of 1 s.

Of course, a system designed for technical application
would not be restricted by these factors. All symbols would be
generated simultaneously by a combination of several diode
lasers and some micro-optic circuitry, and the desired symbol
would be routed to the fiber by electro-optic modulators fast
enough to respond within the clock period. Such modulators
are commercially available for data rates up to 100 Gbits/s.
At the receiver end, it will suffice to determine the energy of
each symbol. This can be done adequately by fast photodiodes
combined with three threshold detectors; such technology also
exists.

Once such tests are made it will also be critically important
to study intersymbol interactions because any application
will involve wavelength division multiplexing. Such studies
for ordinary and dispersion-managed solitons showed that
degradation of data integrity due to collisions is manageable
[11]; a similar assessment for soliton molecules has not been
performed yet.

Finally we point out that the use of different soliton
molecules advocated here does in no way interfere with the
use of different states of polarization, or different phases. It
should be noted that all four symbols described here have a
well-defined state of polarization (constant linear) and phase
(there are two opposite values even when the chirp evolves
in the dispersion period). Therefore, coding based on soliton
molecules can be combined with both polarization and phase
multiplexing schemes. One may anticipate that the latter
schemes will benefit from the soliton molecule concept by
a twofold increase of their data rate.
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