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Resonant state expansion applied to two-dimensional open optical systems
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The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is applied to two-
dimensional open optical systems. The analytically solvable homogeneous dielectric cylinder is used as an
unperturbed system, and its Green’s function is shown to contain a cut in the complex frequency plane, which is
included in the RSE basis. The complex eigenfrequencies of modes are calculated using the RSE for a selection
of perturbations which mix unperturbed modes of different orbital momentum, such as half-cylinder, thin-film,
and thin-wire perturbation, demonstrating the accuracy and convergency of the method. The resonant states for
the thin-wire perturbation are shown to reproduce an approximative analytical solution.
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I. INTRODUCTION

The electromagnetic spectrum of an open optical system is
characterized by its resonances. Optical resonators [1], such as
planar microcavities [2], photonic crystal fibers [3], dielectric
microspheres [4], microdisks [5,6], and microcylinders [7-9],
are examples of such systems designed to have a series of
narrow resonances in their optical spectra. Such resonances,
known as cavity modes in planar microcavities and whispering
gallery modes (WGMs) in microspheres and microcylinders,
are characterized by their spectral positions and linewidths,
given, respectively, by the real and imaginary part of the
complex eigenfrequencies of the system.

Finite linewidths of resonances are typical for open systems
and are due to energy leakage from the system to the
outside. This leakage can be enhanced by various structural
imperfections and scatterers. In particular, when an object is
placed inside or in close proximity to the cavity, the resulting
modification of the electromagnetic susceptibility perturbs the
cavity resonances, changing both their position and linewidth,
most noticeably for the high-quality (i.e., narrow-line) reso-
nances. This effect is the basis for resonant optical biosensing
[7,10,11]. The changes in the spectral properties of resonators
in the presence of perturbations can be used to characterize
the size and shape of the attached nanoparticles [12,13].
The WGM resonances in microdisks and spherical micro-
cavities have been used in sensors for the characterization
of nanolayers [14], DNA [15], and protein molecules [16],
as well as for single-atom [17] and nanoparticle detection
[18,19]. Other applications of high-quality modes include
miniature laser sources [20-23] and photonic-crystal optical
fibers [3].

While the eigenmodes of resonators with simple and highly
symmetric geometries can in some cases be calculated exactly,
determining their perturbations presents a significant challenge
as the popular computational techniques in electrodynamics,
such as the finite difference in time domain [24,25] or finite
element method [26-28], need excessively large computa-
tional resources both in memory and processor usage [29,30].
This is due to the extremely large computational domain
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in space and time required to model high-quality modes.
To treat such narrow resonances and their perturbations, we
have recently developed [31] a rigorous perturbation theory
called resonant state expansion (RSE) and applied it to planar
optical resonators with different perturbations [32] as well as
to spherical resonators reducible to effective one-dimensional
(1D) systems [31]. We have demonstrated on exactly solvable
examples in 1D that the RSE is areliable tool for the calculation
of wave numbers and electromagnetic fields of resonant states
(RSs) [32], as well as the transmission and scattering properties
of open optical systems.

In the present work, we report an important step in the
development of the RSE, extending the method to effectively
two-dimensional (2D) systems (i.e., 3D systems translational
invariant in one direction) which are not reducible to effective
1D systems. We provide a summary of the theory in a
general 3D case, apply it to an effective 2D system, and
then consider examples which cover several important types
of perturbations. We treat an ideal dielectric cylinder with
uniform dielectric constant in vacuum as an unperturbed
system and calculate perturbed RSs for homogeneous (i.e.,
reducible to 1D) and inhomogeneous perturbations, including
half-cylinder, thin-film, and thin-wire perturbations. None
of these inhomogeneous perturbations have known exact
analytic solutions which could be used for verification of
the RSE. However, the case of a narrow wire inside a
cylinder allows for an approximate analytic solution suitable
for weak perturbations [33,34]. This solution is compared
with the present results of the RSE, demonstrating good
agreement.

In the literature, the scattering properties of an open
system are often described in terms of a continuum of its
eigenstates, all having real frequencies. Such a continuum,
together with isolated eigenmodes (e.g., waveguide modes),
if they exist in the spectrum, form a mathematically complete
set of states suitable for expansions. The continuum, however,
presents a significant obstacle for computational methods like
perturbation theory, which are based on such expansions. The
concept of RSs, naturally following from the observation of
resonances in the spectra of open systems, introduces another
complete set of eigenstates which eliminates the continuum
from the spectrum, replacing it by a countable number of
discrete modes with complex frequencies. This is the basis
used in the RSE.
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One striking feature of 2D systems, which is revealed in the
present work, is the presence of a one-dimensional continuum
in the manifold of RSs. This continuum is specific to 2D
systems and is required for the completeness of the basis and
thus for the accuracy of the RSE applied in 2D, as discussed in
this work in some detail. Such continua are generally known in
the theory of quasiguided modes in photonic-crystal structures
[35] as potential sources of Wood-Rayleigh anomalies in
optical spectra [36—40]. Technically, they are caused in that
case by the presence of square roots in the photon dispersion
of light propagated and Bragg scattered inside the photonic
crystal. In the case of a dielectric cylinder, which is used for
the RSE in 2D, the continuum originates mathematically from
the cut in the cylindrical Hankel functions solving Maxwell’s
equations outside the cylinder.

The paper is organized as follows. In Sec. II, we give
the general formulation of the RSE for an arbitrary three-
dimensional (3D) system. In Sec. III, we treat the special
case of effective 2D systems using the homogeneous dielectric
cylinder as an unperturbed system and adding the contribution
of the cut to the RSE. This is followed by examples illustrating
the method and comparing results with existing analytic
solutions. Details of the general formulation of the method,
its application in 2D, and the calculation of matrix elements
for specific perturbations are given in Appendices A-D.

II. RESONANT STATE EXPANSION

In general, RSs in an open optical system with local
dielectric constant &(r) and permeability u = 1, where r is
the three-dimensional spatial position, are the eigensolutions
of the Maxwell wave equation,

V x V x E,(r) = k2e(r)E,(r), (1)
which satisfy the outgoing wave boundary condition

E,(r) —> r~P=D2ckr for 5 00, 2)
where r = |r|, D is the space dimensionality, k,, is the wave-
vector eigenvalue of the RS numbered by the index n, and
E,(r) is its electric-field eigenfunction. The time-dependent
part of the RS wave function is given by exp(—iw,t) with the
complex eigenfrequency w, = ck,, where c is the speed of
light in vacuum. RSs are either stationary or time-decaying
solutions of Maxwell’s equation. The wave numbers k,, of
time-decaying RSs lie in the lower half of the complex & plane
and come in pairs, having the opposite real and equal imaginary
parts. Indeed, if E,(r) and &, corresponding to RS n satisfy
Egs. (1) and (2), then taking the complex conjugate of Eq. (1),
we find that E(r) = E(r) and k = £k also satisfy the same
equation. Only —k;; has a negative imaginary part as required
for time-decaying solutions. We label the resulting RS with
index —n, so that k_, = —k;'.

For any open system, the RSs form an orthonormal
complete set of eigenmodes. It follows from Eq. (2) that
solutions decaying in time grow exponentially in space as
r — oo. Therefore, the normalization of RSs cannot be simply
given by the usual volume integrals over their wave functions,
but it also needs to involve the electromagnetic energy flux
through a surface surrounding the system. The orthogonality
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of RSs for n # m has the form

0= (ky — k) / dre(r)E,(r) - E,,(r)
Vv

oE,, oE,
_/ dS(En~——Em~ ) 3)
Sy as as

where the first integral in Eq. (3) is taken over an arbitrary
volume V which includes all system inhomogeneities of &(r),
while the second integral is taken over the surface Sy surround-
ing the volume V and contains the gradients d/ds normal to
this surface. This follows strictly from Maxwell’s equation (1)
and Green’s theorem, using V - E, =0 on the surface Sy
which is situated outside of the system inhomogeneities. It
is convenient, following Eq. (3), to normalize the RSs as

Js, dS (B - 52 —E- )
K2 =12 ’
“4)

where we have used in the second integral an analytic
continuation E(k,r) of the RS wave function E,(r) around
the point k, in the complex k plane. For solutions decaying
in time, both surface and volume integrals in Egs. (3) and (4)
diverge for V — oo. Their superposition, however, removes
the divergencies, making the normalization independent of V.
In the special case of stationary states which are decaying in
space, the surface integrals vanish for V' — oo and the usual
orthonormality in terms of infinite-volume integrals is restored.

The RSE is based on the following three key elements. The
first one is the Dyson equation,

1 = / dre(r)EX(r) — lim
1% k—ky

Gu(r,r) = Gi(r,r) — k2 / Gi(r,x")Ae(r)G (x",¥)dr”,
(5

which relates the perturbed and unperturbed Green’s functions
(GFs), G, and Gy, respectively. The difference between the
perturbed and unperturbed systems is a perturbation of the
dielectric constant Ae(r) with compact support.

The second key element is the spectral representation of the

GF,
A P E QE, () ky
Gy (r,r) = Z Kk—k) (6)

n

which takes into account simple poles of the GF at k =k,
as a sum and a cut of the GF in the complex k plane as an
integral. Details of the derivation of Eq. (6) in a general 3D
case, using the Mittag-Leffler and reciprocity theorems, are
given in Appendix A, accounting for the tensor form of the GF
of Maxwell’s equation. The presence of the cut is a specific
property of 2D systems having a continuum of RSs in their
spectrum. The nature of the cut and its contribution to the RSE
are discussed in more detail in Sec. III and in Appendix B.
The spectral representation given by Eq. (6) is used in the
Dyson equation (5), for both unperturbed and perturbed
systems, equating the residues at the perturbed poles of both
sides of Eq. (5). The spectral representation of the unperturbed
GF has the normalization constants w, = 2k, following from
the normalization condition Eq. (4), as shown in Appendices A
and B. As for the spectral representation of the perturbed GF
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Qk, in which E, and k, are replaced by &, and s, it is not
required by the RSE that the perturbed RSs are normalized
in the same way, and thus the corresponding normalization
constants can be any.

The third element is the completeness of RSs, which is
discussed in Appendix A and mathematically expressed by
the closure relation given by Eq. (A9). It allows one to expand
the perturbed wave functions into the unperturbed ones:

E.(r) = ﬁi %En(r). (7

The expansion coefficients ¢, are scaled here by 1//k,, in
order that the Dyson equation reduces to a linear symmetric
matrix eigenvalue problem [41],

I <8nm + Vnm ) 1 (8)
- Cmv = —Cpy,
=\ kn 2k %,

in which the matrix elements of the perturbation are defined
by

Vi = / A&(r) Ey(r) - En(r) dr. ©)

Equations (7)—(9), together with the normalization condition
Eq. (4) used for the unperturbed modes, define the method
called the RSE.

III. APPLICATION TO 2D SYSTEMS

Let us consider systems in 3D space which are homo-
geneous in one direction (along the unit vector Z of the z
axis) and thus can be reduced to effective 2D systems, as
their wave-vector component along 2 is conserved and the
solution can be separated into a plane wave exp(ik,z) and the
remaining (x,y) problem which we express below in polar
coordinates p = (p,¢). For such a system, the solutions of
Maxwell’s equations split into two groups with orthogonal
polarizations, called transverse electric (TE) and transverse
magnetic (TM), where TE (TM) states have the electric
(magnetic) field orthogonal to Z. This nomenclature relates
to the theory of waveguides where the light propagating along
7 has the dominant component k, of the wave vector, and
the electric (magnetic) field in the TE (TM) modes is thus
approximately perpendicular to the wave vector. Although we
restrict our treatment here to the opposite limit of k, = 0,
we follow these adopted notations. In our case, however, the
TE (TM) states have the magnetic (electric) field polarization
vector strictly parallel to Z and thus normal to the wave vector
of light at large distances.

We treat in this work only the k, = 0 TM states for which
E, = Z2E, and Eq. (1) reduces to

_az+1a+1_az+( Y2 | Eqn(p,0) =0. (10)
-——+ = e(p, n(0,¢) = 0.

The states are normalized according to Eq. (4) in which the
volume V is given by an infinitely long cylinder of radius
R. In order to make the normalization constants finite, RSs
are normalized per unit length along Z. The normalization
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following from Eq. (4) is given more explicitly by [31]

2 R 1 2
1=f dcﬂf pdp £(p.9)Ex(p.¢) + —2/ dy
0 0 2kn 0

IE, I’E, IE,\°
X En +pEn_2_IO s (11)
ap ap ap p=R,
where the last integral is taken over the outer surface of the
cylinder. We choose, as the unperturbed system for the RSE, a

homogeneous dielectric cylinder in vacuum with radius R and
refractive index n, (which is neither O nor 1), having

nf for p<R

£(p.¢) = { 1 for p>R. 12)

Due to the cylindrical symmetry, the azimuthal index m is
a good quantum number which takes integer values giving
the number of field oscillations around the cylinder. The
unperturbed RS wave functions factorize as

En(p,9) = Rn(p.kn) xm (), (13)
where the angular parts are defined by

7 2 sin(me) if m <0
xm(@) = { Qm)~1/2 if m=0 (14)
7 2 cos(mg) if m >0,
and are orthonormal according to
2
/0 X (@) X (@)d @ = S 15)

The choice of the wave functions in the form of the standing
waves given by Eq. (14), instead of the more usual ¢™?, is
dictated by the general orthogonality condition defined by
Eq. (3), without using the complex conjugate. The radial
components have the form

Jn(n kp)/ Jyp(nkR) for p <R

fnte ’k)ZA{Hm<kp>/Hm(kR> for p>r 0

in which J,(z) and H,(z) = H)(z) are, respectively, the
cylindrical Bessel and Hankel functions of the first kind. The
wave functions are normalized according to Eq. (11) with the
normalization constant

A=t 2 a17)
R\ n2-1°

The two boundary conditions at the surface of the cylinder, i.e.,
the continuity of the electric field and its radial derivative, pro-
duce a secular equation for the RS wave-number eigenvalues
k., which has the form

Dm(knR) =0, (18)
where
D, (z) = nr-],/n(an)Hm(Z) - Jm(an)H,;(Z)v (19)

and J; (z) and H, (z) are the derivatives of J,,(z) and H,(z),
respectively. Here, z represents a complex argument, as
opposed to the spatial coordinate used earlier.

The Hankel function H,,(z), which describes the field
outside the cylinder and contributes to Eqgs. (16) and (19),
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is a multiple-valued function, or, in other words, is defined
on a Riemann surface having an infinite number of sheets
due to its logarithmic component. However, only one of these
sheets contains the eigenvalues k,, satisfying Eq. (18), which
correspond to the outgoing wave boundary conditions of RSs.
This “physical” sheet of H,(z) has a cut in the complex z
plane along the negative imaginary half axis, as proved in
Appendix B, which in turn gives rise to the same cut in the GF.
Consequently, the Mittag-Leffler theorem used for the spectral
representation of the GF needs to be modified to include the
cut contribution, as done in Appendix B.

For the TM case treated here, the full GF of the homo-
geneous dielectric cylinder, which is defined via Maxwell’s
equation with a line current source term, is given by G; =
Gr 2 ® z, in which

Gi(p-p) =Y Gulp.0s ) xm(@xm(@).  (20)

and the radial components have the following spectral repre-
sentation:

/ Rm( vkn)Rm(p/akn)
Gu(p.p'sk) = £

2k(k — ky)
/0 R0,k )Ry (p' k)
o 2k(k—K)

— i Rm(pvkn)Rm(p/akn)
- 2k —ky)

on(K)dk'

21

which is derived in Appendix B. Note that the cut contribution
to the GF spectrum in the form of the integral in the last
equation is described in terms of the same functions as those
used for discrete poles. This implies that the cut of the GF can
be understood as a continuous distribution of additional poles
along the negative imaginary half axis with the density

o — 4(n% — I)Jm(n,kR)
) = kDL KR Dy kR)’

(22)

which is calculated in Appendix B. Here, D%(z) are the two
limiting values of D,,(z’) for z’ approaching point z on the cut
from its different sides Rez’ 2 0. Remarkably, the integrated
density of the cut contribution to the GF is equivalent to half a
normal pole: [°, . (k)dk = (—1y"*1/2.

To numerically treat the cut contribution in the linear
eigenvalue problem given by Eq. (8), we discretize the integral
in Eq. (21) into a finite number of cut poles and add cut RSs
to the basis. These cut poles have noninteger strength ¢(™
determined by the cut-pole density o,,. The function o, (k) is
purely imaginary and is peaked close to normal poles &, as can
be seen in Fig. 1 for selected m. In the numerical calculations of
the present work, we have used cut-pole positions and strengths
determined by splitting the cut interval [0,—ioo] into N
regions [qo(l’"),qgi)l] numbered by o = 1,2, ... ,NC(”’), which
are chosen to contain an equal weight according to

m)
1

agy 1 0
V0o (k)|dk = W/ Vien(R)ldk.  (23)

For the numerical results shown later in this section and for
the chosen values of N, using the weight /[, | in Eq. (23)

"
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FIG. 1. (Color online) (a) Cut poles k, (stars) representing the cut
of the GF of a homogeneous dielectric cylinder with n, = 2 in the
complex wave-number plane for m = 0, 11, and 20. Normal poles
k, (open squares) are also shown. (b) Cut-pole density o,,(k) (solid
curves) and the cut-pole strength ¢,§"’) (stars) for the same values
of m.

was found to give the best accuracy of the RSE as compared
to other powers of |o,,|. Each region [qém),qtinl)l] of the cut is
represented by a cut pole of the GF at k = k™ given by the
first moment,

(m)

P
ko — / (m: ko (k)dk [ ™, (24)
qa

where the cut-pole strength ¢ is defined as

(m)

o+
o = / k. 25)
qu

An example of cut poles assigned for m = 0, 11, and 20 is
given in Fig. 1(a). The cut poles contribute to the RSE in the
same way as the normal poles, and the matrix elements with the
cut RSs are given by the overlap integrals of Eq. (D1) expressed
in terms of exactly the same functions Eq. (16) as for the
normal RSs. In discretization of the linear eigenvalue problem
Eq. (8) of the RSE, the only modification caused by the cut
is that the matrix of the perturbation is weighted according
to the cut-pole strengths ¢{™, as described by Eq. (C7) in
Appendix C.

In the numerical calculation, the total number of poles N,
used in Eq. (8) determines the computational complexity of
the matrix eigenvalue problem, so that we are interested in the
number of cut poles in the basis producing the best accuracy
for a given N,;. We have investigated this numerically for the
examples given below, and found that this is achieved using
about 20% cut poles in the basis. Only for the homogeneous
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perturbation in Sec. III A, we used N™ ~ N where N™ is
the number of normal poles in the basis for the given m, in order
to demonstrate the convergence towards the exact solution. For
all other numerical results, we used N ~ 0.2N™.

The rest of this section discusses the results of the RSE for
different effective 2D systems. We consider a homogeneous
dielectric cylinder of radius R and refractive index n, = 2
(¢ = 4) with different types of perturbations, namely, a ho-
mogeneous perturbation of the whole cylinder in Sec. III A, a
half-cylinder perturbation in Sec. III B, a thin-film perturbation
in Sec. IIIC, and a wire perturbation in Sec. III D. Explicit
forms of the matrix elements for these perturbations and details
of their calculation are given in Appendix D.

A. Homogeneous cylinder perturbation

The perturbation we consider in this section is a homoge-
neous change of ¢ over the whole cylinder, given by

Ae for p <R
Ae(p,p) = Ae(R — p) = { 0 for Z > R

(26)
with the strength Ae = 4 used in the numerical calculation. For
@-independent perturbations, modes with different azimuthal
number m are decoupled, and so are the even and odd (cosine
and sine) modes given by Eq. (14). We show only the sine
modes here, and use for illustration m = 20. The matrix
elements of the perturbation are calculated analytically and
given by Egs. (D3) and (D4). The homogeneous perturbation
does not change the symmetry of the system, so that the
perturbed modes obey the same secular equation (18) with
the refractive index n, of the cylinder changed to \/n2 + Ae,
and thus the perturbed wave numbers s, calculated using the
RSE can be compared with the exact values (X)),

We choose the basis of RSs for the RSE in such a way
that for the given azimuthal number m and the given number
of normal RSs N, we find all normal poles |k,| < kmax(V)
with a suitably chosen maximum wave vector kp.x(N) and
then add the cut poles. We find that as we increase N, the
relative error |, /5 — 1| decreases as N ~>. Following
the procedure described in Ref. [32], we can extrapolate
the perturbed wave numbers. The resulting perturbed wave
numbers are shown in Fig. 2. The perturbation is strong,
creating three additional WGMs with m = 20 having up to
four orders of magnitude narrower linewidths. For N = 800,
the RSE reproduces about 100 modes to a relative error in
the 1077 range, which is decreasing by one or two orders of
magnitude after extrapolation. The contribution of the cut is
significant: Ignoring the cut leads to a relative error of the poles
in the 1073 range. The fact that the relative error improves by
4-5 orders of magnitude after taking into account the cut in
the form of the cut poles shows the validity of the reported
analytical treatment of cuts in the RSE, and the high accuracy
of the discretization method into cut poles.

B. Half-cylinder perturbation

We now consider a bulk perturbation which mixes modes
with different m. The perturbation is given by

1 for || < m/2

Ae(p.g) = AeH(R — p) x { —1 otherwise. 27)
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FIG. 2. (Color online) (a) Perturbed RS wave numbers for the
homogeneous perturbation given by Eq. (26) calculated via the RSE
with N = 800 (only sine modes are shown). The perturbed poles with
(+ ) and without (x) the cut contribution are compared with the exact
solution (open squares). Unperturbed wave numbers are also shown
(open circles with dots). Inset: Dielectric constant profile for the
unperturbed and perturbed systems. (b) Relative error in the calculated
perturbed wave numbers with (heptagons) and without (triangles)
contribution of the cut. Relative error for a simulation including the
cut and improved by extrapolation is also shown (crossed circles).

In our numerical simulation, we take Ae = 0.2. The matrix
elements of the perturbation are given by Egs. (D5)—(D7),
which require a numerical integration. Owing to the symmetry
of the perturbation, the sine and cosine basis modes are still
decoupled, therefore we treat them separately; see Figs. 3(a)
and 3(b). Due to a relatively small perturbation (compared
to that considered in Sec. IIT A), the mode positions in the
spectrum do not change much. However, the quality factors Q
of all WGMs decrease, as the lifetime of the resonances is now
limited by an additional scattering at the step in the dielectric
constant of the perturbed cylinder.

To the best of our knowledge, an analytic solution for this
perturbation is not available and thus we cannot calculate
the relative error of the RSE result with respect to the exact
solution. However, we can investigate the convergence of the
method in order demonstrate how the RSE works in this
case which is not reducible to an effective one-dimensional
problem. This is done in Fig. 3, showing the perturbed sine
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FIG. 3. (Color online) Unperturbed (open circles with dots) and
perturbed RS wave numbers of (a) cosine and (b) sine modes of
a cylinder for a half-cylinder perturbation, given by Eq. (27), with
A€ = 0.2 and the basis sizes N = 2000 (crosses) and N = 4000
(hexagons). Only the WGM region is shown. Inset: Diagram showing
the regions of increased (solid blue area) and decreased (red and white
striped area) dielectric constant.

and cosine modes for two different values of basis size N,
and in Fig. 4, where absolute errors M), are shown for several
different values of N. Following Ref. [32], the absolute error is
defined here as M, = max;— 23 |3 — 3)1|, where i are
the RS wave numbers calculated for basis sizes of Ny ~ N/2,
Ny, ~ N/\/z, N3 ~ N/{‘/E, and N4y = N. The results for the
cosine and sine modes are quite similar. From Fig. 4, we see
that the perturbed resonances are converging with increasing
basis size. However, the absolute error has some fluctuations
within an order.

We were able to see the power law of the convergency,
in agreement with Ref. [32], and found that the power-
law exponent is approximately —2. We found, however,
that owing to the above-mentioned fluctuations, the power-
law convergence is not well developed compared to the
one-dimensional problems considered so far (including the
example of Sec. Il A). Increasing the basis size N improves
the power-law convergency. This is attributed to the larger
number of basis states below a given |knax R| in effective 2D
systems compared to effective 1D systems. Thus one needs a
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FIG. 4. (Color online) Absolute errors M, of the RS wave
numbers s, for the half-cylinder perturbation, given by Eq. (27),
as functions of Re i, calculated via the RSE for different basis sizes
N, for cosine (closed shapes) and sine (open shapes) modes.

larger basis in order to approximate discrete steps of the basis
size by a continuous power law.

To show how a particular perturbed state is created as a
superposition of unperturbed states, we show by a star in
Fig. 5 one of the perturbed WGMs of Fig. 3(a) which, owing to
the perturbation, increases its linewidth by nearly an order of
magnitude. The contribution of the basis states is visualized by
circles of a radius proportional to |c,, | 13 which are centered
at the positions of the wave vectors k, in the complex k
plane. The expansion coefficients c,, decrease quickly with
the distance to the spectral position of the perturbed mode
»,, with the dominant contribution coming from the nearest
unperturbed RS, which is a typical feature of perturbation
theory in closed systems. Importantly, this demonstrates that
if we are interested in the modes within a small spectral region,
we can limit the basis in the RSE to states close to that region.
This result is crucial for the application of the RSE to effective
3D systems which have even larger numbers of basis states
below a given |knmaxR|, as one can significantly reduce the
number of basis states needed to calculate the perturbation of
a mode of interest to a given accuracy.

C. Thin-film perturbation

We now move from the bulk perturbations towards the case

of a thin film embedded in the cylinder, which corresponds to a

line perturbation in the effective 2D system. The perturbation
we consider in this section is given by

OR—p) .

Ae(p.p) = hAe Y 8(); (28)

see the inset in Fig. 6. In our numerical simulation, we take

the strength of the perturbation ZAe = —0.1R. Physically

this perturbation corresponds to a thin metal film of uniform
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FIG. 5. (Color online) Contributions of the basis RSs (blue and
red circles) to a given perturbed RS (black star), calculated for the
cosine modes and the half-cylinder perturbation, given by Eq. (27),
using N = 4000. All circles and the star are centered at the positions
of the corresponding RS wave numbers in the complex & plane. The
radius of the circles is proportional to |c,,|"/3. A key showing the
relationship between circle radius and |c,, |? is given by the dark blue
circles.

negative dielectric constant n? + Ae and width & that is
much narrower than the shortest wavelength in the basis. The
perturbation leaves the sine modes of the unperturbed cylinder
unchanged. Hence we only include cosine modes into the basis.
The perturbation matrix elements are given by Eq. (DS).

To our knowledge, an analytic solution for this perturbation
is not known and we therefore calculate the absolute error as
in Sec. III B. Figure 6 shows the resulting RS wave numbers
and absolute errors for this thin-film perturbation. We see in
Fig. 6(b) that the convergence of the RSE is slower than in
the case of the half-moon perturbation. This is expected as
the thin film has no geometrical effect on the wave vector k,,
giving higher contributions of basis states with large &, similar
to the results in 1D with a § scatterer perturbation reported
earlier [32]. We have found that the power-law exponent in
this case is approximately —1.

D. Thin-wire perturbation
As a last example, we consider a dielectric cylinder
perturbed by a thin-wire perturbation which is represented
by a small disk of radius b centered at the point d on the
x axis (¢ =0). We do not use here a § perturbation, in
order to compare it with an analytic solution available in the
literature [34]. The perturbation is defined as

Ae(p) = AeO(b —

lp —di), (29)

PHYSICAL REVIEW A 87, 043827 (2013)

E T I“U—@I T I & T r’
S F % 0
10° F (©
= (a) @’@
10° o 9 T”* RL
%‘ O Tebbay ++ +++ voo++ E
4 F ©) ]
10 E ©) ©) 3
. E © Unperturbed ©; OO
€ g5 [ Perturbed N=40000 7
= £+ Perturbed N=2000
L0t E
107 F %
E O
10° f E
m=25 E
C v 1]
T T I
G ‘
10 3 'y '
F A
10? E
= 10° 3 Y S
i A
10* | o AA
3 = 250 % 2000
i e 500 A 4000
10° |
E 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I
0O 2 4 6 8 10 12 14 16 18 20 22

Re(kR)

FIG. 6. (Color online) (a) Unperturbed (open circles with dots)
and perturbed RS wave numbers of cosine modes for a thin-film
perturbation, given by Eq. (28), with hAe = —0.1R, calculated via
the RSE with the basis sizes N = 2000 (crosses) and N = 4000
(hexagons). (b) Absolute errors M, as functions of Re s, calculated
for different basis sizes N as labelled. Inset: Sketch showing the
location of the thin metal film perturbation as a red line inside the
unperturbed cylinder.

and we choose d = |d| = 0.8R, b = 0.001R, and Ae = 100
(the unperturbed system is the same as before, having n, =
2.0). This perturbation leaves the sine and cosine modes
decoupled, and the sine modes approximately unchanged
(strictly for d — 0). Therefore, we show here the perturbation
of the cosine modes. The RSE perturbation matrix elements
are given by Eq. (D10). The resulting RS wave numbers are
shown in Fig. 7(a) together with the analytic approximation,
demonstrating good agreement.

The absolute errors M, are shown in Fig. 7(b). We see
that the convergence in the case of a thin wire is even slower
than for the thin-film perturbation shown in Sec. I C. This is
expected, as the thin wire has no geometrical effect on both
k, and ky, giving higher contributions of the basis states with
large |k|. We found that within the basis sizes investigated,
the power law is not well developed, but for weaker (smaller
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FIG. 7. (Color online) (a) Unperturbed (open circles with dots)
and perturbed RS wave numbers of cosine modes for a thin-wire
perturbation, given by Eq. (29), with d = 0.8R, b = 0.001R, and
Ae = 100, calculated via the RSE with the basis size N = 2000
(crosses) and compared with the analytic approximation of Ref. [34]
(empty squares). (b) Absolute errors M, in RSE as functions of
Re s, calculated for different basis size N and the absolute difference
between the RSE and the analytic approximation (crosses x). Inset:
Sketch showing the location of the wire as a red dot inside the
unperturbed cylinder.

|A€]) or more spatially extended (larger b) perturbations, a
better convergence is observed, as expected.

The analytic solution of Ref. [34] for a pointlike scatterer
in a 2D disk is not strict in any physical system. In the case of
a § scatterer, the secular equation is logarithmically divergent
and thus cannot be used, while the accuracy of the model for
a finite-size scatterer relies on a number of approximations
[33,34], which require |n,s,b| K 1, |%vb\/n% + Ae| K 1,
and also |Re 5, | > |Im 5|, i.e., having a large Q. In addition
to this, the pointlike perturbation should not be too close to
the edge of the disk, i.e., |n,s7,(R — d)| < 1. We have chosen
our parameters to be suitable for these approximations. The
comparison in Fig. 7(a) of the RSE calculation with the analytic
solution demonstrates good agreement, which is improving
as we move closer to the origin in the complex k plane, as
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detailed in Fig. 7(b) where the absolute difference between the
two calculations is shown.

IV. SUMMARY

We have applied the resonant state expansion (RSE) to
effective two-dimensional (2D) open optical systems, such
as dielectric microcylinders with perturbations. We have
identified and treated a cut of the Green’s functions (GFs)
of effective 2D systems—a feature which turned out to be
crucial for the RSE, as the states on the cut contribute to
the completeness of the basis of RSs and are needed for the
accuracy of the method. We have detailed the formulation of
the RSE for a general 3D case, taking into account the vectorial
nature of the electromagnetic field and tensor form of the GF,
and shown in detail how the theory is applied to effective
2D systems, for which states on the cut are introduced and
discretized for the numerics.

Using the analytically known basis of resonant states (RSs)
of an ideal homogeneous dielectric cylinder—a complete set of
eigenmodes satisfying outgoing wave boundary conditions—
we have treated different types of perturbations, such as
half-cylinder, thin-film, and thin-wire perturbations. For all
of these perturbations, the perturbed systems are not reducible
to effective 1D ones, so that the present work demonstrates the
applicability of the RSE to general effective 2D perturbations
which mix all basis modes. We investigated the convergency
for these perturbations and compared the RSE results, where
possible, with available analytic solutions. In particular, we
have made such a comparison for a homogeneous perturbation
of a cylinder, which is reducible to an effective 1D system,
and for the pointlike perturbation of a disk, which presents an
essentially 2D system with mixing of all kind of modes in the
given polarization of light. In both situations, we have found
agreement between the RSE and the known analytic solutions.
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APPENDIX A: SPECTRAL REPRESENTATION OF THE
GREEN’S FUNCTION OF AN OPEN SYSTEM

The Green’s function (GF) of an open electromagnetic
system is a tensor G; which satisfies the outgoing wave
boundary conditions and the Maxwell wave equation (1) with
a § function source term,

—V x V x Gi(r,r) + K2e(r)Gi(r,Y) = 18(r — r), (Al)

where 1 is the unit tensor and k = w/c is the wave vector of the
electromagnetic field in vacuum determined by the frequency
w, which can be real or complex. Physically, the GF describes
the response of the system to a point current with frequency w,
i.e., an oscillating dipole. Using the reciprocity theorem [42],

the relation
d,G;(r;,r)dy = daGy(r2,1r))d,; (A2)

holds for any two dipoles d; » at points r;, oscillating with
the same frequency. Therefore, G (r,r’) is a symmetric tensor.
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Assuming a simple-pole structure of the GF with poles at k =
g, and taking into account its large-k vanishing asymptotics,
the Mittag-Leffler theorem [43,44] allows us to express the GF
as

Gurr) =Y Q(r,r) (A3)

k_CIn

n

Substituting this expression into Eq. (A1) and convoluting with
an arbitrary finite field D(r) over a finite volume V, we obtain

—V x V x F,(r) + K>e(r)F,(r)
Z k — 4n N

D(r),

n

where F,(r) = fv Q, (r,r)D(r')dr’. Taking the limit k — ¢,
yields

—V x V x F,(r) + ¢e(r)F,(r) = 0.

Due to the convolution with the GF, F,,(r) satisfies the same
outgoing wave boundary conditions given by Eq. (2). Then,
according to Eq. (1), F,(r) < E,(r) and ¢, = k,. Note that
the convolution of the kernel Qn(r,r’) with different functions
D(r) can be proportional to one and the same function E,(r)
only if the kernel has the form of a direct product:

Q.(r,r) = E,(r) ® E,(r))/w,,

in which the vectorial nature of the field and the symmetry
of the kernel given by Eq. (A2) were taken into account
and a normalization constant w, was introduced. The direct
vector product ® is defined as ¢(a ® b)d = (c - a)(b - d), for
any vectors a, b, ¢, and d.

The asymptotics of the GF for k — oo following from
Eq. (Al) requires that Gk o k=2, which for the spectral
representation given by Eq. (A3) provides the sum rule [44]

> Qrr)=o0.

(A4)

(AS5)

Using Eqgs. (A4) and (AS), together with Eq. (A3), yields

Gy = Y D OB Ky

Ke—k)  wn (46)

n

The normalization constants w, can be determined from the
normalization condition Eq. (4). We have shown for specific
systems with analytic solutions [31] that

Wy = 2k,. (A7)

These systems were 1D or 3D with spherical symmetry,
where the normalization constants w, have the meaning of
the Wronskian derivatives at k = k,. The derivation for 2D
systems with cylindrical symmetry is similar. However, a
specific property of 2D systems is the presence of a continuum
in the RS spectrum, which is a cut of the GF in the complex
plane. The spectral representation of the GF includes this cut
contribution as integral:

(A}k(l',l'/) — I En(r) ® En(r ) ]

2k(k — k) (A8)

The cut is discussed in more detail in Sec. III and in
Appendix B, where we also show the validity of Eq. (A7)
for a homogeneous cylinder.
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Substituting the GF of Eq. (A8) into Eq. (A1) and using the
sum rule given by Eq. (A5) leads to the closure relation

e(r) , A ,

— LE@®E, )= 15(r —r'), (A9)
which expresses the completeness of the RSs, so that any
function can be written as a superposition of RSs including
the contribution of the cut. Due to the surface term in the
orthogonality condition Eq. (3), RSs form an overcomplete
basis [45,46], i.e., any RS wave function E, (r) can be written

as a superposition of the wave functions of other RSs of the
basis.

APPENDIX B: GREEN’S FUNCTION OF A
HOMOGENEOUS CYLINDER

The TM component of the GF of a homogeneous cylinder
in vacuum satisfies the following equation:

[Vp +e(0)k?]Gip.p) = 8(p — p), (B1)
with
n? for p<R
£p) = { 1 for p>R. ®B2)

Using the angular basis given by Eq. (14), the GF can be
written as

1
N pp'

similar to Eq. (20). Note that we redefined here the radial part
as G,,(p,p"s k) = /pp'Gu(p,p'; k), which satisfies
a  m?*-1/4
dp? 02

Gr(p,p) =

Y G005 )X @) X (@), (B3)

+ kzs(p)] Gu(p,p'sk) =38(p — p).
(B4)

Using two linearly independent solutions f,(p) and g,,(p) of
the corresponding homogeneous equation, which satisfy the
asymptotic boundary conditions

fu(p) o o2 for  p — 0,
gm(p) ox e for p — oo,
the GF can be expressed as
Gnlpop': k) = Sm(p)gm(p>) (B5)
m 9 9 W(fm’gm) 9

in which p. =min{p,p’}, p- = max{p,p’}, and the
Wronskian W(f,g) = f¢g' — f'g. For TM polarization, a
suitable pair of solutions is given by

B In(n,p), p <R
Jmlo) = ﬁ{ame(prmHm(p), p> R,
Cndm(rp) + anHy(nep), p <R
sn(P) = ﬁ{ H,(p), p > R,

where

am(k) = [n,J) (n,x)Hy(x) — Jp(n.x)H, (x)]7wix /2,

bu(k) = [, (x)Jn(n,x) — nyp ()], (0, X)]ix /2,
cm(k) = [H,, (x)Hy(n,x) — n, Hy (x)H,, (n,x)1mix /2,

m
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with x = kR. The Wronskian is calculated to be

W(fm’gm) = 2lam(k)/n = —xD,(x),

with D,,(x) defined in Eq. (19). Inside the cylinder, the GF
then takes the form

~ , b4 y
Gu(p,p'sk) = 2—l.\/pp [Jm(nrkp<)Hm(nrkp>)

cm(k)

+—— I ko) (nkps) | .
anm (k)

The GF has simple poles k,, in the complex k plane which are

the wave vectors of RSs, given by a,,(k,) = 0, which is an

equation equivalent to Eq. (18). The residues R,, of the GF at

these poles are calculated using

cm(k)
4 (k)

(B6)

ik,
7 (n2 = 1)[ky R J(n ky R)*
(B7)

I'm (kn) =

k=k,

In addition to the poles, the GF has a cut in the complex k
plane along the negative imaginary half axis. The cut is due to
the Hankel function H,,(z), which describes the field outside
the cylinder and contributes to Egs. (16), (18), and (B6), and
is not uniquely defined. Indeed, it can be expressed as [47]

Hy(2) = Jn(2) + iNw(2), (B8)

using a multiple-valued Neumann function
- 2 z
Nu(2) = Nu(2) + ;Jm(z) In >, (B9)

where N,,(z) = 7" F,,(z%) is a single-valued polynomial [47],
while In z is a multiple-valued function defined on an infinite
number of Riemann sheets. We have verified that only one
such sheet provides the asymptotics H,,(z) o exp(iz)/+/z for
7z — 00, which is required for the RS wave functions outside
the cylinder to satisfy the outgoing wave boundary conditions
Eq. (2). This physical sheet has a cut going from the branch
point at z = 0 to infinity, and the position of this cut is not
arbitrary. To find the cut position, let us use the symmetry of
the RS wave numbers, k_, = —k;;, discussed in Sec. II. Let us
also, using properties of cylindrical functions [47,48], bring
the secular equation (18) to the form

Jn1(n2)Hy—1(2) = Jpo1(n2) Hy1(2),

in which z = k, R. We note that if z = k,R is a complex
solution of Eq. (B10), then —z* is also a solution of the same
equation. We take two equations, in which one is the conjugate
of Eq. (B10) and the other is Eq. (B10) itself but taken with the
argument —z*, and add them up. Substituting there Egs. (B8)
and (B9) and using the facts that [47]

[T = Ju(@®) = (= 1)"Ju(=2"),
[Nu(@T* = Nu(@) = (= 1)"Nu(—2%),

we arrive at the condition

(B10)

In(—z*) — (In2)* = 7i, (B11)

which is fulfilled, for any z, only if Inz [and, consequently,
H,,(z)] has a cut along the negative imaginary half axis.
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FIG. 8. (Color online) Sketch showing the contour of integration
in Eq. (B14) as well as poles (black dots) and the cut (blue dashed
line) of the GF in the complex k' plane. An extra pole at k' = k is
shown by a red dot.

Owing to the cut of the Hankel function H,,(z), the GF also
has a cut along the negative imaginary half axis in the complex
k plane, so that on both sides of the cut, G,, takes different
values: G, on the right-hand side and G,, on the left-hand
side of the cut. The step AG,, = G} — G, over the cut can
be calculated using the corresponding difference in the Hankel
function:

AH,(z) = H}(z) — H, (z) = 4J,,(2).
The result is

~ T
AGm(Py,O/;k) = ZV PO I (nrkp ) I (n,kps ) A Qi (K),

(B12)
where
sowto=[a+ & ] () oL
am  apm wkR ) D;}(k)D; (k)
(B13)

with D,, (k) given by Eq. (19).

Let us now use the residue theorem for the function
Gu(p,p';k')/(k — k'), integrating it in the complex k' plane
along a closed contour consisting of three parts (see Fig. 8): a
large counterclockwise circumference with a radius tending to
infinity, two straight lines circumventing the cut and approach-
ing it from both sides, and a small clockwise circumference
around the origin with a radius tending to zero. Since the GF
behaves as k2 at large values of k and takes finite values or
logarithmically diverges at k = 0, both large- and small-circle
integrals vanish, so that the only remaining integrals are those
which are taken along the cut:

Gulp,p's K —i%0 Gk’ O G-dk
f (0,p )dk,:/ G, +/ m
k—k o k—k ) k—K

= 2mi Z k—k, 21iGu(p,p's k).
n

(B14)

Note that in the second part of the above equation, we have
made use of the residue theorem, expressing the closed-loop
integral in the left-hand side in terms of a sum over residues
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at all poles inside the contour. Using Eq. (B14), the GF can be
expressed as

R, 1 o

N AGu(p.p'sk)dk'
k — kn 2mwi —ioco

k—k ’
(B15)

Gulp.p'sk) =

n

which is a generalization of the Mittag-Leffler theorem. This
is used in Sec. III when applying the RSE to 2D systems with
a cut of their GF. The residues R,, of the GF contributing to
Eq. (B15) are calculated as

Ry = ;WJm(nrkpaJm(nrkm)rm(knx (B16)
l

with r,,(k,) found in Eq. (B7). Given that the spatial depen-
dence of the GF, as described by Egs. (B15), (B16), and (B12),
is represented by products of the RS wave functions R,,(p,k,)
and their analytic continuations R,,(p,k) with k values taken
on the cut, we arrive at the GF in the form of Egs. (21) and (22),
which are then used in the RSE.

APPENDIX C: RSE WITH A CUT

This section provides some details on how the RSE can
be used in practice when the GF has a cut and, in particular,
how the cut discretization, producing cut poles, modifies the
linear matrix eigenvalue problem given by Eq. (8), which is
the central equation of the RSE.

To make our consideration as general as possible, we use
the 3D version of the Dyson equation (5) as a starting point
and substitute into it the spectral representations Eq. (A6) of
the unperturbed and perturbed GFs. Equating the residues at
the perturbed poles (i.e., integrating along the infinitesimal
circumference around each pole), we obtain [31]

E,(r) = I E,0) [ B, - &,@)As(r)dr

2k /2, — 1) ' €D

where both pole and cut contributions are included. The cut
has a continuous contribution. Therefore, in the numerical
calculation, we discretize the cut representing it by a finite
number of cut poles chosen in an optimum way, as described
in Sec. III. For an arbitrary function F(k),

0
Yo=Y rt+ [ Footd~ Y Fs €

where the combined index 7 is used to denote both real poles
k, and cut poles k, simultaneously. The weighting factors ¢;
come from the weight function o (k) introduced in Eq. (22)
and are defined as follows:

~_ ] én=1 forreal poles
¥ = { o for cut poles, (C3)
where
Ga+1
¢a = / O'(k)dk (C4)

9o

is an integral of the weight function over an interval [gy,qy+1]
within which a cut pole &, is chosen. The method of choosing
this interval and the positions of the cut poles specific to this
work are described in Sec. III by Egs. (23) and (24). Note that
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we have dropped here the azimuthal index m for simplicity;
however, the discretization of the cut is generally different
for different m, leading to m-dependent cut poles and their
weighting factors ¢;.

Now, discretizing Eq. (C1) in accordance with Eq. (C2),
substituting the expansion

£ =Y buEm~ YV obuEm €

n

of the perturbed RS wave function into it, and equating
coefficients at the same basis functions, we obtain

1
= 2ka/s — 1)

nv

> bibi Vi (C6)

Introducing new expansion coefficients

ki

iy ’

Civ = bﬁu

the matrix eigenvalue problem takes the form

817!17!’ ‘/ﬁfl/ ¢7L¢fl/ 1
= —cmy (CT
;<kﬁ+ 2 kﬁkﬁ/)" S (D

which is a discretized version of Eq. (8). The matrix elements
Vi are defined by Eq. (9), with 7 and 72’ numbering both
normal and cut poles. They are calculated below in Appendix D
for various types of perturbations.

APPENDIX D: MATRIX ELEMENTS FOR VARIOUS
PERTURBATIONS IN 2D

In this section, we give explicit expressions for the matrix
elements V; of the specific perturbations considered in this
paper. As a starting point, we use the following general formula
for the matrix elements of an arbitrary perturbation Ae(p,p)
inside the cylinder of radius R:

2
Vi = / (@ (9
0

R
X/ Ae(p,@)Ru(0,ki) R (p,ki)pdp, (D1)
0

inwhich R, and x,, are the eigenfunctions of the homogeneous
cylinder given by Eqs. (14)—(17).

1. Homogeneous cylinder perturbation

The homogeneous perturbation given by Eq. (26) does not
mix different m values. The matrix elements between RS with
the same azimuthal number m are given by the radial overlap
integrals

R
Vi = Ae / Ru(p k) Ru(p kidpdp. (D)
0
yielding, for identical basis states (7 = '),
Ae Jm—l(nrkﬁR)Jm+1(nrkﬁR)
Vin = - , (D3
n?—1 [ [Jn(n,ks R)]? ®3)
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and, for different basis states (7 # 71'),
Ae 2
n2—1 n,R(ky —k2)

k Jmfl(nrkﬁ’R) k Jmfl(nrkﬁR)
" Jm(nrkﬁ’R) " Jm(nrkﬁR)

Vi =

} . (D4)

2. Half-cylinder perturbation

The most efficient way to calculate the matrix elements
of the perturbation given by Eq. (27) is to calculate the
angular parts of the integrals analytically and the radial parts
numerically. The matrix elements have the form

vﬁr’l = Ae Pmm’ Qﬁllz,:, s (DS)

in which the angular overlap integrals P,, are vanishing
when taken between modes of different parity, i.e., between
sine and cosine modes [see Eq. (14)], and between the same
parity modes corresponding to azimuthal numbers m and m’
of different parity. The nonvanishing integrals are given by

/2 3m/2

P = / Xm (@) xm (@)dp — / X (@) X (@)d
—/2 /2

= Smsm’(w'm—m’ =+ wm-&-m’)a (D6)

with 4 (—) corresponding to cosine (sine) modes, and s,, and
Y, defined as

[ 772 for m#0
"l @) Y2 for m=0,
sin(mm /2)

YUm =1 —(=D"]
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The radial part of the matrix elements of the perturbation is
given by the integrals

R
znkr,n = / Riu(p 7k)Rm’(,07k/),0d/0
0

. 2 fOR Jm(nrkp)-]m’(nrk/)o)pdp
T ORYn2—1)  Ju(0,kR) T (n, k' R)

which we calculate numerically.

. (DN

3. Thin-film perturbation

The matrix elements of the perturbation Eq. (28) are given
by the integrals

R
Vi = hAex,2(0) / Ru(p0.kz) R (0, ki )dp,  (D8)
0

similar to Eq. (D7), which are calculated numerically.

4. Thin-wire perturbation

The RSE perturbation matrix elements for this system are
calculated by summing / same-strength § scatterers on a square
grid covering a circle. The perturbation given by Eq. (29) is
thus modeled by

pex ™S Lo pso— gy @9
7 P P = Pi)ol@ — ¢i).

i=1

The matrix elements then have the form

h? <
Viw = A== " Ex(pi.)Ex(pi.9).  (D10)

i=1

with E;(p,¢) given by Eq. (13).
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