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Influence of geometry and topology of quantum graphs on their nonlinear optical properties
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We analyze the nonlinear optics of quasi-one-dimensional quantum graphs and manipulate their topology
and geometry to generate nonlinearities in a simple system approaching the fundamental limits of the first
and second hyperpolarizabilities. We explore a huge configuration space in order to determine whether the
fundamental limits may be approached for specific topologies, independent of molecular details, when the
geometry is manipulated to maximize the intrinsic response. Changes in geometry result in smooth variations
of the nonlinearities. Topological changes between geometrically similar systems cause profound changes in
the nonlinear susceptibilities that include a discontinuity due to abrupt changes in the boundary conditions.
We demonstrate the same universal scaling behavior for quantum graphs that is predicted for general quantum
nonlinear optical systems near their fundamental limits, indicating that our results for quantum graphs may reflect
general structure-property relationships for globally optimized nonlinear optical systems.
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I. INTRODUCTION

The search for materials with large electronic nonlinear
optical susceptibilities has been under way for several decades
due to their potential use in very-high-speed all-optical switch-
ing and modulation devices [1], as well as for measurement
of ultrafast phenomena in nonlinear optics [2]. At the turn
of the century, the new theory of fundamental limits of the
first and second hyperpolarizabilities in the off-resonance
regime [3] showed that the best measured hyperpolarizabilities
of molecules fell short of the limits by a factor of 30 [4,5]. This
surprising observation led to a search for quantum systems
with potential energy functions that produce an optimized
nonlinear response [6] and resulted in new concepts and
realizations for structures with record hyperpolarizabilities
[7–10], still far short of fundamental limits, however. In fact,
most reports of better molecules are simply seeing the effects
of simple size scaling, not new physics.

While the hyperpolarizabilities of these numerically op-
timized systems do not reach the limit, they share cer-
tain universal properties at their global maxima [11]. A
sampling of the entire solution space with Monte Carlo
simulations that span all possible transition moments and
energy spectra obeying nonrelativistic quantum mechanical
sum rules revealed the existence of states and spectra that
approach arbitrarily close to the fundamental limit [12,13].
An important fundamental question is whether real physical
systems exist that approach the fundamental limits and, if so,
which properties of their energy spectra produce the larger
responses [14]. In hydrogen-like atoms, where the density
of states increases with the energy, all states with similar
energies contribute equally to the nonlinearities, resulting in a
diluted contribution to the nonlinear response. A quantitative
rule of thumb, the so-called three-level ansatz, emerged from
the theory of fundamental limits and states that only three
states contribute for a system with a nonlinearity close to
the limit, consistent with all observations and analysis to
date. This strongly suggests that systems in which many
states contribute yield low hyperpolarizabilities [3], also
consistent with all known data. Thus, a promising path toward
delineating structures with nonlinearities approaching their

fundamental limits is to explore models with states and spectra
mimicking three-level systems with large energy gaps and
small transition moments of the higher lying excited states [13]
It is also notable that quantum wires have shown promise for
attaining larger nonlinearities [15–18] due to their confinement
properties. Intuitively, model systems exhibiting confinement,
but with states and spectra having large energy gaps and small
transition moments for higher lying excited states, should
be excellent vehicles for exploring the hyperpolarizabilities
near the fundamental limits as the geometrical and topological
features of the underlying structures are varied.

Quantum graphs are ideal model systems for such stud-
ies. A quantum graph is a network of metric edges and
vertices supporting particle dynamics governed by a self-
adjoint Hamiltonian that operates on the edges. Boundary
conditions are imposed at the vertices, including terminal
points. Quantum graphs have a complete set of eigenstates
and an energy spectrum [19–22] describing dynamics on the
graph. An electron on the graph is assumed to be tightly bound
in the transverse direction, yielding a quasi-one-dimensional
dynamical system. Quantum graphs thus possess appropriate
spectra and states with which to explore structure-property
relations of quantum-confined systems whose geometry and
topology may be selected to generate responses that approach
the fundamental limits. Such models were first employed to
explore properties of simple molecular structures [23], but we
will invoke them in a detail-independent way to investigate
general relationships among geometrical and topological
properties of nonlinear optical systems as their response
approaches the fundamental limits.

Quantum graphs with zero potential energy (bare edges)
and nonzero potentials (dressed edges) have been solved using
periodic orbit theory and extensively studied for their statistical
properties and energy spectra [19,24–29]. Interest in quantum
graphs exploded in the mid to late 1990s when exact solutions
for chaotic quantum graphs were discovered. Quantum graph
theory research continues to blossom as a field of pure and
applied mathematics, with applications to chaos, fractals, and
spectral theory. Can quantum graphs with suitable geometries
and specific topological features produce optical nonlinearities
approaching the fundamental limit? To answer this, aggregates
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of quantum wires into simple structures were recently studied
for the first time for their nonlinear optical properties [30,31].
The results showed that simple quantum loop graphs could
achieve modest responses and offered a number of insights
into the quantum graph model and its universal properties.

It is the aim of this work to expand the investigation to
complex graphs and to delineate the exact dependence of
the first and second hyperpolarizabilities on the topological
features and geometries of the graphs in order to identify
a quantitative path forward for the synthesis of nanowires
and molecular systems with nonlinearities approaching the
fundamental limit [8]. As noted above, nanostructures exhibit
the desirable scaling with state number to achieve optimum
response, and our results are presented in a scale-invariant way,
ensuring that increases in nonlinearity are due to topological
properties and not simply due to size scaling. The present
work employs the simple model of electron dynamics on
a quantum edge and shows that this model exhibits the
universal properties expected from a quantum mechanical
system satisfying the full sum rules, suggesting that it captures
the essential physics required to describe the nonlinearities of
quantum graphs.

To understand the origin of the nonlinear optical response
in quantum graphs, the present investigation systematically
investigates the role of geometry for graphs with the same
topology, as well as the impact of changing topology with fixed
geometry. We discover that geometric effects produce modest

variations in the maximum response for a given topology
but that topological shifts actually control the dominant
behavior of a class of geometrically similar graphs. This
result implies that designers of molecular and nanoscale
nonlinear optical structures should focus first on achieving the
topological factors that produce the greatest response before
optimizing their geometries (excluding those cases where
geometric constraints might produce undesirable symmetries
that suppress or eliminate nonlinear optical responses).

The optimum topologies are based on the three-prong star
graph, a key component in the assembly of larger graphical
structures and of physical interest due to its exact spectral
solution by a periodic orbit expansion [32], its close connection
to Seba billiards and ζ functions [33], and many other problems
[34–37]. Our computation of the hyperpolarizabilities for
a class of star graphs reveals the largest intrinsic response
computed to date in any system, let alone an artificial material.

Table I displays the four sets of basic graphs studied in this
paper. The first set is bent wires with different geometries but
linear topology. The second set is the topologically equivalent
closed-loop graphs—again, with different geometries. Below
the double line, the next set is graphs with the same triangle
geometry but that differ in topology. The final set is three-prong
irregular (i.e., irrational length ratios) star graphs, which
are geometrically equivalent but topologically distinct. In
Table I, βxxx is the largest diagonal component of the first
hyperpolarizability tensor, normalized to its fundamental limit,

TABLE I. Effects of geometry and topology in simple graphs. |β| is the tensor norm of the first hyperpolarizability and is invariant to the
orientation of the graphs. βxxx is the value of the first hyperpolarizability’s x-diagonal component when the graph is rotated to the position
maximizing it. The minimum value is just the negative of the maximum value. The range shown for the second hyperpolarizability’s x-diagonal
component shows the minimum and maximum values and reveals the expected asymmetry. Detailed discussion is given in Sec. IV.

Graph Geometry Topology |β| |βxxx | γxxxx

Line Line 0.000 0.000 −0.126

Bent wire Line 0.172 0.172 −0.126 to 0.007

Triangle Loop 0.086 0.049 −0.138 to 0

Simple quadrangle Loop 0.087 0.056 −0.138 to 0

All quadrangles Loop 0.087 0.069 −0.138 to 0

All quintangles Loop 0.087 0.069 −0.138 to 0

Triangle Loop 0.086 0.049 −0.138 to 0

Triangle Line 0.13 0.13 −0.064 to 0.006

Triangle Line 0.17 0.17 −0.086 to 0.007

Triangle Line 0 0 −0.114 to 0

3-star 3-fork 0.58 0.58 −0.138 to 0.30

3-star Line 0.172 0.172 −0.126 to 0.007

3-star Line 0 0 −0.126 to 0
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|β| is its tensor norm, and γxxxx is the largest diagonal
component of the second hyperpolarizability, normalized to
its maximum value. The results displayed in the table are
discussed later, once the basic problem of solving a quantum
graph for its nonlinear optical response is defined and solved.

The paper is organized as follows. Section II discusses the
solution of the Schrödinger equation for an electron inside
a quantum graph. Then the basic machinery is developed
for determining the tensors for the first hyperpolarizability,
βijk , and the second hyperpolarizability, γijkl , of a graph with
specific geomety and topology. The solution to a general graph
requires the computation of transition moments (position
matrix elements) along sequential edges of a graph, in loops,
and at intersections or stars, where several edges meet at a
single vertex. Section II shows how to calculate these for any
graph. We use the irreducible spherical tensor representation
in Sec. III to extract all of the physical quantities from
the transition moment calculations for each graph. We then
analyze the origins of the geometrical and topological effects.
Section IV presents our results for the hyperpolarizability
tensors and reviews the details of the results displayed in
Table I. This section also examines the scaling properties of the
nonlinearities of the graphs as they approach their best values,
revealing the universal behavior expected from a full quantum
mechanical model of a nonlinear optical system. The results
are shown to support the thesis that the simple one-electron
model meets all of the requirements to be classified as a re-
alistic model of a physical quantum-confined system. Finally,
Sec. V concludes with a discussion of the future directions for
expanding the models to many electrons and near-resonance
applications.

II. QUANTUM MECHANICS OF GRAPHS

Quantum graphs are comprised of distinct edges supporting
particle dynamics that are governed by a single Hamiltonian.
The graph has a set of energy eigenstates and an associated
energy spectrum. Projections of the eigenvectors onto a
particular edge do not form a complete set of eigenfunctions,
though they share the same energy spectrum as the full graph.
The wave functions along the edges are required to maintain
continuity and conserve flux. Conversely, the union of all the
edge wave functions represents the full wave function of the
particle on the graph. The union operation produces state
vectors that span the Hilbert space satisfying completeness,
orthonormality, and closure. This is easily verified by using
the Thomas-Reiche-Kuhn (TRK) sum rules [30]. Figure 1
illustrates the notation used to describe the graph. The energy
eigenstates fully characterize a graph, yielding the energy
spectrum, and matrix elements of operators in position space,
and depend on the location of its vertices and specification
of its edges (connectivity matrix). The on-edge coordinates
si and τi are related to the fixed x-y coordinates by an O(2)
transformation through θi on that edge.

When specifying a graph, an arbitrary set of axes is selected,
and vertices are specified in this frame, called the fixed
reference frame. All calculations of transition moments and
hyperpolarizabilities are performed in this frame, giving a fixed
description of the nonlinear optical response of a graph with
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FIG. 1. (Color online) A multiedge quantum graph. Each edge
supports eigenfunctions that have the same energy spectrum as the
full graph. The eigenfunctions of the graph are unions of the edge
eigenfunctions, ψi

n(si ,τi).

a specified geometry (vertices and edge angles) and topology
(states and spectra).

The experimentalist is most interested in the largest value
of the hyperpolarizability in a laboratory frame whose x

axis is known and usually used to reference the optical
field polarizations interacting with the material. In analogy
to the birefringence of a material, we define the preferred
alignment of a nonlinear optical graph to be its preferred
diagonal orientation, meaning that the graph has been rotated
from its initially selected orientation to the one yielding the
largest hyperpolarizability. Using the rotation properties of
the tensors, it is straightforward to identify this orientation
for any specified graph. It is typical for βxxx and γxxxx to
be largest along different axes, so the preferred diagonal
orientation of each may be and usually is different. βxxx

(γxxxx) should be understood as the largest diagonal tensor
component of the intrinsic first (second) hyperpolarizability
when the graph is in its preferred diagonal frame. This is
often called the molecular frame. Inorganic crystals have the
convenient property that the laboratory frame and molecular
frame coincide. In the case of organic crystals and dye-doped
polymers, the molecules can be arranged in a nonaligned
fashion—for example, in a herringbone pattern—so that the
molecular and laboratory frames cannot be aligned. As such,
the bulk susceptibilities are determined from a sum over the
molecular hyperpolarizabilities with proper O(2) rotation from
the molecular frame of each molecule to the laboratory frame.

Our objective is to calculate the hyperpolarizability tensors
for sets of graphs and to study their variations and limits as
a function of the geometry and topology of the graphs by
establishing a procedure to calculate the transition moments on
the graph and to calculate the hyperpolarizability tensors and
manipulate them to find the extreme ranges as listed in Table I.
The tensor analysis enables us to compare and contrast the
effects of changing geometry for fixed topology and changing
topology for fixed geometry.

The entire process can be summarized as follows: (i) select a
particular kind of graph, specifying the number of vertices and
the connecting edges; (ii) generate a random set of vertices, and
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calculate the lengths of the edges and the angles each makes
with the x axis of the graph’s coordinate system; (iii) solve
the Schrödinger equation on each edge of the graph; and (iv)
match boundary conditions at the vertices and terminal points.
This results in a set of equations for the amplitudes of the wave
functions on each edge. The solvability of this set requires that
the determinant of the amplitude coefficients vanishes, leading
to a secular equation for the eigenvalues. Since the particle
on the graph wanders only on the edges, it has no knowledge
of the orientation of the edges; thus, the secular equation and
energy spectra depend solely on the lengths of the edges and
the type of boundary conditions imposed for the graph.

A detailed discussion regarding the quantum mechanics
of simple graphs was presented in [30] in terms of a quasi-
one-dimensional model with a tightly transversely confined
electron moving freely along the edges of a graph. As
shown in [14], the residual effects of the vanishing transverse
dimension are present in the TRK sum rules but drop out of
the hyperpolarizability calculations. Along any arbitrary edge,
labeled i, the electron is described by free-particle states,

φi
n(s) = A(i)

n sin
(
kns + η(i)

n

)
, (1)

where s denotes the longitudinal direction, kn is the wave
number of the nth quantum state, and η(i)

n is the accumulated
phase from the origin to the ith edge [30]. At each vertex,
continuity and flux conservation are imposed. At terminal
vertices, we impose Dirichlet boundary conditions, as the
physics of quantum graph models for molecular systems
should not permit the transmission of flux beyond the extent of
the molecule. Eigenstates for the entire graph are formed from
unions of the edge wave functions, as described in Ref. [30] in
detail. The mathematics is that of direct sum Hilbert spaces,
recently reviewed in Ref. [38] and utilized in [20–28].

The validity of the solution is verified by calculating both
longitudinal and transverse contributions to the sum rules, as
well as by showing how they contribute to the dipole-free
sum-over-states formalism [39]. The transverse contribution
to the first and second hyperpolarizabilities vanishes in the
limit of tight confinement, so that only longitudinal motion
needs to be considered.

Graphs are built by connecting single quantum wires
at vertices, creating three basic elements: sequential edges,
closed loops, and star vertices. The general method for
computing transition moments along sequential edges has been
published [31], as has the method for calculating transition
moments for closed loops [30]. We show in this section the
transition moments of the star graph and discuss extensions to
graphs with all three basic elements. The result of one such
extension, a so-called lollipop graph, is discussed at the end of
this section.

One of the most important results of this paper is the
delineation of the origin of geometrical and topological effects
in quantum graph models of nonlinear optical molecules.
Since we work with metric graphs, each has a length scale
which appears linearly in the transition moments and inversely
in the wave vectors. The length scale appears again in the
hyperpolarizabilities in a rather complicated way but the
hyperpolarizabilities will be normalized to their maximum
allowed values so that the results are scale independent. As
will be shown, the implications are that the graph’s length

x
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1
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FIG. 2. (Color online) Planar star graph with three prongs.

scale drops out of the analysis of intrinsic properties of graphs,
enabling a precise delineation of the contributions from the
geometric features of the graph (determined by angles) and its
topological features (determined by its normalized transition
moments and energies).

A. Three-prong star graph

The star graph illustrated in Fig. 2 is a simple model of a
molecular system but may also comprise an element of a more
complex system, such as two rings connected with a prong.
An exact solution for a three-prong star graph spectrum has
been discovered using a periodic orbit expansion [32]. The
spectra of star graphs are nondegenerate if at least one ratio of
prong lengths is irrational. When all three prongs are rational
numbers, the spectra will contain some doubly degenerate
eigenvalues and states. As previously discussed [32], the
rational and irrational cases are physically indistinguishable.
For simplicity, we treat the edges as irrationally related. At the
free ends of each prong, the potential is infinite, and the wave
function vanishes.

We use the convention of Ref. [30]. The energy eigenstates
|N〉 are represented using Dirac notation, but we use paren-
theses to represent the vectors, |Nk), which represent the part
of the state vector that lives on edge k. The eigenstates |N〉 are
orthonormal, but the edge vectors |Nk) are not, or

〈M|N〉 = δM,N and (Mk|Nk) �= δMkNk . (2)

The eigenstates |N〉 of the star graph may be written as a
union of three edge states |Nk). In coordinate space, we may
write

ψn(s) ≡ 〈s|ψn〉 = ∪3
i=1(si |N〉 = ∪3

i=1A
(i)
n sin kn(ai − si),

(3)
where si measures the distance from the origin along each
edge, ai are the edge lengths (at least one of which is irrational),
and A(i)

n are the amplitudes of the wave functions in each edge.
∪ represents the union of the three edges as described above.
At the center node, the wave function is continuous, and the
net flux in or out of the node is 0. These conditions yield

A(1)
n sin kna1 = A(2)

n sin kna2 = A(3)
n sin kna3 (4)

and

A(1)
n cos kna1 + A(2)

n cos kna2 + A(3)
n cos kna3 = 0. (5)

For irrational lengths, the arguments of the sinusoidal func-
tions never vanish. Multiplying the first term in Eq. (5) by
A(2)

n sin(kna2)A(3)
N sin(kNa3), permuting and repeating on the

second and third terms, respectively, and using trigonometric
addition formulas, the secular equation becomes

cos knL = 1
3 [cos knL1 + cos knL2 + cos knL3], (6)
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where L = a1 + a2 + a3, L1 = |a1 − a2 − a3|, L2 = |a2 −
a1 − a3|, and L3 = |a3 − a1 − a2|.

The solutions to the secular equation for irrational lengths
have been discussed at length in Ref. [32], where a periodic
orbit expansion was derived for the eigenvalues. They are
nondegenerate and lie one to a cell between root boundaries
at multiples of π/L. For our purposes, a set of solutions for
any finite number of modes is easily found by numerically
intersecting the two parts of the secular equation. In this way, a
set of nondegenerate eigenvalues may be obtained for arbitrary
(but irrational) prong lengths.

The coefficients A(i)
n of the edge wave functions may be

found using Eq. (4) by recognizing that each term must be
independent of the segment index i and equal to the same
(wave-function-dependent) constant, Fn. The eigenfunction
then takes the form

ψn(s) = Fn ∪3
i=1

sin kn(ai − si)

sin knai

. (7)

Normalizing the total wave function given by Eq. (7) yields

1 =
∫

graph
dsψ∗

n (s)ψn(s) = |Fn|2
3∑

i=1

∫ ai

0 sin2[kn(ai − si)]dsi

sin2(knai)
,

(8)

where this is a sum over the edges of the integrals of
(nk|sk〉〈sk|nk), which follows from Eq. (3). Performing the
integration and using the definition sinc(x) = sin(x)

x
, we get

|Fn|−2 =
3∑

i=1

ai

2

[1 − sinc(2knai)]

sin2 knai

. (9)

The amplitudes of the longitudinal wave function in each
segment may then be expressed as

A(i)
n = Fn

sin(knai)
. (10)

The eigenvalues from Eq. (6), coupled with the amplitudes
from Eq. (10) and the normalization factors in Eq. (9), provide
a complete set of eigenstates and spectra for the three-prong
graph with irrational prong lengths.

The dipole matrix elements are calculated via

xnm = 〈n|x|m〉 = [ ∪3
j=1 (nj |]x ∪3

i=1 |mi) =
3∑

i=1

(ni |x|mi).

(11)

Projecting Eq. (11) onto longitudinal position space, we may
write the individual edge matrix elements as

xnm =
3∑

i=1

A(i)∗
n A(i)

m cos θiJ
nm
i , (12)

where θi is the angle between segment i and the x axis. The
moment integral J i

nm is

J i
nm =

∫ ai

0
s sin kn(ai − s) sin km(ai − s)ds

= ai

2

[
sinc2

(
k−
nmai

2

)
− sinc2

(
k+
nmai

2

)]
, (13)

where k±
nm = kn ± km. Equation (12) may be numerically

evaluated once the eigenvalues are determined using Eq. (6).
The corresponding ynm may be obtained from Eq. (12) by
replacing the cosine with sine.

We note that the general form of the transition moments for
the three-prong star graph is

xnm =
3∑

i=1

ai cos θiK
i
nm, (14)

where

Ki
nm = Ki

nm

(
kna1,kna2,kna3,

ai

a1
,
ai

a2
,
ai

a3

)
. (15)

Equation (14) is expressed in a form that hints at the underlying
physics. If the graph is rescaled so that all lengths are changed
by the same factor, ai → εai , the wave vectors scale as kn ∝
ε−1 and the angles remain the same, so all terms are invariant
except for the prefactor ai . The geometry is defined by the
angles θi and the length ratios ai/aj . Changes in the topology,
on the other hand, lead to changes in the boundary conditions,
which affect the quantities knaj .

This completes the discussion of the general methods for
computing states and spectra for graphs that are sequential
edges, loops, or stars. It is instructive to examine exactly how
these simple graphs combine to produce a larger graph with
its own characteristic function and set of eigenstates and what
additional steps are required when multiple sets of states and
spectra are present.

B. Lollipop: A composite graph

Consider a three-sided loop with a prong at one end, as
shown in Fig. 3, known as a lollipop. The edge of length a is
assumed to terminate at infinite potential. The modes of this
graph are a composite of two sets of wave functions: one set
that is nonzero at the central vertex and on all edges and one
for wave functions that vanish at the origin and are exactly 0 on
the prong edge. Figure 4 shows a representative wave function
of each type.

Interestingly, the first set corresponds to the symmetric
wave functions of a three-sided bent wire (open at the
central vertex) coupled to a nonzero prong wave function,
while the second set corresponds to the asymmetric wave
functions of a three-sided bent wire (open at the central vertex)
with a zero prong wave function. Both sets taken together

FIG. 3. N = 3 lollipop graph with a star at one vertex.
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FIG. 4. Wave function when the amplitude is exactly 0 on the
prong but nonzero in the loop (top) and when the amplitude is nonzero
on all edges of the graph (bottom).

are required to achieve closure, as will be shown by sum
rule calculations. Moreover, each set has a distinct energy
spectrum. For arbitrary values of the prong length a and
the total loop length L = L1 + L2 + L3, the energies do not
interleave and must be calculated, then ordered from smallest
to largest, with the corresponding wave functions selected for
hyperpolarizability calculations using a finite number of states
in the sum-over-states expressions.

We begin by writing the eigenfunctions for the graph as a
union of edge functions ψn(s) = ∪4

k=1φ
k
n(sk). As is usual for

sequential edges, we may treat the three-sided closed-loop part
of the graph as a wave function starting at the central vertex
with a continuous amplitude as a function of the distance
L = L1 + L2 + L3 along the entire loop [31]. This yields the
result

ψn(s) = An sin[kn(a − sa)] ∪ [Bn sin(knsL) + Cn cos(knsL)],

(16)

where sa is measured from the center vertex to the end of
the prong defining the stem, the second term in the union
represents the union of the three edges in the loop, and sL is
measured from the central vertex along the loop to its return
to the central vertex. Note that the projection of the edges of
the loop onto the x axis changes as sL moves from one edge
to the next.

The boundary conditions yield the two equations

An sin(kna) = Cn = Bn sin(knL) + Cn cos(knL),

−An cos(kna) + Bn = Bn cos(knL) − Cn sin(knL). (17)

The solution to these equations provides the amplitudes of the
edge functions and the energy eigenvalues of the graph. As
a → 0, the graph becomes a triangle loop that is open at the
central vertex, i.e., a three-edge bent wire that folds back on

itself. The eigenfunctions of this limiting case are Gn sin(knsL),
with kn = nπ/L, and vanish at both ends of the vertex.

With An = 0, the solution to Eq. (17) corresponds to the
even n eigenstates of this “bent wire”; these solutions vanish
at the prong with a continuous slope through the vertex around
the loop, as shown in Fig. 4(top). The odd-n solutions of the
bent wire are the limiting case of solutions to Eq. (17) that are
symmetric on the loop about the central vertex and match the
slope of the nonzero wave function on the prong when An �= 0,
as shown in Fig. 4(bottom). Thus, there are two different sets
of solutions for the lollipop graph.

The first set is easily found. Set An = 0 in Eq. (17). This im-
plies Cn = 0 and knL = 2nπ . The normalized eigenfunctions
become

ψn(sL) = [
φ(1)

n (sa) = 0
] ∪

√
2

L
sin(knsL) (18)

and the energies are En = h̄2k2
n/2m, with kn = 2nπ/L. The

eigenfunctions start at zero value at the center vertex and end
at the same value, completing multiples of a full cycle in the
loop.

The second set of solutions to Eq. (17) is found by
eliminating the three amplitudes to get a secular function given
by

fsec = cos

[
kn

(
a − L

2

)]
− 3 cos

[
kn

(
a + L

2

)]
. (19)

Solutions to fsec = 0 may be found graphically, then
interleaved with those of Eq. (18) to produce an ordered set of
states and energies for calculating transition moments. We do
not display these moments here, as this graph is not the main
focus of this paper. However, it illustrates the methods required
to solve more complex graphs of mixed topology. It is also an
excellent example of how the calculation of the eigenstates
and spectrum of a class of graphs may be verified by use
of the TRK double-commutator sum rules [30], a powerful
method for deciding whether all states and energies have been
discovered for a system.

The sum rules along the x direction may be written as
a sum of contributions from the longitudinal part, from the
s-transition moments along an edge, and the transverse part,
from transition moments perpendicular to the edge along τ

[30]:

δκλ

∑
i,n

[(
Es

n − Es
p + Es

q

2

)
xs,i

pnx
s,i
nq

]

+
∑
i,ν

[(
Eτ

ν − Eτ
κ + Eτ

λ

2

)
I i
pqx

τ,i
κν x

τ,i
νλ

]
= h̄2

2m
δpqδκλ.

(20)

The Latin and Greek letters are used to denote longitudinal and
transverse components of the wave function, respectively. The
integral I i

pq is the edge-state overlap integral in the longitudinal
direction and is given by

I i
pq =

∫
i

dsiφ
i
p(si)φ

i
q(si). (21)

Recall that edge functions, φi
p(si) and φi

q(si), are not orthogo-
nal on an edge, so Eq. (21) is generally nonvanishing.
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FIG. 5. (Color online) A plot of the left-hand side of Eq. (20)
as a function of state number n and m. Left: Transverse (bottom),
longitudinal (middle), and total (top) sum rule when all states are
included. Right: Transverse (bottom), longitudinal (middle), and total
(top)sum rule when an entire set of states is omitted. The values of the
various sums for each pair of modes are indicated on the vertical axes,
with an “ßx” added to remind the reader that Eq. (20) was written
with x as the longitudinal direction.

Each of the transition moments in Eq. (20) contain an
angular factor representing the projection of x onto the s

direction (cos θi) on edge i and onto the τ direction (sin θi),
which is how the geometry of the graph enters into the sum
rules. The transition moments depend only on the edge states
and energy spectrum of the graph, i.e., the topology. It is also
clear that replacing x with y simply reverses the role of the
two terms in Eq. (20), with the first term thus equal to the
transverse contribution to the sum rules in the y direction and
the second term equal to the longitudinal contribution to the
y direction sum rules. Direct calculation of all quantities not
only verifies this, but also is a powerful tool for evaluating the
correctness of the states and spectrum.

To illustrate the use of sum rules for this purpose, we display
in Fig. 5 the results of calculating the left-hand side of Eq. (20)
for the lollipop graph. The top-left plot shows the total
(longitudinal and transverse contributions) sum rules for the
graph, while the top-right graph shows the plot with only the
single set of edge states computed from Eq. (17) that satisfy
Eq. (19) and represent the states where the particle lives on
all edges. The middle and bottom rows show plots of the
longitudinal and transverse contributions to the sum rules. The
missing states are the ones given by Eq. (18), where the particle
is excluded from the stem. The complete set of states exhibits
the predicted Kronecker δ behavior. This exercise illustrates
the sensitivity of the sum rules to reveal the absence of even
a single low-lying state and is thus a useful tool for validating
the correctness/completeness of the energy spectra.

III. HYPERPOLARIZABILITY TENSORS

The nonlinear optics of the quantum graph is described
by the hyperpolarizability tensors. Far from resonance, the
tenser components of the first hyperpolarizability, βijk , a fully
symmetric third-rank tensor, are given by [39,40]

βijk = −e3

2
Pijk

∑
n,m

′ 1

En0Em0
ri

0nr̄
j
nmrk

m0, (22)

where the prime indicates that the ground state is excluded
from the summation; the superscripts i, j , and k can take
on x, y, or z—the Cartesian components; Pijk permutes all
the indices in the expression, r̄nm = rnm − r00δnm; and Enm =
En − Em is the energy between two eigenstates, n and m.

Similarly, γijkl is a fully symmetric, fourth-rank tensor and
has five independent Cartesian components [41]. γijkl is given
by [40]

γijkl = 1

6
Pijkl

(∑
n,m,l

′ ri
0nr̄

j
nmr̄k

mlr
l
l0

En0Em0El0
−

∑
n,m

′ ri
0nr

j

n0r
k
0mrl

m0

E2
n0Em0

)
,

(23)

where the permutation operator here is over the four indices
(i,j,k,l). For both of these expressions, the matrix elements
rnm are computed in an appropriate orthonormal basis set for
the graph, with the integrations taken along the path of the
graph with r(s) defined by the sum of the projections of s onto
the x axis (r = x) or the y axis (r = y).

The intrinsic values of the first and second hyperpolar-
izabilities are defined as the ratio of βijk and γijkl to their
fundamental limits, βmax, and γmax, respectively, or

γijkl → γijkl

γmax
, βijkl → βijkl

βmax
. (24)

The fundamental limits are the highest attainable first and
second hyperpolarizabilities and depend solely on the number
of electrons, N , and the energy gap between the ground and
the first excited state, E10. They are given by [3,42]

βmax = 31/4

(
eh̄

m1/2

)3
N3/2

E
7/2
10

(25)

and

γmax = 4

(
e4h̄4

m2

)
N2

E5
10

. (26)

The intrinsic hyperpolarizabilities have the property that
they are the same for all graphs of the same shape, i.e., for
all graphs whose edge lengths are rescaled according to ai →
εai . Artifacts due to simple size effects are eliminated by
using these intensive quantities. As such, all first and second
hyperpolarizabilities discussed beyond this point are implicitly
the intrinsic values unless specifically stated otherwise.

We can identify the independent components for β as
the set (xxx,xxy,xyy,yyy), and those for γ as the set
(xxxx,xxxy,xxyy,xyyy,yyyy). The components are mea-
sured in some specified reference frame and are related to those
in another frame by suitable rotations of the hyperpolarizability
tensors. The fully symmetric β tensor requires the knowledge
of four components in one frame to know them all in any
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other frame, while the fully symmetric fourth-rank tensor γijkl

requires five components. The determination of the nonlinear
optical properties of the graph is thus reduced to the calculation
of the tensors for graphs with a specific geometry for which
states and spectra are known.

We saw in Eq. (14) that the transition moments take the
form

xnm =
∑

i

ai cos θiK
i
nm, (27)

where i is summed over all edges of the graph and θi is the angle
between segment i and the external x axis. A similar expression
holds for ynm with cos θi → sin θi . The dimensionless factor
Ki

nm for star graphs contains an integral of edge wave functions
with distance along the edge and depends on dimensionless
products of the form knai . This delineation holds for every
quantum graph, with the caveat that the explicit expression for
the Ki

nm takes on forms specific to the topology of the graph.
The number of eigenfunctions, their degeneracies (if any),
and the energy spectra are fixed by the boundary conditions
imposed by the topology of the graph. The angular factors in
Eq. (27) describe the geometry of the graph and are identical
for graphs with identical geometries but different topologies,
such as a closed-loop triangle graph and a triangle graph with
identical shape but one open vertex.

It is now clear how analyzing classes of graphs with similar
geometry but different topology, and vice versa, enables
extraction of both the topological and the geometrical effects
on the nonlinear optics of the graph. For example, the diagonal
component of the first hyperpolarizability tensor will always
take the form

βxxx =
∑
i,j,k

(cos θi cos θj cos θk)Aijk, (28)

where

Aijk ∼
′∑

n,m

Ki
0nK̄

j
nmKk

m0

EnEm

. (29)

Equation (28) expresses the influence of the angular factors
describing the geometry of the graph on each segment’s
contribution to the underlying quantum mechanics of the full
graph as embodied in the edge factors Ki

nm. It is thus reasonable
to speak of the cosine factors as the geometric specifiers. Since
the topology of the graph determines the boundary conditions
on the eigenstates, topological effects originate solely in Aijk .

Aijk has three indices, which couple the angular factors
in ways that are determined by the topology of the graph,
not its geometry. This means that the differences between a
closed-loop triangle and one with an open vertex arise from
the quantum states, i.e., the topology of the graph. Along the
edges of the graph, the electron knows nothing about angles;
it only knows about the value of its wave function on any
particular edge.

As noted above, the properties of a graph are intrinsic to
it and do not depend on the laboratory coordinate system.
However, the measured values in the laboratory are related to
those in the graph by the rotation group. For planar graphs,
we may restrict our focus to O(2) rotations. A calculation
in the frame of the graph using xnm and ynm will yield the

hyperpolarizability tensors in that frame, but referred to the
x axis in the graph’s frame. It is likely that this axis will
not be the one for which any particular tensor component is
maximized. In fact, there is no way to know how to pick the x

axis to yield the best x component of the tensor, for example.
This is irrelevant, of course, because the tensor in one frame is
related to that in another by its transformation properties under
O(2). This same remark holds for the relationship between the
tensors in the graph’s frame and their values in the laboratory
frame. From this discussion, it is seen that the tensor properties
under O(2) transformations may be used to determine the effect
of the graph’s geometry on the hyperpolarizability tensors
when it is calculated in one frame and measured in another.

Assuming that the independent tensor components of the
first and second hyperpolarizabilities in any arbitrary frame of
coordinates are given, they can be used to calculate the tensor
components in any other reference frame. Specifically, for a
reference frame that is rotated φ degrees with respect to the
initial reference frame, the diagonal components, βxxx(φ) and
γxxxx(φ), can be determined using

βxxx(φ) = βxxx cos3 φ + 3βxxy cos2 φ sin φ

+ 3βxyy cos φ sin2 φ + βyyy sin3 φ (30)

and

γxxxx(φ) = γxxxx cos4 φ + 4γxxxy cos3 φ sin φ

+ 6γxxyy cos2 φ sin2 φ + 4γxyyy cos φ sin3 φ

+ γyyyy sin4 φ,

where βxxx (γxxxx) is, by definition, at an extreme value when
the graph is rotated through φ. Once the graph is solved and the
tensor components are known in its frame, φ is easily found
by maximizing Eq. (30) for βxxx and Eq. (31) for γxxxx .

The most important quantity, however, is the tensor norms.
The tensor norms are invariant under any transformation and
provide immediate insight into the limiting responses of the
graphs. They are given by

|β| = (
β2

xxx + 3β2
xxy + 3β2

xyy + β2
yyy

)1/2
(31)

and

|γ | = (
γ 2

xxxx + 4γ 2
xxxy + 6γ 2

xxyy + 4γ 2
xyyy + γ 2

yyyy

)1/2
. (32)

These are the magnitudes of the graph’s hyperpolarizabilities
and are both scale and orientation independent.

The use of tensors to extract the nonlinear optical response
as a function of geometry and topology is most easily achieved
by transforming the Cartesian tensors to spherical tensors.
Zyss et al. [43] and Joffre et al. [44] discuss the molecular
nonlinearities in multipolar media using irreducible, spherical
representations for β, an approach which provides insight
into the shape dependence of the first hyperpolarizability,
particularly with respect to certain symmetry groups. The
transformation from a Cartesian to a spherical tensor repre-
sentation is achieved using Clebsch-Gordan coefficients and
has been extensively discussed in the literature [45].

For fully symmetric Cartesian tensors, β has a vector
(J = 1) and a septor (J = 3) component [45]. Its irreducible
representation is 1 ⊕ 3, with a total of four independent
Cartesian components, as noted earlier. Similarly, γ has a
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scalar, a deviator, and a nonor component, and its irreducible
representation is 0 ⊕ 2 ⊕ 4. The specific form of the spher-
ical tensor expansions may be directly calculated using the
Clebsch-Gordan coefficients. Using the method described in
Ref. [45], we get

S1
±1 = √

(3/10)[±(βxxx + βxyy) + ı(βyyy + βxxy)],

S1
±3 = √

(3/40)[±(βxxx + βxyy) + ı(βyyy + βxxy)], (33)

S3
±3 = √

(1/8)[±(−βxxx + 3βxyy) + ı(βyyy − 3βxxy)].

Similarly, the spherical components of γ are given by

T 0
0 =

√
(1/5)[γxxxx + 2γxxyy + γyyyy],

T 0
2 = √

(1/7)[γxxxx + 2γxxyy + γyyyy],

T 2
±2 = √

(3/14)[(−γxxxx + γyyyy) ∓ 2ı(γxxxy + γxyyy)],

T 4
0 = √

(9/280)[γxxxx + 2γxxyy + γyyyy],

T 4
±2 = √

(1/28)[(−γxxxx + γyyyy) ∓ 2ı(γxxxy + γxyyy)],

T 4
±4 = [(1/4)[(γxxxx − 6γxxyy + γyyyy)

± 4ı(γxxxy − γxyyy)]]1/2, (34)

where ı2 = −1.
The total tensor norm for β is found by summing |SJ

m|2 over
the 2m + 1 components m = −J, − J + 1, . . . ,0, . . . ,J −
1,J for J = 1 and J = 3. Similarly, the total tensor norm
for γ is found by summing |T J

m |2 over the 2m + 1 components
m = −J, − J + 1, . . . ,0, . . . ,J − 1,J for J = 0, J = 2, and
J = 4. These norms are, of course, identical to those that
would be computed from the original Cartesian tensors. But
the new information here is that we now have a geometric
description of the rotation properties of graphs as a function of
their shape that can display their most significant contributions
in terms familiar to designers of nonlinear optical molecules.
The significance of this is illustrated in the next section.

IV. GEOMETRIC AND TOPOLOGICAL EFFECTS

Each of the graphs in Table I was analyzed for its nonlinear
optical properties using the eigenstates and energy spectra
described in the above sections for each topology with the
tensor formalism described in Sec. III. For every graph topol-
ogy, a set of eigenstates and energies was calculated for tens of
thousands of random geometries, and the hyperpolarizabilities
were calculated for each sample. These methods allowed
extraction of the extreme values shown in Table I. The tensors
allow extraction of the type of component that most contributes
to a graph, e.g., vector, three-tensor, etc., as well as permitting
a direct comparison among fixed topologies with different
geometries and a cross-comparison of identical geometries
across different topologies. The results are discussed next.

A. Bent-wire topologies

The simplest graph in the first topologically equivalent
set is the line segment shown in the first row in Table I
and is characterized by vanishing βxxx , by virtue of its
centrosymmetry, and by γxxxx = −0.126. A bent wire, as

shown in the second row in Table I, is topologically equivalent
to the line but of a different geometry (i.e., shape). The largest
hyperpolarizability found is given by |βxxx | = 0.172. The
second hyperpolarizability varies from −0.126 to + 0.007.
This shows how the hyperpolarizability smoothly varies from 0
for the straight wire and peaks for a bent wire that turns back on
itself. For the case of γxxxx , the best shape is given by an acute
angle with vertex (0,0) and end points (1, − 1) and (1.8,0).
Despite their simplicity, bent wires have an intrinsic first
hyperpolarizability that is about one-sixth of the fundamental
limit. In contrast, most of the best planar molecules fall a factor
of 30 short of the limit [46].

Adding a third segment to a bent wire with no constraint
on its orientation yields about the same extremes of βxxx and
γxxxx as the two-wire graph. Imposing geometrical constraints
on the third edge causes minor quantitative change, as can
be seen in the line triangles with open vertices in Table I.
The addition of even more degrees of freedom enables wire
configurations of optimum shape to be marginally improved
and provides limited enhancement of nonlinearities. For bent
wires, γxxxx can be positive or negative. The eigenstates of bent
wires are nondegenerate, a consequence of the open topology
of the graph.

B. Closed-loop topologies

Consider next the closed-loop topologies in Table I. Owing
to the periodic boundary conditions of a loop, the solutions are
a doubly degenerate set of eigenstates with a nondegenerate
ground state of zero energy. (Note that a complex quadrilateral
has the same topology as a simple quadrilateral when the
crossing edges do not transfer probability flux, as we assume
here).

The closed-loop topology severely limits the magnitudes
of the first hyperpolarizability across the set of geometries.
Compared to a simple bent wire, a triangle loop is a poorer
nonlinear optical structure with a maximum βxxx ∼ 0.049.
More significant, the intrinsic second hyperpolarizability γxxxx

is always �0 in closed-loop graphs. Finally, rapid saturation of
the nonlinearity with the number of edges occurs, as it did for
bent wires. A large βxxx is associated with open, isosceles-like
shapes, while low-aspect-ratio (flat) triangles yield a 0 βxxx .
But γxxxx is the most negative for flat triangles. Quadrangles
and above may be geometrically squeezed into these shapes,
thus explaining how the topological features of the loops drive
most of the physics, while the geometric shapes have only a
modest effect.

Figure 6 compares the tensor properties of the distribution
of 10 000 random samples of configurations of the closed-loop
triangle (N = 3), simple quadrangle (N = 4s), and complex
quadrangle (N = 4) graphs shown in Table I. (Note that all
plots that follow use 10 000 random samples.) The plot at the
top shows |β| vs βxxx , while the plot at the bottom shows |γ |
vs γxxxx for the three (fixed topology) geometrically different
closed loops. Triangle graphs, which have only two angular
degrees of freedom, have large (absolute) projections onto
the x axis only when |β| is large as well. The quadrilateral,
having three degrees of freedom, has the largest value of βxxx ,
but marginally so. When |β| has its largest value, βxxx is not
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FIG. 6. (Color online) |β| vs βxxx and |γ | vs γxxx for 10 000
randomly sampled graph configurations of fixed topology. Quintangle
results are not shown, as their tensors look almost identical to the
quadrangles.

optimal. However, |β| is maximum for the same values of βxxx

in all geometries.
The constraint imposed by the closed triangular loop on

the second hyperpolarizability yields a tight grouping of all
configurations, as shown by the N = 3 plot. Adding extra
degrees of freedom yields a greater spread in |γ | for a given
value of γxxxx , as is also found for the first hyperpolarizability.
However, γxxxx is at its minimum and maximum when |γ | is
at its maximum. When |γ | is minimum, γxxxx appears to be
minimum only in the limit of an infinite number of degrees of
freedom.

In summary, the range of β and γ over all configurations is
limited by the loop topology, not the geometry.

C. Closed and open topologies in loop graphs

Figure 7 shows a plot of the contributions to |β| from the
two spherical tensors for a closed triangle and an open vertex
triangle. For closed loops, large |β| graphs are dominated by
the β3 tensor when θmin = θmax, implying that β is maximal
for an equilateral triangle. The (dark blue) diamonds represent
isosceles triangles. The conclusion is that high-aspect-ratio
triangles have a near-zero βxxx regardless of their orientation.

FIG. 7. (Color online) Spherical tensors for |β| as a function of
the ratio of the smallest angle θmin to the largest angle θmax in a
closed-loop (top) and an open (bottom) triangle graph.

For triangles with an open vertex, corresponding to a
change in topology from the closed triangle, the relationships
between the spherical tensor components and the angle ratio
are profoundly different. β1 exceeds β3, and |β| is substantially
larger for the open-vertex triangles. Furthermore, isosceles
triangles no longer give the largest β and the equilateral
triangle has the smallest |β|, compared with the largest |β|
in the case of the closed triangle. Topology therefore has a
profound effect on both the magnitude and the character of the
first hyperpolarizability.

The effects of topology on the first and second hyperpolariz-
ability are emphasized in Fig. 8. For the closed loop, both βxxx

and |β| are smaller, and the range of βxxx is substantially less
than that for |β|. When a vertex is opened, βxxx and |β| are both
larger, and there exists a configuration for which βxxx = |β|
for all |β|. The opposite is true for γ . The closed configuration
yields the largest value of |γ | and γxxxx . Additionally, the same
span of geometrical configurations for each leads to divergent
behavior as shown in the figures.

β1 is always smaller than β3 in the closed triangle but both
are comparable in the open one. The second hyperpolarizabil-
ity γ is dominated by γ2 in all cases, and each γi in the loop
topology approximately parallels γi in the open vertex case,
but the values of γi are larger for the loops.
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FIG. 8. (Color online) Topological dependence for fixed ge-
ometry. Shown are the variation in the hyperpolarizability tensor
components and their norms for open and closed triangle graphs.

These observations can be understood as follows. Opening a
single vertex in a closed triangle removes half the eigenstates
and shifts the ground state to nonzero energy. The result is
a shift in the vector component of |β| from an insignificant
contributor in closed triangles to a substantial contributor
for the open triangles. The topological change causes two
significant changes in γxxxx , as it allows for configurations
with exactly zero norm as well as shapes with positive γxxxx

for open triangles. Though geometrically identical, the closed
and open topologies differ by more than a factor of 3 in βxxx ,
and the open triangles have configurations with positive γxxxx .

For simple quadrangles, the distribution of β fills a greater
area in the |βJ |-|β| plane than for triangles, reflecting the
additional degree of freedom in its configuration space. In
a triangle, two angles define a set of similar triangles—all
having the same geometry and same intrinsic nonlinearities.
In a quadrangle, three angles do not form a unique similarity
class, leading to a greater spread of intrinsic nonlinearity. The
additional degrees of freedom afforded to a general quadrangle
fill an even greater part of the plane, yet βxxx increases
only modestly with increasing degrees of freedom. The loop
topology constrains βxxx to values well below that of the simple
bent wires and keeps γxxxx negative for any shape.

Table I summarizes these results and compares the closed-
loop topology with three line configurations, each of which is
a bent wire or a composite of bent wires discussed previously.
Opening a single vertex in a closed-loop triangle eliminates
the eigenstate degeneracies and produces a ground state with
nonzero energy. The bent-wire triangle with one open vertex
and no flux circulation has a much larger βxxx , ∼0.133,
and a positive, maximum γxxxx . In these triangle graphs, the
extremes of βxxx and γxxxx occur for the opposite geometries
of those in the closed-loop triangle.

To quantify the geometrical effect of the openness of a loop,
we define the dimensionless geometrical parameter ξ as the
ratio of the area of a loop to the square of its perimeter. Since a
polygon with all edge lengths equal to each other and all angles

FIG. 9. (Color online) Scaling of |β| (top) and |γ | (bottom), both
normalized to unity, as a function of the geometric parameter ξ ,
for closed- and open-loop topologies. The (blue) triangles represent
isosceles-like geometries.

equal to each other has maximum ξ , we normalize all ξ to this
value to get the intrinsic geometric parameter. Figure 9 shows
|β| and |γ | (normalized to unity) as a function of ξ for both
closed (loop) and open (bent-wire, one-vertex-open) triangles.
The open circles are isosceles-like triangles and ξ = 1 is an
equilateral triangle. Opening a second vertex in the bent-wire
triangle increases the βxxx toward that of a bent wire while still
yielding positive γxxxx configurations. Opening all vertices
produces three single wires, for which βxxx is exactly 0 and
γxxxx approaches the value it has for a single bent wire. In such
systems, the eigenstates are constructed from three one-wire
graphs by ordering the individual energies of each wire to form
the composite and demanding that superpositions maintain
unitarity.

D. Closed and open topologies in star graphs

The final set of graphs in Table I is the star graphs, which
are fundamentally different from any discussed so far. The
three-prong star graph is an irregular graph with four degrees of
freedom (two angles and the lengths of two edges), providing
much larger nonlinearities than any of the regular graphs, with
a maximum βxxx of order 0.57, over half of the fundamental
limit and the largest calculated to date for any simple structure.
Figure 10 illustrates the dramatic change caused by a simple
topological shift in a graph from three connected prongs to
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FIG. 10. (Color online) Topological dependence for a fixed
geometry of star graphs, showing a very large enhancement in βxxx

(top) and (γxxxx) (bottom) for the closed star with three attached
prongs (top left; red) compared to the same graph with one prong
detached (top right; blue).

two. As expected, a major change in the topology of the star
graph caused by opening a prong at the central vertex changes
the highly active three-fork into a graph resembling a bent-
wire system. An obvious conclusion of this analysis is that
combinations of simple structures such as bent wires and stars
may lead to structures with an even larger nonlinear optical
response. In fact, the lollipop graph has a maximum βxxx of
order 0.61, larger than the basic star. More complex structures
are under study.

E. Universal properties

We conclude this section with a brief discussion of the
results using a potential energy model [7,8,47]. Studies which
optimize the shape of the potential energy function yield the
largest possible nonlinear optical response of βxxx � 0.71 for
a large set of potentials, which universally have the property
that X = x01/x

max
01 � 0.79, where xmax

01 is given by

xmax
01 =

(
h̄2

2mE10

)1/2

. (35)

FIG. 11. (Color online) Scaling of X and E as β increases toward
its maximum value for three star graphs and a lollipop with a star
vertex. The moving average is over values having βxxx greater than
ε times its maximum value on the specific graph. Despite their
geometric differences, all four graphs asymptote to universal values,
indicating that the topology of the star vertex dominates the spectrum
of each graph, including the lollipop (despite its loop).

In the three-level ansatz, the normalized first hyperpolariz-
ability βint can be expressed as [48]

βint = f (E)G(X), (36)

where

f (E) = (1 − E)3/2
(
E2 + 3

2E + 1
)
, (37)

G(X) = 4
√

3X

√
3

2
(1 − X4), (38)

and E = E10/E20.
This expression is valid as the hyperpolarizability ap-

proaches its maximum intrinsic value. But it also appears to
apply universally across different star graphs, as shown in
Fig. 11. This would seem to imply that graphs with the highest
nonlinearities have near-optimum potentials. A detailed study
of the contributing states near the maxima of each graph
topology verifies that the three-level ansatz is valid.

Another result shown in Fig. 11 is that the lollipop graph
behaves like a star graph (and βxxx � 0.61), not a loop (for
which E is constant and βxxx � 0.05). The star graph topology
sets the global behavior of graphs containing it, suggesting
that ring molecules with prongs may exhibit much larger
hyperpolarizability than rings by themselves.

Figure 12 illustrates the range of variation of β with E
and x (top panels) and the convergence of β to the universal
values shown in Fig. 11 and expected using the three-state
model. This behavior illustrates how the single-electron model
achieves universal results in spite of its simplicity, indicating
that the dominant state and energy spectrum features of the
models are reflective of universal properties of real quantum
systems with a Hamiltonian satisfying the sum rules.
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FIG. 12. (Color online) Dependence of β on x and E for a three-
star graph. The values of x and E when βxxx approaches its maximum
value are universal for star geometries and for topologies containing
star vertices.

While the properties of quantum graphs presented here
provide insights into the effects of topology and geometry
on the nonlinear optical response, as well as providing a
test of the three-level ansatz and universal properties, one
might argue that this is just a toy model that does not
represent any real system. The reader must keep in mind
that the Monte Carlo approach samples a large configuration
space, so the important question is whether this approach
catches the important geometrical and topological properties
shared by all systems. While it is difficult to answer this
question with rigorous proof, there are many examples where
the universal behavior is observed to be independent of the
details of the model. In the case of potential optimization,
the universal properties are the same for both one-electron and
two-interacting-electron systems. As such, our work should be
viewed as providing a broad picture of the new possibilities.

V. CONCLUSION AND OUTLOOK

We have presented an exact, quantitative dependence of
the nonlinear optics of quantum graphs on their geometry and

topology. We have shown that the effects of the topology of
geometrically similar graphs dominate those of the geometry
of topologically similar graphs. Topology largely determines
the eigenstates and spectra, whereas the geometry mainly
affects the projections of the graph edges in the x-y plane.
Closed-loop graphs always have a nonoptimum βxxx and
negative γxxxx , but opening a vertex immediately raises βxxx

by more than a factor of 3 and enables graphs with a positive
γxxxx . We have also verified that additional degrees of freedom
enhance the nonlinearity of the graph, unless a fundamental
topological constraint is in place, such as a closed-loop
boundary condition on the eigenstates. Finally, we have shown
that the star graph has the largest intrinsic hyperpolarizability
calculated to date in a simple quantum system.

These results arise from our quasi-one-dimensional, one-
electron free particle model of dynamics in a quantum graph.
This useful model enables precision computations of very large
numbers of representative graphs of a given topology for many
topologies of practical and theoretical interest [30]. It is natural
to speculate on the implications of this model that should
carry through to more complete models of quantum confined
systems that include multiple electrons, band filling, leaky
transverse modes, and cross-coupling between longitudinal
and transverse modes at a vertex. The separation of the
nonlinear response into angular and mode-dependent factors is
a universal property of the sum over states and should remain
valid for all graphs. The single-electron model also captures
the dominant state and energy spectrum features of other model
quantum systems, including their universal scaling properties
as the nonlinearities approach their maximum theoretical
limits [14].

In our view, the major (and perhaps most interesting)
physics will be in systems with very large numbers of
quantum states and several length (energy) scales, as we may
anticipate the appearance of interesting new behavior for the
nonlinearities. But we are likely to retain the same dependence
on geometry across topologies and on topologies for a given
geometry.
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