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Crossover from electromagnetically induced transparency to Autler-Townes splitting
in open V-type molecular systems
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We investigate electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) in an open
V-type molecular system. Through detailed analytical calculations of the absorption spectrum of a probe laser
field using the residue theorem and spectrum decomposition, we find that EIT may occur and a crossover from EIT
to ATS exists for hot molecules. However, there is no EIT and hence no EIT-ATS crossover for cold molecules.
Furthermore, we prove that for hot molecules EIT is allowed even for a counter-propagating configuration. We
provide explicit formulas of EIT conditions and widths of EIT transparency windows of the probe field when
hot molecules work in copropagating and counter-propagating configurations, respectively. Our theoretical result
agrees well with the recent experimental ones reported by Lazoudis et al. [Phys. Rev. A 83, 063419 (2011)].
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I. INTRODUCTION

Quantum coherent phenomena occur widely in multilevel
systems interacting resonantly with electromagnetic fields. ln
1955, Autler and Townes [1] showed that an absorption line
of molecular transition can split into two Lorentzian lines (a
doublet) when one of two levels involved in the transition
is coupled to a third one by a strong microwave field. Such
a doublet is now called Autler-Townes splitting (ATS). In
1961, Fano [2] showed that two resonant modes decaying
via a common reservoir may yield a quantum destructive
interference between the modes mediated by the reservoir.
This phenomenon is now called Fano interference.

In recent years, much attention has been paid to the
study of electromagnetically induced transparency (EIT). By
use of the quantum interference effect induced by a control
field, significant suppression of absorption of a probe field
can be realized, together with a large reduction in group
velocity and giant enhancement of Kerr nonlinearity [3]. Due
to EIT, a transparency window appears in the probe-field
absorption spectrum, which can generally be decomposed
into two Lorentzian terms, together with one (or several)
Fano interference term(s). Thus the EIT line shape displays
characters of both ATS and Fano interference.

In the past two decades, EIT and related quantum inter-
ference effects in various atomic systems have been studied
intensively in both theory and experiment, and a large
amount of research progress has been achieved [3,4]. Similar
phenomena in molecular systems have also been explored in
recent years. Especially, EIT has been observed in 7Li2 [5,6],
K2 [7], and Na2 vapors [8,9], in acetylene molecules filled in
hollow-core photonic crystal fibers [10,11] and in photonic
microcells [12], and in Cs2 in a vapor cell [13].

Although many experiments have been carried out, up to
now the theoretical approach to EIT in molecular systems is
less developed. Unlike atoms, even the simplest molecules are
open systems in which each excited molecular rovibrational
level is radiatively coupled to many other energy levels. Fur-
thermore, all related experiments were made by using thermal
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molecular vapors, which involve Doppler broadening and other
decoherence effects. Therefore, EIT in molecular systems is
more challenging not only for experimental observation, but
also for theoretical analysis. Because of the difficulty of the
analytical approach, numerical simulations are usually done.
However, the result of numerical simulations generally does
not easily clarify various EIT characters, and distinguishing
ATS from EIT clearly is also hard.

In the present work, we develop an analytical approach to
EIT and ATS in an open V-type molecular system. Through
detailed analytical calculations on the absorption spectrum
of a probe field using the residue theorem and spectrum-
decomposition method, we find that EIT is possible and a
crossover from EIT to ATS exists for hot molecules with
Doppler broadening. In contrast, there is no EIT and hence no
EIT-ATS crossover for cold molecules. We also find that for
hot molecules EIT is allowed even for a counter-propagating
configuration of the probe and control fields. We provide ex-
plicit formulas for EIT conditions, widths of EIT transparency
windows, and group velocities of the probe field when hot
molecules work in copropagating and counter-propagating
configurations, respectively. Our theoretical result agrees well
with the recent experiment reported by Lazoudis et al. [9].

Before proceeding, we note that the spectrum-
decomposition method was first proposed by Agarwal [14] for
analyzing probe-field absorption in several typical three-level
atomic systems, which can isolate the precise nature of
quantum interference induced by a control field. However,
Agarwal’s method is valid only for a strong control field.
Recently, Anisimov and Kocharovskaya [15] considered the
absorption line shape of a �-type system in view of resonant
poles and successfully explained the nature of quantum
destructive interference for a weak control field. Recently,
Abi-Salloum [16] distinguished EIT and ATS for similar
atomic systems discussed in Ref. [14] using the method in
Ref. [15], but with this method one cannot obtain the quantum
interference term for a strong control field analytically. In a
recent work, Anisimov et al. suggested a computational fitting
technique to objectively discern ATS versus EIT [17] from
experimental data. Very recently, an experimental investigation
of the crossover between ATS and EIT was carried out by
Giner et al. [18] using the method proposed by Anisimov
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et al. [17]. These works are significant, especially for clarifying
the difference between EIT and ATS and some related concepts
of quantum interference.

From the works [14–17] mentioned above, we can define
EIT as a quantum coherent phenomenon, where not only is
a transparency window opened in the probe-field absorption
spectrum, but also a quantum destructive interference induced
by the control field should appear. Note that this definition of
EIT is very general, and the reason for quantum destructive
interference is not specified. Quantum destructive interference
can be induced by different physical mechanisms in different
systems, including the V-type system we consider below.

The present work is related to Refs. [14–17] and, in
particular, to the experimental work in Ref. [9]. However,
systems considered in Refs. [14] are only for cold atomic
systems. It has been shown by the authors of Refs. [14–17]
that an EIT is impossible for a cold V-type system because
the quantum interference in such a system is constructive.
Our work is an analytical approach to discern ATS and
EIT in Doppler-broadened molecular systems. We explicitly
show that a quantum destructive interference and hence EIT
may occur in V-type molecular systems. Furthermore, our
analytical approach developed below is valid for an arbitrary
control field and can demonstrate clearly the contribution
of Doppler broadening and various quantum interference
characters (EIT, ATS, and EIT-ATS crossover) in a clear way.

The article is organized as follows. Section II presents
our theoretical model for the open V-type molecular system.
Section III provides the solution of the Maxwell-Bloch
equation and discusses the absorption and dispersion
properties of probe field. The spectrum decomposition and
EIT-ATS crossover is analyzed in detail and a comparison
between our theoretical result with the experimental one by
Lazoudis et al. [9] is given. Section IV studies the linear
absorption of the probe field in corresponding cold molecular
system. Section V discusses the roles of saturation and hole
burning in the V-type system. Finally, Section VI summarizes
the main results obtained in our work.

II. MODEL AND GENERAL SOLUTION

A. The Model

Our model is the same as that used in Ref. [9]. An open,
three-level, V- type Na2 molecular system [Fig. 1(a)] consists
of two excited upper molecular states, A1�+

u (v′ = 6,J ′ = 13)
(labeled |2〉) and A1�+

u (v′ = 7,J ′ = 13) (labeled |3〉), and a
ground state X1�+

g (v′′ = 0,J ′′ = 14) (labeled |1〉). A probe
(control) field with center frequency ωp (ωc) and center wave
vector kp (kc) couples to the excited state |3〉 (|2〉) and the
ground state |1〉. The electric field acting on the molecule
system is of the form E = ∑

l=p,c elEl(z,t)ei(kl ·r−ωl t) + c.c.,
where el (El) is the unit polarization vector (envelope) of the
lth electric-field component. Both upper exited states (|2〉 and
|3〉) are considered to decay spontaneously to ground state
|1〉 at decay rates of �12 and �13, respectively. However, due
to the open character of the system, the molecule occupying
the excited states |2〉 and |3〉 may follow various relaxation
pathways and decay to many ground states besides state |1〉.
For simplicity, all these states are represented by state |4〉. The
decay rate �4l (l = 2,3) indicates the spontaneous emission

FIG. 1. (Color online) (a) V-type three-level scheme of the
Na2 molecular system. The ground state X1�+

g (v′′ = 0, J ′′ = 14)
(labeled |1〉) is coupled to the excited state A1�+

u (v′ = 6, J ′ = 13)
(labeled |2〉) by the control laser field with half Rabi frequency
�c and, also, to the excited state A1�+

u (v′ = 7, J ′ = 13) (labeled
|3〉) by the probe laser field with half Rabi frequency �p . �2

and �3 are detunings of the control and probe fields, respectively.
(b) The molecule occupying excited states |2〉 and |3〉 follow various
relaxation pathways and decay to many ground-state levels besides
state |1〉. All these states are represented by state |4〉. �jl denotes the
spontaneous decay from state |l〉 to state |j〉. γ is the rate at which
σjl relaxes to its equilibrium value σ

eq
j l .

rate of level |l〉 to level |4〉 [see Fig. 1(b)]. The decay rate
γ is the rate at which σjl relaxes to its thermodynamical
equilibrium value σ

eq
j l .

For hot molecules, Doppler broadening must be taken
into account because the experiments are carried out in a
heat-pipe oven [9]. Under electric-dipole and rotating-wave
approximations, the interaction Hamiltonian of the system in
the interaction picture reads

Ĥ = −h̄(�ce
i[kc ·(r+vt)−ωct]|2〉〈1|

+�pei[kp ·(r+vt)−ωpt]|3〉〈1| + c.c.), (1)

where v is the molecular velocity and �c(p) =
(ec(p) · μ21(31))Ec(p)/(2h̄) is the half Rabi frequency of
the probe (control) field, with μj l the electric-dipole matrix
element associated with the transition from state |j 〉 to state
|l〉. Density matrix elements in the interaction picture are σjl =
ρjlexp(i{(kl − kj ) · (r + vt) − [(El − Ej )/h̄ − �l + �j ]t})
(j,l = 1–4); here �1 = 0, �2 = ωc − (E2 − E1)/h̄, and
�3 = ωp − (E3 − E1)/h̄ are detunings and ρjl are the density
matrix elements in the Schrödinger picture, with Ej being the
eigenenergy of level |j 〉. The Bloch equation governing the
evolution of σjl reads

i
∂

∂t
σ11 + iγ

(
σ11 − σ

eq
11

) − i�12σ22

− i�13σ33 + �∗
cσ21 − �cσ

∗
21 + �∗

pσ31 − �pσ ∗
31 = 0,

(2a)

i
∂

∂t
σ22 + iγ

(
σ22 − σ

eq
22

) + i�2σ22 + �cσ
∗
21 − �∗

cσ21 = 0,

(2b)

i
∂

∂t
σ33 + iγ

(
σ33 − σ

eq
33

) + i�3σ33 + �pσ ∗
31 − �∗

pσ31 = 0,

(2c)

i
∂

∂t
σ44 + iγ

(
σ44 − σ

eq
44

) − i�42σ22 − i�43σ33 = 0,

(2d)
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i
∂

∂t
σ21 + d21σ21 + �c(σ11 − σ22) − �pσ ∗

32 = 0,

(2e)

i
∂

∂t
σ31 + d31σ31 + �p(σ11 − σ33) − �cσ32 = 0,

(2f)

i
∂

∂t
σ32 + d32σ32 + �pσ ∗

21 − �∗
cσ31 = 0,

(2g)

where d21 = −kc · v + �2 − �1 + iγ21, d31 = −kp · v +
�3 − �1 + iγ31, and d32 = −(kp − kc) · v + �3 − �2 +
iγ32, with γjl = (�j + �l)/2 + γ + γ col

j l (j,l = 1-3). �l =∑
j �=l �jl , with �jl denoting the rate per molecule at which

the population decays from state |l〉 to state |j 〉. The quantity
γ col

j l is the dephasing rate due to processes such as elastic
collisions. σ eq

jj is the thermal equilibrium value of σjj when all

electric fields are absent. Equation (2) satisfies
∑4

j=1 σjj = 1,

with
∑4

j=1 σ
eq
jj = 1. At thermal equilibrium, the population in

the excited states is much smaller than that in the ground state,
i.e., σ

eq
22 = σ

eq
33 � 0 and hence σ

eq
11 + σ

eq
44 = 1.

Evolution of the electric field is governed by the Maxwell
equation ∇2E − (1/c2)∂2E/∂t2 = [1/(ε0c

2)]∂2P/∂t2, with
the electric polarization intensity given by

P = Na

∫ +∞

−∞
dvf (v)[μ13σ31e

i(kp ·z−ωpt)

+μ12σ21e
i(kc ·z−ωct) + c.c.], (3)

where Na is the molecular density and f (v) is the molecular
velocity distribution function. For simplicity, we have assumed
that electric-field wave vectors are along the z direction,
i.e., kp,c = (0,0,kp,c). Under the slowlyvarying envelope
approximation, the Maxwell equation reduces to

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + κ13

∫ +∞

−∞
dvf (v)σ31 = 0, (4)

where κ13 = Naωp|μ31|2/(2h̄ε0c), with c the light speed in
vacuum.

B. General solution

The base state of the system, i.e., the time-independent
solution of the Maxwell-Bloch equations (2) and (4), in the
absence of the probe field is

σ
(0)
11 = γ (γ + �3)

(
γ + �2 + 2γ21

|�c|2
|d21|2

)
σ

eq
11

D0
, (5a)

σ
(0)
22 = 2γ γ21(γ + �3)

|�c|2
|d21|2

σ
eq
11

D0
, (5b)

σ
(0)
21 = �c

d21

(
σ

(0)
22 − σ

(0)
11

) = − �c

d21
γ (γ + �2)(γ + �3)

σ
eq
11

D0
,

(5c)

and σ
(0)
33 = σ

(0)
31 = σ

(0)
32 = 0, where D0 = 2γ21(|�c|2/

|d21|2)(γ + �42)(γ + �3) + γ (γ + �3)[γ + �2 + 2γ21(|�c|2/
|d21|2)]. Note that in the above expressions d21 =
d21(v) = −kcv + �2 − �1 + iγ21, d31 = d31(v) = −kpv +
�3 − �1 + iγ31, and d32 = d32(v) = −(kp − kc)v + �3 −
�2 + iγ32. Also, note that σ

(0)
44 = 1 and all other σ

(0)
ij = 0

if γ = 0. However, in our thermal molecular system γ �= 0
(γ ≈ 3 MHz in the experiment [9]), thus σ

(0)
ll (l = 1,2) and

σ
(0)
21 take nonzero values. In particular, for large �c molecules

populate mainly in |1〉 and |2〉, i.e., the population in |4〉 is
small (about 10% of the total number of molecules).

At first order in �p, the populations and the coherence
between state |1〉 and state |2〉 are not changed. It is easy to
get the solution

�(1)
p = Fei[K(ω)z−ωt], (6)

σ
(1)
31 = d∗

21(ω + d32)σ (0)
11 − |�c|2

(
σ

(0)
11 − σ

(0)
22

)
d∗

21D
Fei[K(ω)z−ωt],

(7)

σ
(1)
32 = −(ω + d31)�∗

c

(
σ

(0)
11 − σ

(0)
22

) + d∗
21�

∗
cσ

(0)
11

d∗
21D

Fei[K(ω)z−ωt],

(8)

where D = |�c|2 − (ω + d31)(ω + d32) and F is a constant.
The dispersion relation K(ω) [21] reads

K(ω) = ω

c
+ κ13

∫ ∞

∞
dvf (v)

× d∗
21(ω + d32)σ (0)

11 − |�c|2
(
σ

(0)
11 − σ

(0)
22

)
d∗

21[|�c|2 − (ω + d31)(ω + d32)]
. (9)

Note that the integrand in the dispersion relation, (9),
depends on three factors. The first is the ac Stark effect
induced by the control field, reflected in the denominator,
corresponding to the appearance of dressed states out of states
|1〉 and |2〉, by which two Lorentzian peaks in the probe-field
absorption spectrum are shifted from their original positions.
The second, reflected in the numerator, is proportional to
σ

(0)
11 − σ

(0)
22 . The appearance of nonzero σ

(0)
22 is due to the

saturation effect induced by the control field. When the
control field grows, the saturation effect increases. When
|�c|2/|d21|2 � 1, σ

(0)
22 ≈ σ

(0)
11 , and hence the second term

in the numerator will disappear. The third is the Doppler
effect, reflected by djl = djl(v) and the molecular velocity
distribution f (v), which may increase or decrease probe-field
absorption, as shown below.

III. HOT MOLECULES

For a thermal gas, the integration in Eq. (9) over the
molecular velocity v must be carried out properly. In thermal
equilibrium, the velocity distribution function is Maxwellian
f (v) = [1/(

√
π vT )]exp(−v2/v2

T ), where vT = √
2kBT /M is

the most probable speed, and M is the molecular mass. The
integration in Eq. (9) with the Maxwellian distribution leads
to a particular combination of error functions, which is very
inconvenient for a systematic analytical approach. As done in
Refs. [19,20], we adopt the Lorentzian velocity distribution
profile f (v) = vT /[

√
π(v2

T + v2)] to replace the Maxwellian
distribution.

We are interested in two cases: copropagating (i.e., kp ≈ kc)
and counter-propagating (i.e., kp ≈ −kc), which are discussed
separately.
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FIG. 2. (Color online) (a) Two poles, (�2,−iBγ21) and (0,−ikpvT ) (represented by filled circles), in the lower half complex plane of the
integrand in Eq. (9). The closed curve with arrows is the contour chosen for calculating the integration in Eq. (9) using residue theorem.
(b) Probe-field absorption spectrum Im(K) as a function of ω. The solid (dashed) line represent |�c| = 280 MHz (|�c| = 0 MHz). Definitions
of Im(K)min and Im(K)max and the width of the transparency window �TW are indicated.

A. Copropagating configuration

In this case, one has d21 = −kpv + �2 + iγ21, d31 =
−kpv + �3 + iγ31, and d32 = �3 − �2 + iγ32. The second
term on the right-hand side of Eq. (9) can be calculated by
considering a contour integration [see Fig. 2(a)] in a complex
plane of kpv and using the residue theorem [22,23].

We find two poles in the lower half complex plane for the
integrand of Eq. (9),

kpv = �2 − iBγ21, kpv = −ikpvT , (10)

with B = {1 + [2|�c|2/γ21(γ + �2)][1 + (γ + �42)/γ ]}1/2.
By taking a contour consisting of a real axis and a semicircle
in the lower half complex plane [see the curves with arrows
shown in Fig. 2(a)], we can calculate the integration in Eq. (9)
analytically by just calculating the residues corresponding to
the two poles and obtain the exact and explicit result for the
integration. Since the general expression is lengthy, here we
just write down the one with �2 = �3 = 0 and the condition
�ωD � γjl, γ :

K(ω) = ω/c + K1 + K2, (11a)

K1 = κ ′
13

(ω + iγ32)[�3(1 − B2)γ31 + 2|�c|2] − i�3|�c|2(1 + B)

γ�3B
(
�ω2

D − B2γ 2
31

)
[|�c|2 − (ω + iγ31 + iBγ31)(ω + iγ32)]

, (11b)

K2 = κ ′
13

(ω + iγ32)
[
�3

(
γ 2

31 − �ω2
D

) + 2γ31|�c|2
] − i�3|�c|2(γ31 + �ωD)[

γ�3
(
γ 2

31 − �ω2
D

) + 2γ31|�c|2�13
]
[|�c|2 − (ω + iγ31 + i�ωD)(ω + iγ32)]

, (11c)

where κ ′
13 = √

πκ13γ σ
eq
11 and �ωD = kpvT (Doppler width).

Note that for cold molecules the second pole in Eq. (10) is
absent, thus K2 = 0. However, for hot molecules, due to the
Doppler effect one has K2 �= 0, and hence the system may
display very different quantum interference characters that do
not exist for cold molecules.

In most cases, K(ω) can be Taylor expanded around the
center frequency (corresponding to ω = 0) of the probe field,
i.e., K(ω) = K0 + K1ω + · · · , where Kj ≡ (∂jK/∂ωj )ω=0.
Here Re(K0) and Im(K0) describe, respectively, the phase shift
and absorption per unit length, and Re(1/K1) (≡vg) gives the
group velocity of the probe field.

1. Transparency window in the absorption spectrum

Shown in Fig. 2(b) is the probe-field absorption spectrum
Im(K) as a function of ω. The solid (dashed) line is for

|�c| = 280 MHz (|�c| = 0), with other parameters given by
�j2 ≈ �j3 (j = 1,4) = 4.08 × 107 Hz, γ col

32 ≈ γ col
21 ≈ γ col

31 =
5 × 106 Hz, γ = 3 × 106 Hz, and �ωD = 0.6 GHz. One sees
that the absorption spectrum for |�c| = 0 has only a single
peak (the dashed line). However, a significant transparency
window is opened for a nonzero �c (the solid line). The
minimum [Im(K)min], maximum [Im(K)max], and width of
the transparency window (�TW) are defined in Fig. 2(b).

From Eq. (11), we get

Im(K)min ≈ κ ′
13

�ωD

x + z/2 + z
√

x/2

(1 + √
x)(x + z/2)(1 + 2

√
x/z)

, (12)

where x ≡ |�c|2γ31/(γ32�ω2
D) and z ≡ γ31/(�ωD) are two

dimensionless parameters. At the temperature in the experi-
ment carried out in Ref. [9], one has z � 1 because γ31 �
�ωD . From Eq. (12) we obtain the following conclusions:
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(1) For a large |�c|, i.e., |�c| � √
γ32/γ31�ωD (and hence

x � 1), Im(K)min is vanishing small.
(2) For a small |�c|, i.e., |�c| � √

γ32/γ31�ωD but with
|�c| ≈ √

γ31γ32 (and hence x � 1,
√

x/z ∼ 1), Im(K)min is
small.

The first conclusion is obvious because the reduction in
Im(K)min for larger |�c| is due to the ATS effect. The
maximum of Im(K) is found to be Im(K)max ≈ κ ′

13/�ωD ,
located at ω ≈ ±�c. Using these results we obtain the
expression for the width of the transparency window:

�TW ≈ 2

(2|�c|2 + �ω2
D − �ωD

√
�ω2

D + 4|�c|2
2

)1/2

.

(13)

However, the second conclusion is not easy to understand
because, from the conventional viewpoint, for a small |�c|
the Doppler broadening suppresses the quantum interference
effect induced by �c. In the following, we show that this
conclusion is not correct for the V-type system with the
Doppler effect. In fact, the suppression of Im(K)min for small
|�c| can be obtained because the Doppler effect can contribute
a quantum destructive interference to the system.

2. EIT-ATS crossover

Now we extend the spectrum-decomposition method in-
troduced in Refs. [14–17] to analyze the detailed characters
of the probe-field absorption explicitly. Kj (j = 1,2) in
Eq. (11) can be easily decomposed as

Kj = αj

(
Aj+

ω − δj+
+ Aj−

ω − δj−

)
, (14)

where αj and Aj± are constants, and δj+ and δj− are two
spectrum poles of Kj ; all of these are given explicitly in the
Appendix.

Our aim is to analyze the quantum interference effect, for
which the expression of Im(Kj ) is required. However, their
general expressions are long and complicated. In order to
illustrate the quantum interference effect in a clear way, we
decompose Im(Kj ) according to different regions of �c as
follows.

(i) Weak control-field region (i.e., �c < �ref ≡ �ωD/2):
Using a similar approach by Anisimov et al. [15,17], we obtain
the imaginary part of Kj in this region as

Im(Kj ) = αj

(
Cj+

ω2 + W 2
j+

+ Cj−
ω2 + W 2

j−

)
, (15)

with real constants

Cj+ = Wj+
(
Wj+ − �w

j

)/
(Wj+ − Wj−), (16a)

Cj− = −Wj−
(
Wj− − �w

j

)/
(Wj+ − Wj−), (16b)

W1± = 1
2 [γ31(1 + B) + γ32

±
√

[γ31(1 + B) − γ32]2 − 4|�c|2], (16c)

W2± = 1
2 [γ31 + �ωD + γ32

±
√

(γ31 + �ωD − γ32)2 − 4|�c|2], (16d)

where �w
1 = γ32 − �3|�c|2(1 + B)/[�3(1 − B2)γ31 + 2|�c|2]

and �w
2 = γ32 − �3|�c|2(γ31 + �ωD)/[�3(γ 2

31 − �ω2
D) +

2γ31|�c|2].
Shown in Fig. 3(a) are results for Im(K1) (dash-dotted

line), Im(K2) (dashed line), and Im(K) (solid line). Sys-
tem parameters are given by �j2 ≈ �j3 (j = 1,4) = 4.08 ×
107 Hz, γ col

32 ≈ γ col
21 ≈ γ col

31 = 5 × 106 Hz, γ = 3 × 106 Hz,
�c = 220 MHz, and �ωD = 0.6 GHz. We see that Im(K1) is
positive but Im(K2) is negative. However, their superposition,
which gives Im(K), is positive and displays an absorption
doublet with a significant transparency window near ω = 0.
Because a destructive interference exists in the probe-field
absorption spectrum, the phenomenon found here should
be attributed to an EIT according to the criterion given in
Refs. [15–17]. Such EIT can be taken as the one induced
by the Doppler effect. The reason is that when the Doppler
broadening is absent, the negative Im(K2) term does not exist,
and hence only an absorption spectrum with a positive single
peak [i.e., the dash-dotted line contributed by Im(K1) ] appears.

(ii) Large control-field region (i.e., �c > �ref): By extend-
ing the approach of Agarwal [14], we can decompose Im(Kj )
(j = 1,2) as

Im(Kj ) = αj

{
1

2

[
Wj(

ω − δr
j

)2 + W 2
j

+ Wj(
ω + δr

j

)2 + W 2
j

]

+ gj

2δr
j

[
ω − δr

j(
ω − δr

j

)2 + W 2
j

− ω + δr
j(

ω + δr
j

)2 + W 2
j

]}
,

(17)

where

W1 = 1

2
[γ31(1 + B) + γ32]/2, (18a)

δr
1 = 1

2
[4|�c|2 − [γ31(1 + B) − γ32]2]1/2, (18b)

g1 = γ31(1 + B) − γ32

2
+ �3|�c|2(1 + B)

�3(1 − B2)γ31 + 2|�c|2
(18c)

and

W2 = 1

2
(γ31 + �ωD + γ32), (19a)

δr
2 = 1

2
[4|�c|2 − (γ31 + �ωD − γ32)2], (19b)

g2 = γ31 + �ωD − γ32

2
+ �3|�c|2(γ31 + �ωD)

�3
(
γ 2

31 − �ω2
D

) + 2γ31|�c|2
.

(19c)

Obviously, terms in the first square bracket on the right-hand
side of Eq. (17) are two Lorentzians, which are the net
contribution to probe-field absorption from two different
channels corresponding to the two dressed states created by
the control field �c, with Wj being the width (also strength)
of the two Lorentzians and δr

j being the real part of the
spectrum poles. The following terms in the second square
bracket are clearly quantum interference ones (which are called
dispersive terms by Agarwal [14]). Obviously, the magnitude
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FIG. 3. (Color online) EIT-ATS crossover for hot molecules in the copropagating configuration. (a) Im(K1) (dash-dotted line), Im(K2)
(dashed line), and Im(K) (solid line) as functions of ω for �c < �ref ≡ �ωD/2. (b) Absorption spectrum contributed by two Lorentzians
(dash-dotted line), destructive interference (dashed line), and total absorption spectrum Im(K) (solid line), in the region �c > �ref .
(c) Absorption spectrum contributed by two Lorentzians (dash-dotted line), small constructive interference (dashed line), and total absorption
spectrum Im(K) (solid line), in the region �c � �ref . (a) EIT, (b) EIT-ATS crossover, and (c) ATS regions. (d) Transition from EIT to ATS
for hot molecules in the copropagating configuration. Shown is Im(K)ω=0/Im(K)max as a function of |�c|/�ref . Three regions (EIT, EIT-ATS
crossover, and ATS) are divided by the two dashed vertical lines.

of the interference is controlled by the parameter gj . If gj > 0
(gj < 0), the interference is destructive (constructive).

Shown in Fig. 3(b) are results of the probe-field absorption
as functions of ω for �c > �ref . The dash-dotted line (dashed
line) denotes the contribution by the sum of the Lorentzian
terms (interference terms) in Im(K) [=Im(K1) + Im(K2)]. We
see that the interference is destructive, and interestingly, some
structures appear. The solid line gives the result of Im(K).
System parameters used in the plot are the same as those in
Fig. 3(a) but with �c = 1 GHz. Clearly, a wide and deep
transparency window is opened and the phenomenon found
can be attributed to EIT-ATS crossover.

(iii) Strong control-field region (i.e., �c � �ref): In this
region, the quantum interference strength gj/δ

r
j in Eq. (17) is

very weak and negligible. We have

Im(Kj ) ≈ αj

2

(
Wj(

ω − δr
j

)2 + W 2
j

+ Wj(
ω + δr

j

)2 + W 2
j

)
, (20)

being the sum of two equal-width Lorentzians shifted from the
origin by δr

j ≈ ±�c (j = 1,2).

Shown in Fig. 3(c) are results of the probe-field absorption
as functions of ω for �c � �ref . The dash-dotted line
represents the contribution by the sum of the two Lorentzian
terms. For illustration, we have also plotted the contribution
from the interference terms [neglected in Eq. (20) ], denoted by
the dashed line. We see that the interference is constructive but
very small. The solid line is the curve of Im(K), which has two
resonances at ω ≈ ±�c. Parameters used are the same as those
in Figs. 3(a) and 3(b) but with �c = 1.8 GHz. Obviously, the
phenomenon found in this situation belongs to ATS because
the transparency window opened in this case is mainly due to
the contribution of the two Lorenztians.

The above results show that the probe-field absorption spec-
trum experiences a transition from EIT to ATS as the control-
field Rabi frequency �c is changed from weak to strong
values. Essentially, one can obtain three different regions
of the probe absorption spectrum according to the value of
|�c|/�ref . The first is the EIT region (|�c|/�ref � 1), where
the quantum destructive interference by the Doppler effect
results in the appearance of a transparency window. The second
is the region of EIT-ATS crossover (1 � |�c|/�ref � 4),
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where both quantum destructive interference and ATS exist
together. Note that we have defined Im(K)ω=0/Im(K)max =
0.01 as the border between the EIT-ATS crossover and the ATS
regions. The third is the ATS region (|�c|/�ref > 4), where
Im(K)ω=0/Im(K)max � 0.01 and the transparency window is
contributed only by the two Lorentzians. Figure 3(d) shows a
“phase diagram” that illustrates the transition from the EIT to
the ATS region by plotting Im(K)ω=0/Im(K)max as a function
of |�c|/�ref .

3. Comparison with experiment

To verify our theoretical result given above, it is necessary
to make a quantitative comparison with the experimental
one reported recently by Lazoudis et al. [9]. By using the
parameters �12 = �13 = �42 = �43 = 4.08 × 107 Hz, γ =
3MHz, γ col

j l ≈ 5 MHz, and �ωD = 1.2 GHz, we calculate the
absorption spectrum Im(K) for the case of the copropagating
configuration, with results plotted as the dashed lines in Fig. 4.
Figure 4(a) is the control field on resonance with �c = 220
MHz, where a sharp dip appears in the center of the absorption

spectrum and the absorption doublet is symmetric. Figure 4(b)
is the control field detuned 100 MHz with �c = 190 MHz,
where a sharp dip also occurs but the absorption doublet is
asymmetric. One can see that our theoretical results (dashed
lines) are very close to the experimental ones measured by
Lazoudis et al. [9], which are represented by the solid lines.
Note in passing that here we have plotted the quantity ImK ,
which is proportional to the fluorescence intensity related to
state |3〉 because σ33 = 2|�p|2Im(K)/(γ + �3). According to
Eq. (13), the width of the transparency window �TW, which is
calculated to be 0.24 GHz, agrees well with the experimental
one reported in Ref. [9]. We stress that the system is in the
region of the weak control field (i.e., �c � �ref = �ωD/2),
so the phenomenon observed by Lazoudis et al. [9] is indeed
an EIT phenomenon assisted by the Doppler effect.

B. Counter-propagating configuration

In this case, one has d31 = �3 − kpv + iγ31, d21 = �2 +
kpv + iγ21, and d32 = �3 − �2 − 2kpv + iγ32. Similarly, one
can obtain the dispersion relation with the form

K = ω

c
+ K1(ω) + K2(ω), (21a)

K1 = κ ′
13

(ω + iγ32)�ωD[�3(1 − B2)γ31 + 2|�c|2] − i�ωD�3|�c|2(1 − B)

γ�3B
(
�ω2

D − B2γ 2
31

)
[|�c|2 − (ω + iBγ31 + iγ31)(ω + i2Bγ31 + iγ32)]

, (21b)

K2 = κ ′
13

(ω + iγ32 + i2�ωD)
[(

γ 2
31 − �ω2

D

) + |�c|2
] − i|�c|2(γ31 − �ωD)[

γ
(
γ 2

31 − �ω2
D

) + |�c|2�13
]
[|�c|2 − (ω + iγ31 + i�ωD)(ω + iγ32 + i2�ωD)]

, (21c)

where K1 and K2 are obtained from poles kpv = �2 − iBγ21

and kpv = −ikpvT , respectively.
We first discuss the minimum value of the absorp-

tion spectrum at ω = 0, i.e., Im(K)min. From Eq. (21),

we obtain

Im(K)min ≈ κ ′
13

�ωD

x + z/2 + z
√

x/2 + 2
√

x/z

(1 + √
x)(x + √

x/z + z/2)(1 + 2
√

x/z)
,

(22)

FIG. 4. (Color online) Experimental result reported by Lazoudis et al. [9] (solid line) and our theoretical one (dashed line) for the probe
absorption spectrum in the case of the co-propagating configuration. (a) The control field is on resonance with �c = 220 MHz. (b) The control
field is detuned 100 MHz with �c = 190 MHz.
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where x ≡ |�c|2γ31/(2γ32�ω2
D) and z ≡ γ /�ωD . Obviously,

we have z � 1 because γ � �ωD . From Eq. (22) we obtain
the following conclusions:

(1) For a large |�c|, i.e., |�c| � √
2γ32/γ31�ωD (and

hence x � 1), Im(K)min is vanishing small.
(2) For a small |�c|, i.e., |�c| � √

2γ32/γ31�ωD but with
|�c| ≈ √

2γ32/γ31γ (and hence x � 1,
√

x/z ∼ 1), Im(K)min

is small.
Similarly,Kj can be also expressed in the form of (14), with

the corresponding αj , Aj±, δj+ and δj− given in the Appendix.
We decompose Im(Kj ) according to different �c values as the
following.

(i) Weak control-field region (i.e., �c < �ref): Im(Kj ) can
be expressed in the form of Eq. (15), but with

W1± = 1
2 [γ31(1 + 3B) + γ32

±
√

[γ31(1 − B) − γ32]2 − 4|�c|2], (23a)

W2± = 1
2 [γ31 + γ32 + 3�ωD

±
√

(γ31 − γ32 − �ωD)2 − 4|�c|2], (23b)

�w
1 = γ32 + 2Bγ31 + �3|�c|2(1 − B)/[�3(1 − B2)γ31

+ 2|�c|2], (23c)

�w
2 = γ32 + 2�ωD + �3|�c|2(γ31 − �ωD)/

× [
�3

(
γ 2

31 − �ω2
D

) + 2γ31|�c|2
]
. (23d)

Shown in Fig. 5(a) are results for Im(K1) (dash-dotted line),
Im(K2) (dashed line), and Im(K) (solid line). System pa-
rameters are given by �j2 ≈ �j3 (j = 1,4) = 4.08 × 107 Hz,
γ col

32 ≈ γ col
21 ≈ γ col

31 = 5 × 106 Hz, γ = 3 × 106 Hz, �c =
100 MHz, and �ωD = 0.6 GHz. Again, one has Im(K1) > 0
and Im(K2) < 0. Their sum gives the total absorption Im(K),
which displays an absorption doublet with a significant
transparency window near ω = 0. This remarkable feature
comes also from the destructive interference induced by the
Doppler effect because the negative Im(K2) term disappears if
the Doppler broadening is absent. According to the criterion
given in Refs. [15–17], this phenomenon belongs to EIT.
However, the counter-propagating configuration results in a
mismatch of beam detunings relative to each other, and hence
although a transparency window due to the Doppler effect is
opened, it is relatively shallow compared with the case of the
copropagating configuration.

(ii) Large control-field region (i.e., �c > �ref): By extend-
ing the approach of Agarwal [14], we obtain Im(Kj ) (j = 1,2),

FIG. 5. (Color online) EIT-ATS crossover for hot molecules in the counter-propagating configuration. (a) Im(K1) (dash-dotted line), Im(K2)
(dashed line), and Im(K) (solid line) as a function of ω for �c < �ref . (b) Absorption spectrum contributed by two Lorentzians (dash-dotted line),
destructive interference (dashed line), and Im(K) (solid line), in the region �c > �ref . (c) Absorption spectrum contributed by two Lorentzians
(dash-dotted line), destructive interference (dashed line), and Im(K) (solid line), in the region �c � �ref . (a) EIT, (b) EIT-ATS crossover, and
(c) ATS regions. (d) Transition from EIT to ATS for hot molecules in the counter-propagating configuration. Im(K)ω=0/Im(K)max as a function
of |�c|/�ref . Three regions (EIT, EIT-ATS crossover, and ATS) are divided by the two dashed vertical lines.
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FIG. 6. (Color online) Experimental result reported by Lazoudis
et al. [9] (solid line) and our theoretical one (dashed line) for the
counter-propagating configuration. The control field is on resonance
with �c = 240 MHz.

with the same form of Eq. (17) but with

W1 = (γ31 + γ32 + 3�ωD)/2, (24a)

δr
1 =

√
4|�c|2 − (γ31 − γ32 − �ωD)2/2, (24b)

g1 = γ31 − γ32 − �ωD

2
+ �3|�c|2(γ31 − �ωD)

�3
(
γ 2

31 − �ω2
D

) + 2γ31|�c|2
(24c)

and

W2 = [γ31(1 + 3B) + γ32]/2, (25a)

δr
2 =

√
4|�c|2 − [γ31(1 − B) − γ32]2/2, (25b)

g2 = γ31(1 − B) − γ32

2
+ �3|�c|2(1 − B)

�3(1 − B2)γ31 + 2|�c|2 .

(25c)

(iii) Strong control-field region (i.e., �c � �ref): In this
situation, the quantum interference strength gj/δ

r
j in the

decomposed probe absorption spectrum [with the same form
as Eq. (17)], is very weak and the linear absorption corresponds
to the sum of two Lorentzians shifted from the origin by
δr
j ≈ ±�c (j = 1,2).

Shown in Figs. 5(b) and 5(c) are results of the probe-field
absorption spectra as functions of ω for �c > �ref and
�c � �ref , respectively. The dash-dotted line (dashed line)
denotes the contribution by the sum of two Lorentzians terms
(interference terms) in Im(K). We see that both destructive
and constructive interferences appear for different ω. The solid
line gives the result of Im(K). System parameters used are the
same as those in Fig. 5(a), but with �c = 1.2 GHz and �c =
3.0 GHz for Figs. 5(b) and 5(c), respectively. Shown in
Fig. 5(d) is the “phase diagram” that illustrates the transition
from EIT to ATS for the conter-propagating configuration by
plotting Im(K)ω=0/Im(K)max as a function of |�c|/�ref .

To test our theoretical prediction, a comparison with the
experimental one for the counter-propagating configuration
reported by Lazoudis et al. [9] is also made, as shown in Fig. 6.
By using the system parameters �12 = �13 = �42 = �43 =
4.08 × 107 Hz, γ col

j l = 5 × 106 Hz, γ = 3 × 106 Hz, and �c =

240 MHz, the absorption spectrum Im(K) is calculated based
on our formulas, with the result plotted as the dashed line
in the figure. We see that our theoretical result (dashed line)
agrees well with the experimental one measured by Lazoudis
et al. [9], which is denoted by the solid line.

IV. COLD MOLECULES AND COMPARISON
FOR VARIOUS CASES

Our model presented in Sec. II is also valid for cold
molecules. In this case, one should take v = 0 in the Bloch
equation (2), and f (v) = δ(v) in the Maxwell equation (4).
Solutions (5) and (6) are still valid but one must take v = 0
and the dispersion relation is changed by

K(ω) = ω

c
+ κ13σ

(0)
11

ω + i�

|�c|2 − (ω + iγ31)(ω + iγ32)
, (26)

with � = γ32 − (�12|�c|2)/(�12γ21 + 2|�c|2). We have cho-
sen �2 = �3 = 0 for simplicity.

The dispersion relation, (26), can also be decomposed in
the form of Eq. (14), but with spectrum poles given by

δ± = [i(γ31 + γ32) ±
√

4|�c|2 − (γ31 − γ32)2]/2. (27)

A spectrum decomposition similar to that done in the last
section can be carried out, which is omitted here to save
space. Figures 7(a)–7(c) show the results of the probe-field
absorption spectrum Im(K) decomposed in the weak, large,
and strong control-field regions, respectively. System param-
eters are given by �12 = �13 = �42 = �43 = 4.08 × 107 Hz,
γ col

j l = 5 × 106 Hz, and σ
eq
11 = 1 for the weak [�c = 18 MHz;

Fig. 7(a)], large [�c = 100 MHz; Fig. 7(b)], and strong [�c =
800 MHz; Fig. 7(c)] control-field regions, respectively. We
see that in Fig. 7(a) two positive single Lorentzian peaks (i.e.,
dashed line and dotted-dashed line) are superimposed on the
absorption spectrum; their superposition is a single peak (i.e.,
solid line). Thus the quantum interference is constructive and
hence there is no EIT in this weak control-field region. Simi-
larly, the quantum interferences shown in Figs. 7(b) and 7(c)
are also constructive. Consequently, there is no EIT or EIT-ATS
crossover for cold molecules in V-type systems. Figure 7(d)
shows Im(K)ω=0/Im(K)max for cold molecules as a function
of |�c|/�ref , where �ref ≡ (γ32 − γ31)/2. Three regions (con-
structive interference, ATS with constructive interference, and
ATS) are delineated by the two dashed vertical lines.

From these results and those given in Sec. III, we see that the
quantum interference in the V-type molecular system displays
very different features, which depend on the existence or
nonexistence of the Doppler broadening and, also, depend on
the beam propagating (copropagating or counter-propagating)
configurations. For comparison, in Table I some useful
physical quantities, including the EIT condition, value of
Im(K)ω=0, group velocity vg , and width of the transparency
window �TW, are presented for several different physical cases.

The first row in Table I is for the cold molecular
system, for which no EIT exists; the second row is for
the Doppler-broadened system with the copropagating
configuration; and the third row is for the Doppler-broadened
system with the counter-propagating configuration.
Both the co- and the counter-propagating configurations
allow Doppler-broadening-induced EIT, but their EIT
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FIG. 7. (Color online) (a) A single Lorentzian peak L1 (dash-dotted line), a single Lorentzian peak L2 (dashed line), and Im(K) (solid line)
as function of ω for �c < �ref . (b) Absorption spectrum contributed by two Lorentzians (dash-dotted line), constructive interference (dashed
line), and Im(K) (solid line), in the region �c > �ref . (c) Absorption spectrum contributed by two Lorentzians (dash-dotted line), constructive
interference (dashed line), and Im(K) (solid line), in the region �c � �ref . (d) Im(K)ω=0/Im(K)max for cold molecules as a function of the
control field |�c|/�ref , with �ref ≡ (γ32 − γ31)/2. Three regions (constructive interference, ATS with constructive interference, and ATS) are
divided by the two dashed vertical lines.

conditions are different. The value of Im(K)ω=0 for the
copropagating configuration is much less than that of the
cold molecular system and the hot molecular system with
the counter-propagating configuration. However, the width of
the transparency window and the group velocity are the same
for both the co- and the counter-propagating configurations.
These interesting features deserve to be verified by further
experiments for V-type molecular systems.

V. ROLES OF SATURATION AND HOLE BURNING

Differently from the three-level � system [6], where only
quantum interference appears, in the three-level V-type system

with inhomogeneous broadening there may be a couple of
simultaneously occurring mechanisms (including saturation,
hole burning, and quantum interference) contributing to the
absorption of the probe field, which cannot be easily distin-
guished from each other. However, the density matrix formulas
are able to analyze all these various contributions since
they deal with both coherence and incoherence (population)
effects.

The saturation effect is an incoherent phenomenon, which
can be described by the difference between the average
populations in states |1〉 and |2〉, i.e.,

�P = 〈σ11〉 − 〈σ22〉, (28)

TABLE I. Comparison of propagating properties of the probe field for various V-type molecular systems, including EIT condition, value of
Im(K)ω=0, width of the transparency window �TW, and group velocity vg for three cases. Other quantities listed are defined in the text. Coprop.,
copropagating configuration; counter-prop., counter-propagating configuration.

System EIT condition Im(K)ω=0 �TW vg

Cold molecules No EIT κ13γ31
|�c |2

2|�c |2
γ31

|�c |2
κ13

Hot molecules

Coprop. γ31γ32 � |�c|2 � (�ωD)2/4
√

πκ13
�ωD

γ32�3
γ32�3+|�c |2

2|�c |2
�ωD

|�c |2√
πκ13

Counter-prop. 2γ32γ
2/γ31 � |�c|2 � (�ωD)2/4

√
πκ13

�ωD

1
1+|�c |/�ωD

2|�c |2
�ωD

|�c |2√
πκ13
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FIG. 8. (Color online) (a) Average populations 〈σ11〉 and 〈σ22〉 in state |1〉 (solid line) and state |2〉 (dash-dotted line) as a function of
|�c|/|�ref |. (b) Average population difference �P as a function of |�c|/�ref . The dashed vertical line in each panel is the boundary dividing
the weak (left) and strong (right) control-field regions.

where 〈σjj 〉 = ∫ ∞
−∞ dvf (v)σjj (j = 1,2), with f (v) being the

velocity distribution function of atoms. If �P approaches 0,
i.e. 〈σ11〉 ≈ 〈σ22〉, the system reaches maximum saturation. In
contrary, if 〈σ22〉 � 〈σ11〉, the saturation can be negligible. To
analyze the saturation effect in our system, using the result
given in Sec. II, we calculated 〈σ11〉 and 〈σ22〉, which are
plotted in Fig. 8(a). We see that in the weak control-field region
(i.e., the left side of the dashed vertical line), 〈σ11〉 is much
lager than 〈σ22〉. Shown in Fig. 8(b) is the result of �P. These
results demonstrate that the saturation effect is significant only
for a very strong control field (i.e., |�c|/�ref � 1). In the weak
control-field region the saturation effect can be neglected.

Optical hole burning is an incoherent phenomenon where a
saturating field burns a hole in the population distribution for
an inhomogeneous broadened medium, which is usually called
the Lamb (or Bennet) hole when reflected in the absorption
spectrum of a probe field [24]. In our case, the control field
is coupled to states |1〉 and |2〉, and the population in state |1〉
indeed decreases when �c increases, as shown in Fig. 8(a).
However, this phenomenon cannot be recognized as a hole
burning. The reasons are the following. First, although for
the transition |1〉 ↔ |3〉 coupled by the probe field the control
field is formally equivalent to a saturating field, this saturation
field has a large detuning to state |3〉. As a result, even if
a hole-burning effect exists, this effect is negligibly weak.
Second, in the absorption spectrum of the probe field shown in
Fig. 3, no Lamb hole appears, which can be taken as a signature
of optical hole burning [25]. A simple analysis shows that the
main reason for the reduction of 〈σ11〉 comes from the effect
of the transient rate γ , together with the population transfer
induced by the control field.

Differently from the above two incoherent effects, which
may occur in two-level systems, the EIT is a quantum
interference phenomenon occurring in multilevel (at least
three) systems. From the above discussion we see that in the
weak control-field region neither saturation nor hole burning
plays a significant role. Thus the main reason for the reduction
in probe-field absorption in the weak control-field region is due
to another mechanism. As shown clearly in Fig. 3(a), where
the absorption spectrum of the probe field consists of a positive
[i.e., dashed (red) line] and a negative [i.e., dashed-dotted

(green) line] part, the reduction in the center of the probe-field
absorption spectrum is caused by destructive interference, a
typical characteristic of EIT. A similar characteristic occurs
also in cold three-level � systems as demonstrated in Ref. [17],
where EIT occurs in the weak control-field region in the same
way [i.e., Im(K) consists of two Lorentzians; one is positive
and the other is negative]. When �c increases to a large value,
the saturation and hole-burning effects begin to play roles.
However, the ATS effect comes into play for large �c and
dominates over the saturation and hole-burning effects when
�c becomes strong. Consequently, a crossover from EIT to
ATS indeed exists in the system.

VI. SUMMARY

We have studied EIT and ATS in open V-type molecular
systems. A systematic analytical approach to the probe-field
absorption spectrum has been developed using the residue
theorem and spectrum-decomposition method. We have found
that EIT can occur and a transition from EIT to ATS exists
for hot molecules. However, there is no EIT and thus no
EIT-ATS crossover for cold molecules. Furthermore, we have
demonstrated that for hot molecules EIT is possible even for a
counter-propagating configuration. We have provided explicit
formulas for EIT conditions and widths of transparency
windows of the probe field when hot molecules with Doppler
broadening work in copropagating and counter-propagating
configurations, respectively. Our theoretical result agrees well
with the recent experimental one reported by Lazoudis et al.
[9]. Theoretical predictions presented in this work are useful
to guide new experimental findings in coherent molecular
systems and may have promising practical applications in
coherent molecular spectroscopy, precision measurement,
molecular quantum state control, and so on.
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APPENDIX: EXPRESSIONS OF α, A j±, AND δ j±

(i) For the copropagating configuration,

α1 = κ ′
13

�3(1 − B2)γ31 + 2|�c|2
γ�3B

(
�ω2

D − B2γ 2
31

) , (A1a)

α2 = κ ′
13

�3
(
γ 2

31 − �ω2
D

) + 2γ31|�c|2
γ�3

(
γ 2

31 − �ω2
D

) + 2γ31|�c|2�13
, (A1b)

A1± = ±
{
δ1± + i

[
γ32 − �3|�c|2(1 + B)

�3(1 − B2)γ31 + 2|�c|2
]}/

(δ1− − δ1+), (A1c)

A2± = ±
{

δ2± + i

[
γ32 − �3|�c|2(γ31 + �ωD)

�3
(
γ 2

31 − �ω2
D

) + 2γ31|�c|2
]}/

(δ2− − δ2+), (A1d)

δ1± = 1

2
{i [γ31(1 + B) + γ32] ±

√
4|�c|2 − [γ31(1 + B) − γ32]2}, (A1e)

δ2± = 1

2
[i(γ31 + �ωD + γ32) ±

√
4|�c|2 − (γ31 + �ωD − γ32)2]. (A1f)

(ii) For the counter-propagating configuration,

α1 = κ ′
13

�ωD�3(1 − B2)γ31 + 2|�c|2
γ�3B

(
�ω2

D − B2γ 2
31

) , (A2a)

α2 = κ ′
13

(
γ 2

31 − �ω2
D

) + |�c|2
γ
(
γ 2

31 − �ω2
D

) + |�c|2�13
, (A2b)

A1± = ±
{
δ1± + i

[
γ32 + 2Bγ31 + �3|�c|2(1 − B)

�3(1 − B2)γ31 + 2|�c|2
]}/

(δ1− − δ1+), (A2c)

A2± = ±
{

δ2± + i

{
γ32 + 2�ωD + �3|�c|2(γ31 − �ωD)

�3
(
γ 2

31 − �ω2
D

) + 2γ31|�c|2
]}/

(δ2− − δ2+), (A2d)

δ1± = 1

2
{i [γ31(1 + 3B) + γ32] ±

√
4|�c|2 − [γ31(1 − B) − γ32]2}, (A2e)

δ2± = 1

2
[i(γ31 + γ32 + 3�ωD)/ ±

√
4|�c|2 − (γ31 − γ32 − �ωD)2]. (A2f)
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