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Destruction of shape-invariant solitons in nematic liquid crystals by noise
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We investigate the destructive influence of noise on the shape-invariant solitons in a three-dimensional model
that includes the highly nonlocal nature of nematic liquid crystals. We first determine the fundamental shape-
preserving solitons and then establish that any noise added to the medium or to the solitons induces them
to breathe at short propagation distances and to disperse at long propagation distances. The characteristics of
breathing solitons at short distances are well predicted by the variational calculation [Phys. Rev. A 85, 033826
(2012)]. At longer propagation distances soliton beams suddenly spread, almost without radiation losses. Their
power remains almost conserved until they reach the transverse boundaries of the sample. The increase in the
amount of noise accelerates beam spreading and soliton destruction. The influence of the correlation length
of noise is more complex. An initial increase in the correlation length causes solitons to disperse at shorter
propagation distances. However, further increase in the correlation length leads to a reversal—to prolonged
stability and dispersal at longer propagation distances. We give theoretical explanation for such behavior in terms
of mean-field evolution equations.
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I. INTRODUCTION

The fundamental spatial optical soliton is a beam that
propagates without changing its transverse profile in a
nonlinear (NL) medium [1]. Such shape-invariant solutions
are easily identified in (1 + 1)-dimensional [(1 + 1)D] NL
systems, because the inverse scattering theory guaranties their
existence [2]. The situation is less clear in the multidimensional
and multicomponent systems. No complete inverse scattering
theory is formulated in more than one dimension; in fact, wave
instability and the collapse of solutions are overriding concerns
in multidimensional NL systems [3]. Additional compounding
difficulties arise in the vector models or in the scalar nonlocal
models in which the medium response is driven by the optical
field itself. Such are the models describing the generation
of solitary waves—nematicons—in nematic liquid crystals
(NLCs).

Nonlocality is an important characteristic of many NL
media. A highly nonlocal situation arises in a nonlocal NL
medium in which the characteristic size of the response
is much wider than the size of the excitation itself. In
NLCs both experiments [4,5] and theoretical calculations [6]
demonstrated that the nonlinearity is highly nonlocal. Even a
high degree of nonlocality does not guarantee the existence
of stable higher-order solitary structures [7,8]. Orientational
nonlinearity in NLCs is highly nonlocal, but the NL response
is not perfectly quadratic, implying that if one launches a
Gaussian beam into the cell, it is only possible to observe
breathing solitons [9,10]. For the more general vectorial model,
in which the order parameter in NLC is not constant, steady
elliptical soliton profiles have been found numerically by
including all three components of the optical field [11].

However, what is puzzling is that even though everybody
agrees that shape-preserving solitons do exist in highly
nonlocal NLCs, very few cared to present them explicitly.
Experimental accounts frequently mention steady nematicons,
but careful inspection of published figures reveals self-

focusing oscillations. True, experimental results may not be
of much help in this regard, because all experimental setups
feature a few millimeter-long cells, which cannot capture slow
(if any) convergence to a steady profile.

Noise is unavoidable in any realistic medium. Stochastic
variation of the director field due to the liquid crystal
temperature fluctuations is inherent to the nematic phase [12].
It is well known that disorder in an NL system is equivalent to
the existence of an effective loss [13,14]. Nonlocality affects
much the dynamics of self-trapped beams in the presence
of randomness; soliton random walk can be very much
suppressed in highly nonlocal media [15]. In addition, non-
locality effectively increases the correlation length of random
perturbations, leading to the stabilization of solitons [16]. On
the other hand, there exists abundant literature describing the
demise of solitons in the presence of noise [17–19]. Interplay
of nonlinearity, nonlocality, and randomness leads to very
interesting novel physical phenomena.

In this paper we study numerically soliton propagation in
a highly nonlocal noisy medium, utilizing a widely accepted
scalar model of uniaxial NLCs. To find exact fundamental
solitons in a (2 + 1)D model, we use an iterative numerical
eigenvalue technique [20,21]. We analyze soliton and Gaussian
beam propagation using two different propagation methods.
We check their stability in propagation and demonstrate that
any small change in the input shape, as well as in the medium,
leads to the soliton breathing with the characteristics well
predicted by the variational calculation [20]. We note that
the same reference towards the end mentions the influence of
noise, however, only as it relates to causing the breathing of
nematicons. The more destructive influence of noise is covered
in this paper.

An ideal soliton—determined with high accuracy—can
propagate without change in a noiseless medium for arbitrary
long. Even a nonideal soliton—still determined with sufficient
numerical accuracy—can propagate in a noiseless medium
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FIG. 1. (Color online) Liquid-crystal cell model adopted.

arbitrary long, but in an oscillatory fashion. On the other hand,
an ideal soliton propagating in a noisy medium will oscillate
initially but will suffer radiation losses and spread after some
propagation distance. The larger the noise, the faster the soliton
destruction. To explain such behavior, we introduce a system
of mean-field evolution equations, which account well for the
observed dynamical phenomena.

The text is structured as follows. In Sec. II the model
is introduced. Section III describes the numerical methods
utilized. Section IV discusses the influence of noise and
Sec. V compares our results with the results reached by others.
Section VI concludes the paper.

II. THE MODEL

We adopt the well-known three-dimensional (3D) scalar
model of NLCs, which provides good agreement with experi-
mental data [5]. The liquid-crystal cell of interest is sketched in
Fig. 1. The optical beam polarized along the x axis propagates
in the z direction, while the NLC molecules can rotate in the
x-z plane. The total orientation of molecules with respect to
the z axis is denoted as θ , whereas the orientation induced by
the static electric field only is denoted by θ0 (the pre-tilt angle).
The bias field points in the x direction and is uniform in the z

direction; hence the pre-tilt angle is uniform along the z axis
as well. The quantity θ̂ = θ − θ0 corresponds to the optically
induced molecular reorientation.

The equations of interest consist of the scaled NL
Schrödinger-like equation for the propagation of the optical
field A and the diffusionlike equation for the relaxation of the
molecular orientation angle θ . After the rescaling x/x0 → x,
y/x0 → y, z/LD → z, where x0 is the transverse scaling
length and LD = kx2

0 is the diffraction length, the following
model equations in the computational domain are obtained
[5,6,9]:

2i
∂A

∂z
+ �A + α[sin2 θ − sin2 θ0]A = 0, (1)

τ
∂θ

∂t
= 2�θ + [β + α|A|2] sin(2θ ), (2)

where � is the transverse Laplacian. Usually, the material
response equations contain the full spatial Laplacian; here,
however, in the spirit of the paraxial approximation made in
Eq. (1), it is presumed that the second derivative of the θ field in
the z direction in Eq. (2) can be neglected. The coefficients α

and β are proportional to the optical and static permittivity
anisotropies of the NLC molecules (α = k2

0x
2
0�εOPT and

β = ε0x
2
0�εdc|Edc|2/K), and τ is the relaxation time. We

also scaled the optical field intensity ε0

2Kk2
0
|A|2 → |A|2. The

wave numbers in the medium and vacuum are k and k0,
respectively. The amplitude of the static bias electric field

is Edc = V/D, where V is the applied bias voltage and D is
the cell thickness. �εOPT and �εdc are the optical and static
permittivity anisotropies of the NLC molecules, respectively.
K is Frank’s elastic constant.

Thus, the localized paraxial field A propagates along the z

axis, adjusting at all times to the slowly varying material field θ ,
which in turn is influenced by A through the optically induced
change in the index of refraction. Hard boundary conditions
(BCs) on the molecular orientation at the NLC cell faces in the
x direction are assumed: θ (x = −D/2,y) = θ (x = D/2,y) =
2◦ [22], while in the y direction different BCs are assumed,
depending on the situation. Different BCs affect the solutions
differently.

In all calculations the following data are kept constant:
LD = 78.6 μm, x0 = 2 μm, λ = 514 nm, n0 = 1.53, D =
75μm, V = 1V, �εOPT = 0.4, �εdc = 20, K = 12 × 10−12 N.
These data correspond to typical experimental conditions
(optical power in the milliwatt range, NLC parameters of
commercially available liquid crystals). The propagation
distance in simulations varied between 20LD and 135LD . The
first distance corresponds to a typical experimental length of
about 1.6 mm over which nematicons have been observed; the
second is as an estimate of length—about 10 mm—over which
the nematicons are surely destroyed by any reasonable amount
of noise.

III. NUMERICS

In our calculations we use data corresponding to typical
experimental conditions [6,9,22]. In the case of fundamental
beam propagation, with single-peak on-axis intensity, we
observe slow convergence of beam amplitude A and θ to their
steady-state values. Therefore, we confine our attention to the
steady state only. The steady-state pre-tilt angle θ0, which
figures in Eq. (1), is found from Eq. (2) in the absence of
optical field:

2�θ0 + β sin(2θ0) = 0. (3)

This calculation has to be performed before the actual
integration of Eqs. (1) and (2) can commence. It is a simple
elliptic boundary-value problem that can be solved by any of
the numerous methods available. But, the determination of the
solitary eigensolutions of Eqs. (1) and (2) is not so simple.

The solitary wave solutions of the full system of Eqs. (1) and
(2) are determined using the modified Petviashvili’s iteration
method [21,23,24]. The system of two PDEs possesses two
eigenfunctions—for A and θ ; the shape-preserving soliton
solutions are presented in Ref. [20], for two different types
of BCs: zero and periodic. An example with zero BCs is
shown in Fig. 2. The shape and the power of the fundamental
shape-invariant solutions depend on the BCs applied. In this
paper we will be concerned only with the solutions with zero
BCs.

Spatial solitons in highly nonlocal media with quadratic
response possess Gaussian profiles [25]. However, the funda-
mental soliton profile is not Gaussian. The soliton intensity
profile compared to a Gaussian is shown in Fig. 2(a). To
check the stability of fundamental solitons, we propagate them
numerically; peak intensities as functions of the propagation
distance are presented in Fig. 2(b). Also included in Fig. 2(b)
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FIG. 2. (Color online) (a) Fundamental soliton intensity profile
obtained by the eigenvalue method (black dots), fitted with a
Gaussian. (Inset) The same profile but on a linear scale. Parameters
are as follows: P = 10.6 mW, μ = 3.84L−1

D ; zero BCs. (b) Soliton
and Gaussian propagation using two different propagation methods,
FFT + SOR and FFT + FFT. The soliton power P = 10.6 mW;
Gaussian power P = 10.6 mW for FFT + SOR, P = 10.1 mW for
FFT + FFT.

is a case presenting the propagation of a Gaussian with
similar parameters, but obtained using two different numerical
methods. In both methods a split-step beam propagation
procedure based on the fast Fourier transform (FFT) is used
for the propagation of the optical field. In the first method
the diffusion equation for the optically induced molecular
reorientation is treated using the successive overrelaxation
(SOR) method, until convergence is achieved; this procedure
is referred to as the FFT + SOR. In the second method
the diffusion equation is treated using the split-step procedure
again—this is the FFT + FFT procedure. One can see that the
methods provide similar results; however, the first method is
more accurate.

The problem with the FFT + FFT procedure is that it treats
an array of transversely periodic cells. Since the molecular
reorientation is wide, it tends to slightly spill over into the
adjacent cells, i.e., back onto itself, adding to the optical field.
This is not an overriding problem in the propagation of a
Gaussian, as it only leads to a slightly amplified oscillation of
the breathing solution. Nonetheless, it makes a huge difference
in the propagation of the fundamental soliton—it makes it
impossible for the field to keep its shape-invariant input profile.

Indeed, any small change in the orientation angle θ pushes
the system from the self-organized equilibrium and forces
it to oscillate about the shape-invariant soliton. In a highly
nonlocal system, the potential well is broad, making it difficult
for the narrow localized solution to radiate and relax to the
fundamental soliton. It just keeps oscillating, forming a steady
breathing soliton. Therefore, the FFT procedure for θ should
be discarded. Even the SOR soliton solution slightly oscillates

at lower accuracy; this, however, becomes imperceptible as
the accuracy is improved. In Fig. 2(b) we show a case where
the oscillation of the amplitude is still perceptible. When one
considers the propagation of a Gaussian beam using the two
propagation methods, the results are close. The propagation
of a Gaussian invariably leads to breathing beams, regardless
of the method of integration. Breathers are closely related
to the perturbed fundamental solitons in highly nonlocal
systems [26].

IV. THE INFLUENCE OF NOISE

However, when the fundamental soliton is propagated
through the medium in which a small white noise is added
to the pre-tilt angle θ0, a breathing solution is also obtained.
In earlier studies [14] only longitudinal random perturbations
were considered. In [16] randomness was a function of both
the propagation variable and the transverse coordinate. Here,
we investigate a more general case: Randomness is chosen as a
function of all spatial coordinates. To display the influence of
the correlation length of noise in our simulations, we divide the
computational space into equal blocks and introduce noise by
adding randomly distributed white noise to θ0 so that in each
block θ0 is perturbed by the same relative amount of noise.
Thus, in each block we have delta-correlated white noise of
certain strength. The size of blocks varies and is denoted by
two numbers, representing its dimensions in the transverse
and longitudinal directions, measured in the numbers of basic
computational cells. For example, “4 × 1” means that the
block size is 4�x × 4�y × �z. Hence, 1 × 1 block size
represents a fine-grained noise, while 4 × 4 represents a
coarse-grained noise.

In this manner, the noise is transversely and longitudinally
spatially dependent, with the correlation length in a specific
direction equal to the size of the block in that direction.
This manner of introducing the noise and its correlation
length seems natural, because the size of grains of noise—i.e.,
the fluctuations in NLCs—affects naturally the behavior of
solutions. It also allows an easy control of the influence
of noise. Introducing noise in a more traditional way, by
introducing a stochastic term in the material response equation,
as, for example, done in [16], leads to qualitatively similar
behavior. In any case, the important finding—the destruction
of solitons by noise—is there regardless of how the noise or
the correlation length is introduced.

The maximum beam intensity of the fundamental soliton
in a noisy medium for propagation distances up to 20 LD is
presented in Fig. 3, for four different noise block sizes. Here,
LD denotes the diffraction length. We pick the relatively short
propagation distance of 20 LD because it corresponds well
to the experimental distance of about 1.6 mm over which the
nematicons have been observed and because the same distance
(or the “evolution coordinate”) has been used in Refs. [15,16],
with which we later compare our results.

It is seen in Fig. 3 that the greater block sizes lead to
more coarse irregular oscillations, although for a while one
can discern a simple sinusoidal breather in the background
with the same period T ≈ 10.6LD . Characteristics of the
perturbed breathing fundamental solitons are well predicted
by the variational calculation, and according to Ref. [26]
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FIG. 3. (Color online) Peak intensity of the fundamental soliton
propagating in a noisy medium. An amount of 0.1% randomly
changing noise is added to the pre-tilt angle. Four cases with different
noise block sizes are considered: (a) 1 × 1; (b) 1 × 4; (c) 4 × 1; (d)
4 × 4. The red sinusoidal fit is to guide the eye. Parameters are as
follows: μ = 2L−1

D , zero BCs.

T = 9.7LD for small propagation distances. Adding more
noise leads to larger and more irregular oscillations (not shown
here). In addition, increasing the correlation length of the
noise leads—at least initially—to the speedier destruction
of solitons. However, after the correlation length becomes
comparable to the transverse size of the beam, the influence is
reversed and the destruction is delayed.

Such a situation is physically plausible: The existence of
noise or random fluctuations in the director field of NLCs
is a well-established fact [12]. The same induced oscillation
phenomenon happens as well when a small intensity noise is
added to the fundamental profile, but θ0 kept unchanged. In all
three possible scenarios of the propagation (nonideal soliton in
an ideal medium, ideal soliton in a noisy medium, and nonideal
soliton in a noisy medium) the period of oscillation is the
same, suggesting the existence of a robust breathing soliton
in the background. Nevertheless, that breather is not stable,
as is easily established when longer propagation distance is
considered.

Propagation of the fundamental soliton in a noisy medium
at longer propagation distances is depicted in Fig. 4. To
characterize the spreading of the beam, we introduce the
effective beam width Reff =

√∫ |A(x,y)|2(x2 + y2)dxdy/P ,
where P is the beam power. It is seen that the noise effectively
destroys breathers at large propagation distances, as solitons
start to spread rapidly. The radiation loss remains very small,
until the beam reaches the absorbing transverse boundaries
of the sample. The beam spreads in the medium and gets
absorbed at the cell boundaries. Our results suggest that the
beam spreading affects more the destruction of solitons than
the beam radiation. Small power radiation cannot stabilize
solitons in highly nonlocal noisy NLCs. To confirm power
conservation, we put zero noise in our simulations and find the
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FIG. 4. (Color online) Propagation of the fundamental soliton in
a noisy medium for longer propagation distances: (a) peak intensity;
(b) effective radius; (c) power. Noise block dimensions are indicated
by arrows. Parameters are as in Fig. 3. Note a very small loss of
power.

radiation loss smaller than 10−6. In addition, the destruction of
solitons is absent then. Similar behavior was reported in [5].

The influence of the correlation length of noise on the
destruction of solitons is more subtle, as already mentioned.
Starting from the smallest noise block size, i.e., the fine-grain
noise, the increase in the correlation length, in both transverse
and longitudinal directions, causes the beam to spread sooner.
This trend is visible in Fig. 4; however, it is not uniform. As
the transverse block size becomes comparable to the width
of the beam, the trend gets reversed: Further increase in the
correlation length leads to an increased stability of the soliton.
This is understandable: As the correlation length becomes
larger than the beam width, the medium becomes more uniform
to the soliton and therefore the noise exerts less influence on
its behavior. Still, the destruction of solitons by noise is always
there.

To explain such behavior, we derive from Eqs. (1) and (2)
a system of mean-field evolution equations for the ensemble-
averaged fields in the lowest order of approximation [27]:

2i
∂〈A〉
∂z

+ �〈A〉 + ᾱ ˆ〈θ〉〈A〉 = −iδ1〈A〉 + iδ2�〈A〉, (4)

τ
∂ ˆ〈θ〉
∂t

= 2[� ˆ〈θ〉 + β̄ ˆ〈θ〉] + ᾱ|〈A〉|2, (5)
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where ᾱ = α sin(2θ0), β̄ = β cos(2θ0), and δ1(z) and δ2(z)
are monotonically increasing but limited functions. The δ1

term represents the linear losses in the system, commonly
originating from the scattering losses on fluctuations and
defects in the crystal; it is reassuring that such a term appears
in our model of noisy medium. It is an obvious universally
present loss mechanism that accounts for the effective linear
losses introduced by the noise. Nevertheless, it is the presence
of the δ2 term that is new and unexpected.

It should perhaps be mentioned that in addition to the scat-
tering coming from fluctuations, other scattering mechanisms
are present in NLCs as well. These come from the physical
properties of molecules, such as rotovibrational levels and
resonance occurrences when the molecules are illuminated
by laser light. Most notably they include Rayleigh scattering
and to a lesser degree Brillouin and Raman scattering [12].
Rayleigh scattering is also due to orientational fluctuations
of elongated molecules, however, it is caused by individual
molecular movements and takes place on a much shorter time
scale than the typical noisy temperature fluctuations of interest
here. The main scattering mechanism in liquid crystals is due
to collective orientational fluctuations that take place on a
slower time scale and as such are imbedded in the Rayleigh
wing scattering [12].

The propagation equation [Eq. (4)] should be compared
with an analogous equation in [16]. The second term on the
right side of Eq. (4), introduced here for the first time, is
crucial; it is responsible for the diffusion of 〈A〉 and naturally
accounts for the beam spreading. This points to an important
difference in the models used here and in [16], best evident
from Eq. (23) in [16] for the mean-field amplitude and our
Eq. (4). While the equations are similar in appearance, Eq. (4)
introduces a new and essential term which further destabilizes
the disturbed propagating solitons and leads to the behavior
more complex than that in [16]. The details of this theory will
be presented elsewhere.

V. COMPARISON WITH OTHERS

The influence of noise on solitons has been considered in a
number of papers [13–19]. The influence has been dubbed in
different terms, such as the evolution under fluctuating non-
linearity, with stochastic contribution, or in random potentials,
but the essence is the same: The influence of noise introduced
in various forms on the propagation of solitons in noisy media.
Consequently, widely differing conclusions have been drawn.

We concentrate on the conclusions that are relevant to our
work. We should point first that all the references mentioned
above treat one-dimensional (1D) NLSE-like models, most
often perturbed with white noise. None treat multidimensional
models and, except for [15,16], none treat nonlocal models.
We could not locate in the literature any publication treating
multidimensional multicomponent nonlocal noisy models.
Even as such, Refs. [13,17–19] report similar findings to
ours—that the fundamental solitons decay while propagating
and easily get destroyed by noise. Thus, the abstract of [13]
states that the fluctuations reduce the phase correlation and act
as an effective loss to solitary waves. In the abstract of [17]
it is similarly stated that the fluctuations of the nonlinearity
induce effective nonlinear losses and that in quadratic media

the amplitude of the fundamental wave decreases faster than
the amplitude of the second harmonic.

Reference [18] deals with the Gross-Pitaevskii equation of
Bose-Einstein condensates; it is a variant of NLSE that still
displays the dispersal of solitons in random potentials. This is
dully reported in [18]; however, it is also reported that under
specific conditions the solitons might get stabilized; see Fig. 5
in [18]. Reference [19] considers stochastic contributions to
1D NLSE in the form of both multiplicative and additive white
noise and finds that in the subcritical case of nonlinearity—
which corresponds to our model—the averaged propagating
profile behaves like a solitary wave localized in space, which
is damped and whose maximum amplitude decays (see Fig. 6
in [19], which looks much like our Fig. 4). The situation with
Refs. [15,16] is somewhat different.

References [15,16] consider a similar physical problem to
ours—the influence of noise on the solitary waves in a nonlocal
medium. Among other things, the authors have established that
the stability of solitons increases with the degree of nonlocality
and nonlocality-induced correlation length of noise in the
transverse direction. On the other hand, one of the main results
of our work is that the greater correlation length of the noise
in the transverse plane leads to the less stable solitons during
propagation. Even though this influence is reversed at large
correlation lengths, it seems as if the authors of Refs. [15,16]
have reached the opposite conclusions to ours: In the limit of
strong nonlocality and large correlation length of the noise,
the solitons in their case should be stable, whereas in our
case they always decay. Although seemingly in contradiction,
these results are actually consistent with each other, as it will
be demonstrated below. Hence, in the reminder we point to
the differences in approaches as well as to the similarities in
conclusions between theirs and our paper.

First, the models considered in Refs. [15,16] and here are
different. They utilize a nonlocal model with the nonlinearity
of Kerr-type that can be represented by exponential response
functions. We utilize a model that describes the generation of
solitons in NLCs through the coupling with the reorientation
angle of the director field; this model is represented by a system
of two PDEs that cannot be cast in terms of simple exponential
response functions.

Secondly, noise is introduced differently. In Refs. [15,16]
it is an additive white noise, added to the solitary wave
intensity in the medium equation. This feature causes the
appearance of colored noise in the propagation equation,
owing to the presence of the response function. In our case,
the white noise is added to the director pre-tilt angle, which
figures in the propagation equation. This—because of the form
of model equations—makes it essentially the multiplicative
noise. (Note, however, that the latter part of [16] also deals
with the multiplicative noise). We believe that adding noise
directly to the medium and not to the optical field is physically
more appropriate, because the medium possesses defects, fluc-
tuations, and irregularities, which actually present the source
of noise. Nonetheless, either way of introducing noise leads to
similar results, because the model equations are coupled.

We should mention that we have also explored a more
traditional way of introducing noise, by adding a stochastic
term to the material equation (2). This term contains random
noise with well-defined correlation lengths in all spatial
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directions. The model leads to rich dynamical behavior that
will be reported in detail elsewhere. Here, it suffices to mention
that it also leads to the behavior very similar to the one reported
in Fig. 4.

Finally, the models used are of different dimensionality. In
Refs. [15,16] the models are (1 + 1)D; ours is (2 + 1)D. They
consider an evolution problem in which the response function
depends on the spatial coordinate. The evolution variable can
be interpreted as time t or the propagation distance z. Ours
is a steady-state spatial problem in which the nonlocality and
noise are spatially distributed. Noisy nonlocal models in 1D
and 2D may offer substantially different behavior, because the
response functions—essentially Green’s functions—possess
different forms in different dimensions.

In Refs. [15,16] nonlocality is introduced through an
exponential response function; its width σ measures the degree
of nonlocality and determines the behavior of the propagating
solitons. It is also related to the correlation length of the noise.
Much of the discussion in Refs. [15,16] is concerned with
what happens as σ is varied. In [15] the authors showed
that in the presence of beam randomness the nonlocality
suppresses random walk of the self-trapped beam, which
ideally vanishes for an infinite degree of nonlocality. In [16] the
authors demonstrated that the radiative losses can adiabatically
transform a soliton into another member of the soliton family
with lower power. A general conclusion was that the increase
in σ leads to a smaller radiation and a reduced random walk of
the disturbed solitons. However, even at high values of σ , as in
Fig. 2(a) of [15] or Fig. 1(a) in [16], the solitons are unstable in
propagation and slowly decay, due to small but finite radiation.
It is precisely this behavior at high σ that we are interested in.

In our case σ—determined by the ratio of widths of θ̂

and the propagating soliton—is constant. We remain at all
times in the highly nonlocal regime, in which σ is fixed
to a large value (of the order of 10). Small extra energy
added to the system by noise moves the soliton away from
the self-organized equilibrium and causes it to oscillate. This
extra energy stays for long with the soliton and is not radiated
away easily. Noise introduced in the director’s pre-tilt angle
makes the system effectively lossy and causes the soliton not
to randomly walk and decay but to oscillate and decay. We

consider how this process of oscillation and decay is influenced
by the coarse graining and the increasing correlation length of
the noise, introduced by the variable computational block size.
This behavior is depicted in Fig. 4.

Thus, in our case the correlation length is not connected
with the degree of nonlocality but with the size of the noise
grains or the computational blocks. Still, our results are in
qualitative agreement with those mentioned in [15,16] for
high but fixed σ and for propagation intervals considered in
Refs. [15,16]. The longer propagation lengths, as displayed
in Fig. 4 offer different behavior. It would have been a
more interesting comparison with [15,16], had the propagation
distance there—or the time interval—been longer than 20.

VI. CONCLUSION

Concluding, we have studied numerically soliton propaga-
tion in a highly nonlocal noisy medium. White noise added
to the medium in specific blocks induces the fundamental
solitons to breathe at small propagation distances, with the
characteristics well predicted by the variational calculation.
For larger propagation distances, at a certain distance the
soliton beams start to spread rapidly with small radiation loss.
This leads to the destruction of solitons after a prolonged
propagation. The destruction weakly depends on the correla-
tion length of noise, with the larger correlation length initially
leading to the speedier demise of solitons. However, this trend
is reversed when the correlation length becomes comparable
to the transverse width of the beam. Naturally, the speedier
demise is also induced by increasing the level of noise. We
introduced a system of mean-field evolution equations that
explains the observed dynamical behavior.
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