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Nonparaxial traveling solitary waves in layered nonlinear media
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A large class of exact analytical traveling solitary wave solutions in a variety of inhomogeneous structures
consisting of linear and nonlinear layers is obtained. The solutions are related to a spatial resonance condition
and describe reflectionless and radiationless beam propagation for arbitrary angles and spatial widths in the
nonparaxial regime.
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Wave propagation in inhomogeneous media is one of the
most ubiquitous phenomena occurring in almost every branch
of physics. Both natural and man-made media are, in general,
inhomogeneous, and the study of wave propagation in such
media is a research field of continuously increasing interest
from the standpoint of applications in modern science and
engineering. The inhomogeneity of a medium determines
the linear diffraction properties of wave propagation so that
appropriately designed spatial structures can have desirable
propagation features. In addition, the refractive index of a
large variety of materials appears to depend on the wave power
resulting in a drastic modification of the linear wave propa-
gation properties for sufficiently high power of the waves.
In such nonlinear materials, spatial self-localization of the
waves can take place enabling the formation of solitary waves
(SWs) and solitons. The combination of the inhomogeneity
and the nonlinearity results in wave propagation characteristics
that have no counterpart in either linear inhomogeneous or
nonlinear homogeneous media. In the context of nonlinear
optics, intense research interest has been focused, in theoretical
and experimental studies, on photonic structures of varying
complexity, such as photonic crystals, waveguide arrays, and
periodic or disordered lattices [1]. The effective light control
in such structured systems can be achieved by means of
engineered heterostructures consisting of waveguide channels,
cavities, and other functional elements.

The dominant underlying model governing SW formation
and propagation in such structures is the nonlinear Schrödinger
equation (NLS), which is known to be completely integrable
for one-transverse dimension (space or time) when the
propagation medium is homogeneous and has a Kerr type of
nonlinearity. Therefore, exact soliton solutions can be derived
with the utilization of the inverse scattering transform, and
soliton dynamics under the presence of a variety of pertur-
bations including inhomogeneities, dissipation, higher-order
diffraction, and nonlocality have been studied with the utiliza-
tion of perturbation methods [2]. However, this analytically
tractable model is a result of an important assumption with
far-reaching consequences with respect to its applicability in
several cases of interest. The NLS equation is derived from the
Maxwell equations under the paraxial approximation, which
is valid under the following conditions: (i) the beamwidth is
much larger than the wavelength (slowly varying envelope
approximation), and (ii) the beam propagates along or near
negligible angles with respect to the reference axis. These
conditions drastically restrict the domain of applicability of

the NLS equation with respect to various applications. The
progressive miniaturization of the photonic devices on the
nanoscale invalidates the slowly varying envelope approxima-
tion (i) since the beamwidth may become comparable or even
smaller than the wavelength. Additionally, the assumption on
the small angle of propagation (ii) strongly restricts the study of
wave dynamics (reflection and refraction) at material interfaces
and mutual SW collisions, thus, excluding a large number of
features with interest for applications. Even if the initially
launched beam can be considered paraxial, the evolution
under propagation can result in splitting to multiple beams
propagating at large angles as well as strong focusing. For the
latter, the NLS equation predicts a nonphysical catastrophic
beam collapse [3]. Therefore, although there exist a huge
number of studies on NLS soliton formation and dynamics
in inhomogeneous media, the investigation of the respective
phenomena in nanoscale structures as well as the exploration
of novel features of SW dynamics are yet to be followed up in
the nonparaxial regime [4].

For the case of layered media, the original Maxwell
equation, under no approximation, leads to a scalar nonlin-
ear Helmholtz (NLH) equation with an intensity-dependent
refractive index when the electric field is assumed to be
monochromatic and linearly polarized along the y direction
(TE polarization),

Ezz + Exx + β2(x)E + γ (x)|E|2E = 0, (1)

where the electric field E is normalized to E0, β ≡
n0ω/c, γ ≡ 2(n2E

2
0/n0)β2 and n0(x) and n2(x) are the linear

and nonlinear (Kerr-type) refractive indices that are piecewise
constant functions of the transverse coordinate x. The NLS
equation can be considered as the paraxial limit of the NLH
equation. The two equations have fundamental mathematical
differences resulting in the description of qualitatively differ-
ent phenomena of wave propagation. The NLH equation is of
hyperbolic type allowing for the description of bi-directional
wave propagation in contrast to the NLS equation, which is of
parabolic type and describes only unidirectional propagation,
thus, excluding the description of wave backscattering. On the
other hand, both the numerical solution and the mathematical
analysis of the NLH equation are considerably more difficult
than the case of the NLS since the latter requires solving
an initial value problem, whereas, the former involves the
solution of a boundary value problem. Moreover, unlike the
NLS equation, which governs the slowly varying envelope
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evolution, the NLH equation has to be approximated with
subwavelength resolution. Additionally, in contrast to the NLS
equation, the stability of solutions of the NLH equation is a still
unsolved problem. Several papers have been focused on the
derivation of nonparaxial unidirectional propagation equations
as an attempt to include additional terms to a NLS type of
equation in order to extend its range of validity [5]. In an
increasing number of papers, bright and dark soliton solutions
of the NLH equation have been considered either in bulk media
[4,6] or in interfaces [7], and numerical simulations of the NLH
equations have shown robust soliton propagation [8]. Both the
wide applicability and the difficulties of the NLH equation
underpin the importance of knowledge of analytical solutions
which can guide our intuition in studying SW propagation
under the NLH equation as well as in benchmarking numerical
algorithms for its solution. In this paper, we present a large
class of analytical solutions corresponding to traveling SWs in
a wide variety of layered nonlinear media.

Traveling wave solutions of the NLH Eq. (1) can be sought
in the form

E(x,z) = u(x − x0(z))ei(kxx+kzz), (2)

where u is real transverse wave profile and kx and kz are
the transverse and longitudinal wave numbers, respectively.
Substitution of Eq. (2) in Eq. (1) results in an ordinary
differential equation for the transverse wave profile,

uxx + β2(x) − k2

1 + v2
u + γ (x)

1 + v2
u3 = 0, (3)

with k2 ≡ k2
x + k2

z , v ≡ dx0/dz = kx/kz being the transverse
wave velocity corresponding to a propagation angle θ =
tan−1(kx/kz) and u = u(x − x0(z)). The above equation cor-
responds to a dynamical system which is nonautonomous due
to the dependence of the piecewise constant coefficients on
the transverse coordinate x. For the case of a homogeneous
nonlinear medium (where β and γ are constants), there exist
a homoclinic (heteroclinic) solution for every x0 provided that
k2 > β2 (k2 < β2) and γ > 0 (γ < 0) [4,6],

u =
√

2
k2 − β2

γ
sech

⎛
⎝

√
k2 − β2

1 + v2
[x − x0(z)]

⎞
⎠ , (4)

u =
√

k2 − β2

γ
tanh

⎛
⎝

√
β2 − k2

2(1 + v2)
[x − x0(z)]

⎞
⎠ . (5)

These solutions travel transversely with velocity v and cor-
respond to bright (dark) SW solutions of the homogeneous
NLH. Note that, in the paraxial limit v2 � 1, the solutions
given in Eqs. (4) and (5) correspond to the well-known soliton
solutions of the NLS equation, whereas, in the nonparaxial
regime, the wave profile width dependency on the transverse
velocity takes the geometrical dependency of the beamwidth
on the propagation angle properly into account [4].

The presence of a transverse medium inhomogeneity, in
general, results in the breaking of the translational invariance
of the solutions. In such a case, solitons cannot be formed in

every transverse position; stable and unstable solitons can be
formed only in specific transverse positions determined by the
form of the inhomogeneity. This is reflected in the dynamics
of the nonautonomous system of Eq. (3) through the breaking
of the homoclinic (heteroclinic) orbit: The stable and unstable
manifolds corresponding to the respective saddle points are
no longer tangent under the presence of a nonautonomous
perturbation and intersect at a discrete set of homoclinic
(heteroclinic) points. These points correspond to the discrete
set of transverse coordinate values where a SW can be formed
in the inhomogeneous medium [9,10]. Such a discreteness
excludes the possibility of having a homoclinic (heteroclinic)
solution of Eq. (3) for every x0 and, therefore, the existence of
traveling wave solutions.

Among the wide class of inhomogeneous media, layered
structures consisting of alternating (interlaced) linear and non-
linear regions are very important for applications as well as for
understanding SW formation and dynamics. A large number of
previous studies has been focused on the formation of standing
SW solutions in finite structures [11–16], infinite periodic
structures [17–19], as well as interfaces between semi-infinite
(homogeneous or inhomogeneous) structures [20]. Therefore,
apart from the expected symmetric SW profiles, novel classes
of asymmetric modes have been shown to exist even in
symmetric layered structures [11,12,21,22]. Such classes have
been obtained either by utilizing explicit boundary conditions
on the boundaries between subsequent layers [11] or by
utilizing a phase-space method [12,21,22]. The phase-space
method combined with topological considerations of the phase
space of the constructed standing wave solutions have been
shown to provide a sufficient instability condition for their
propagation under the paraxial approximation governed by
the NLS equation [12,19,21,22].

In the following, we consider layered structures consisting
of interlaced linear and nonlinear parts described by the linear
and nonlinear refractive index profiles,

[n0(x),n2(x)] =
{

(nl
0,0), x ∈ UL,

(nnl
0 ,n2), x ∈ R − UL,

(6)

where UL = ⋃
m[N/2 + (m − 1)T ,N/2 + (m − 1)T + L]

with m = 1,2, . . . ,M is the union of the linear parts with
T = L + N and L and N being the lengths of the linear and
the nonlinear layers, respectively. Such profiles describe two
types of configurations consisting of a periodic interlaced
structure (with spatial period T ) and a nonlinear homogeneous
part: (a) For a finite M , the structure consists of a finite
periodic structure embedded in a homogeneous nonlinear
medium. This type includes the case of a linear defect in a
nonlinear medium, which has been intensively studied in terms
of paraxial propagation of the standing SW [11,12,14–16].
(b) For an infinite M , the structure consists of a semi-infinite
periodic structure interfaced with a homogeneous nonlinear
medium. The study of waves propagating in an infinite
periodic structure can be included in this type by considering
waves launched inside the semi-infinite periodic structure
sufficiently far from the interface with the homogeneous
medium.
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The transverse profile of the wave is described by Eq. (3)
with β = βl ≡ nl

0ω/c, γ = 0 and β = βnl ≡ nnl
0 ω/c, γ �= 0

in the linear and nonlinear parts, respectively. We focus on
the case where k2 < β2

l so that the solutions of Eq. (3) within
the linear parts are periodic, whereas, in the nonlinear parts,
we have k2 > β2

nl (k2 < β2
nl) and γ > 0 (γ < 0) so that the

bright (dark) SW solution given by Eq. (4) [Eq. (5)] exists
within the nonlinear parts. The total transverse wave profile can
be obtained by considering the boundary conditions between
subsequent layers. When k2 > β2

nl , matching of the solution
given by Eq. (4) with the sinusoidal solutions of the linear
part in a period T of a structure with M = 1 (a linear layer
embedded in an infinite homogeneous nonlinear medium)
leads to the following relation [11]:

q2
nl

q2
l

+ tan2
[
ql cos θ

(
N
2 − x0

)]
q2

nl

q2
l

+ tan2
[
ql cos θ

(
L + N

2 − x0
)]

= cos2
[
ql cos θ

(
N
2 − x0

)]
cos2

[
ql cos θ

(
L + N

2 − x0
)] , (7)

where q2
nl = k2 − β2

nl and q2
l = β2

l − k2. This is a nonlinear
dispersion relation from which symmetric, antisymmetric,
as well as asymmetric standing waves can be obtained
corresponding to distinct values of the wave profile center x0

as given by the solution of Eq. (7). A careful investigation of
Eq. (7) shows that it degenerates to an identity relation under
the condition,

k2 = β2
l −

(nπ

L

)2
(1 + tan2 θ ), n = 1,2, . . . . (8)

This condition leads to the existence of a solution for every x0.
The resulting continuous family of solutions, for every n, is
parametrized by x0 and includes a symmetric, an antisymmet-
ric, and an infinite number of asymmetric modes. Therefore,
it is the fulfillment of Eq. (8) that allows for the existence of a
solitary wave solution of Eq. (3) determining the wave profile
in the transverse direction for every x0(z) = vz + x0(0) and,
therefore, for the existence of traveling SWs in contrast to the
general case where only standing SWs at fixed x0 exist. [18]
The condition represents a spatial resonance according to
which an integer number of half-periods of the sinusoidal wave
profile in the linear part is contained within the length of the
linear part L. Moreover, this condition ensures the existence
of continuous, with respect to x0, families of solutions for
finite configurations corresponding to M > 1 as well as
semi-infinite configurations corresponding to an infinite M .
A geometric construction of the respective solutions can be
considered in the phase space (u,ux) of the dynamical system
given by Eq. (3). The homoclinic (heteroclinic) asymptotic
orbits corresponding to bright (dark) solitary wave solutions
within the nonlinear parts are symmetric with respect to both
axes u = 0 and ux = 0 of the phase space, whereas, the phase
space of the solutions within the linear parts consists of ellipses
centered around the origin (u,ux) = (0,0). As a result, under
the condition (8), any solution starting from a point of the
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FIG. 1. (Color online) Dispersion curves of the nonparaxial
traveling SWs. The solid-line parts of the lemniscoid (blue) curves
depict the dispersion relation for the solutions. The solid-line (red)
circles bound the dispersion curves, and their radii depend on the
linear refractive indices of the linear (βl) and nonlinear (βnl) parts. The
straight dotted lines (black) depict the asymptotes of the dispersion
curves at the origin. (Top) bright SW and (bottom) dark SW when
βl > βnl (left) and βl < βnl (right).

homoclinic (heteroclinic) orbit at the boundary between a
nonlinear and a linear part of the structure returns to the same
point (for n, even) or to its symmetric point with respect to the
origin (for n, odd) after evolving with respect to x in the linear
part of length L [18].

Equation (8) is the dispersion relation between kx and kz for
the respective nonparaxial traveling SWs. Figure 1 depicts the
dispersion curves for the case of bright and dark SWs along
with their domains of existence. The linear refractive index
profile across the structure determines the boundaries of the
domains through the values of βl and βnl . For the case of bright
SWs, a certain contrast between the linear and the nonlinear
layers is necessary. Different integer values of n correspond
to different traveling SWs with n, by construction, being the
number of nodes (zeros) of the solution within a linear part.
The number of different SWs nmax , in each case, depends
on the values of the linear refractive index in the layers as
well as on the length of the linear layer L. The length of the
nonlinear layer N determines the spatial extent of the solutions.
The angles of the asymptotes of the lemniscoids described by
Eq. (8) at the origin are given by tan θas = ±

√
(Lβl/nπ )2 − 1

and determine, along with the other constraints, the maximum
angle of propagation for each SW. Depending on the position
of the lemniscoid curves with respect to the circles of radii βl

and βnl , the maximum angle can be further restricted as in the
case of bright SWs shown in Fig. 1(top), whereas, a nonzero
minimum angle of propagation can occur as in the case of dark
SWs shown in Fig. 1(bottom, left) where paraxial propagation
(kx � 0) cannot take place for some of the SWs. In general, an
increasing L results in larger maximum angles of propagation
for each n as well as a larger nmax . At the limit of large L,
the dispersion curves densely fill the respective domains of
existence, and their asymptotes approach the kz = 0 axis.
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FIG. 2. (Color online) Traveling SWs in a structure consisting
of a single linear layer (M = 1) with L = 4π and N = 2π . The
velocity is v = 0.2 and left: n = 2; right: 3. top: γ = 2, β2

nl = 0.3,
and β2

L = 1.5; bottom: γ = −2, β2
nl = 1.8, and β2

l = 2.

The propagation of traveling SWs in the case of a structure
consisting of a single linear layer is depicted in Fig. 2. The re-
spective solutions describe reflectionless transmission through
the linear layer. For γ > 0 and k2 > β2

nl , corresponding to solu-
tions in the nonlinear layers given by Eq. (4), a bright traveling
SW propagates through the linear layer with the transmitted
wave having the same (n, even) or reverse (n, odd) polarity
on the other side of the linear layer as shown in Fig. 2(top).
For γ < 0 and k2 < β2

nl , corresponding to solutions in the
nonlinear layers given by Eq. (5), the respective dark traveling
SWs have either the opposite (n, even) or the same (n, odd) sign
of asymptotic values as shown in Fig. 2(bottom). In all cases,
the transmitted wave differs from the incident wave only as to
a possible sign reversal depending on n and a displacement of
length L along the transverse dimension.

The case of traveling SWs in a structure consisting of
three linear layers is depicted in Fig. 3. In such cases where
M > 1, the sign reversal of the transmitted wave requires both
n and M being odd numbers, whereas, the total transverse
displacement of the transmitted wave with respect to the
incident wave is ML. The case of an infinite M , corresponding
to a structure consisting of a semi-infinite periodic structure
interfaced with a semi-infinite homogeneous nonlinear part,
can be readily considered; a bright or dark incident SW is
transmitted with no reflection in the periodic structure with
an increased averaged velocity v̄ = v(1 + L/N). Inside the
periodic part and sufficiently far from the interface, the SW
has the form of a traveling breather as in the case of an infinite
periodic layered structure.
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FIG. 3. (Color online) Traveling SWs in a structure consisting of
three linear layers (M = 3). All other parameters are the same with
those of Fig. 2.

In conclusion, a large class of exact analytical traveling soli-
tary wave solutions in a variety of inhomogeneous structures
consisting of linear and nonlinear layers has been obtained.
The solutions are related to a spatial resonance condition
and describe reflectionless and radiationless SW propagation
for arbitrary angles and spatial widths in the nonparaxial
regime, allowing for their applicability on the nanoscale.
The generality of the results facilitates the experimental
observation of the respective solutions in planar dielectric
structures having the form of finite or infinite waveguide
arrays for layer dimensions ranging from several wavelengths
to a subwavelength. The presented solutions can be directly
extended to even larger classes of inhomogeneous photonic
structures including other types of nonlinearities, medium
anisotropy, magnetic materials, and metamaterials. Moreover,
structures having layers with gain in order to compensate
lossy metallic layers commonly occurring in nano-optics
applications can also be considered. The respective traveling
SW solutions are expected to have significant potentiality for
optical control and signal-processing functionality. Finally,
these solutions are applicable and provide physical intuition
for the formation of traveling SWs in layered media occurring
in other branches of physics beyond nonlinear optics.
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