
PHYSICAL REVIEW A 87, 043809 (2013)

Correlated two-photon scattering in cavity optomechanics
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We present an exact analytical solution of the two-photon scattering in a cavity optomechanical system.
This is achieved by solving the quantum dynamics of the total system, including the optomechanical cavity
and the cavity-field environment, with the Laplace transform method. The long-time solution reveals detailed
physical processes involved as well as the corresponding resonant photon frequencies. We characterize the photon
correlation induced in the scattering process by calculating the two-photon joint spectrum of the long-time state.
Clear evidence for photon frequency anticorrelation can be observed in the joint spectrum. In addition, we calculate
the equal-time second-order correlation function of the cavity photons. The results show that the radiation pressure
coupling can induce photon blockade effect, which is strongly modulated by the phonon sideband resonance.
In particular, we obtain an explicit expression of optomechanical coupling strength determining these sideband
modulation peaks based on the two-photon resonance condition.

DOI: 10.1103/PhysRevA.87.043809 PACS number(s): 42.50.Pq, 42.50.Wk, 42.50.Ar, 07.10.Cm

I. INTRODUCTION

The realization of photon-photon interaction at few-photon
level has been a research subject of major interest in quantum
optics [1,2]. The significance of few-photon interaction exists
not only for studying the foundations of quantum theory,
but also for applications in quantum information science.
Specifically, an important goal in the current field of research
is the control of two-photon correlations. Such a problem
has been discussed in various nonlinear systems [3–9]. For
example, it has been shown that photon-photon interaction can
be achieved in nonlinear Kerr media, and interesting quantum
correlation effects such as photon blockade [1,2,10] appear
in the strong-coupling regime. In particular, a strong Kerr
nonlinearity can be achieved through the interaction between
light and atoms [1,2].

Interestingly, an optomechanical cavity [11–13] driven by
radiation pressure can be mapped to a problem with a Kerr-type
interaction [14–16], and hence provides a different class of
systems to explore phenomena of interacting photons through
the control of mechanical motion of the cavity mirrors. Indeed,
Rabl [17] has examined the photon blockade effect in a
continuously driven cavity optomechanical system operated
in the single-photon strong-coupling regime. In such a regime,
a single-cavity photon can significantly change the resonant
frequency of the cavity field and leads to a range of interesting
effects, such as quantum state preparation [14,15,18,19],
multiple mechanical sidebands [20], scattering [21], single-
photon cooling [22], and optomechanical instability [23].
We note that several recent experimental systems in cavity
optomechanics [24–26] are approaching the single-photon
strong-coupling regime.

In this paper, we investigate the quantum dynamics of a pho-
ton pair interacting with a moving mirror in a cavity. Different
from previous studies [17,20] in which a continuously driven
system is treated perturbatively, our system confined in the
two-photon subspace is exactly solvable and therefore provides
a fundamental configuration to study how two photons can
become correlated via optomechanical coupling. We shall

focus on the scattering problem in which a two-photon wave
packet is injected into the cavity. By treating the cavity field, the
moving mirror, and the field continuum outside the cavity as a
whole system, we can solve the quantum state evolution via the
Wigner-Weisskopf method. From the long-time solution, we
identify quantitatively the probability amplitudes associated
with various scattering processes inside the cavity.

We emphasize that our exact solution provides a complete
description of the full quantum state, including the system’s en-
vironment, and this is not directly attainable in previous related
studies based on the master equation of the system’s reduced
density matrix [27] or approximated operator solutions in
Heisenberg’s picture [17]. The knowledge of the full quantum
state enables us to learn about the details of underlying physical
processes as well as the quantum structure of interacting
photons in optomechanical cavities. In this paper, we also
calculate the joint spectrum of the two scattered photons. From
the joint spectrum, we can see clear evidence for the photon
frequency anticorrelation, which is a qualitative evaluation
of the two-photon correlation. In addition, we calculate the
equal-time second-order correlation function of the cavity
photons at transient times as a quantitative measurement of
the two-photon correlation. The results indicate that photon
blockade is strongly modulated by the optomechanical cou-
pling strength as well as the Franck-Condon factors involved.
More importantly, we find out the explicit modulation rule of
the optomechanical coupling strength based on the two-photon
resonance.

II. MODEL

The system under consideration is a Fabry-Pérot–type
optomechanical cavity formed by a fixed end mirror and a
moving end mirror [see Fig. 1(a)]. We focus on a single-mode
cavity field, which is coupled to the mechanical oscillation
of the moving mirror via radiation pressure. The moving
end mirror is assumed to be perfect and the fixed one is
partially transparent. In a rotating frame defined by the
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FIG. 1. (Color online) (a) Schematic diagram of a Fabry-Pérot–
type optomechanical cavity formed by a fixed end mirror and a
moving end mirror. (b) The energy-level structure (unscaled) of the
optomechanical cavity (limited in the zero-, one-, and two-photon
subspaces).

unitary transformation e−iNωct with N = a†a + ∫ ∞
0 c

†
kckdk

being the total photon number operator, the Hamiltonian of
the whole system including the optomechanical cavity and the
environment reads as

HI = h̄ωMb†b − h̄g0a
†a(b† + b) +

∫ ∞

0
h̄�kc

†
kckdk

+ h̄ξ

∫ ∞

0
(c†ka + a†ck)dk. (1)

Here, a (a†) and b (b†) are, respectively, the annihilation
(creation) operators of the cavity field and the moving mirror,
with the respective frequencies ωc and ωM . ck (c†k) is the
annihilation (creation) operator of the continuous field mode
k outside the cavity with the resonant frequency ωk (�k =
ωk − ωc is the detuning). The radiation-pressure coupling
appearing in the second term of HI is characterized by the
coupling strength g0, and the coupling between the cavity field
and the outside fields is modeled by the hopping interaction
with the coupling strength ξ = √

γc/2π (γc is the cavity-field
decay rate). Since the decay rate of the mechanical resonator
γM can be much smaller than γc, we will neglect the dissipation
of the mechanical resonator in our discussions. This is justified
as long as the scattering processes are completed in a time
much shorter than γ −1

M .
In this paper, we will focus on the two-photon scattering

problem. Because the total photon number is a conserved
quantity, the Hilbert space for the photon part in this problem
is spanned by three types of basis vectors: |2〉a|∅〉, |1〉a|1k〉,
and |0〉a|1p,1q〉, where |2〉a|∅〉 stands for the state with two
photons in the cavity and the outside fields are in a vacuum,

|1〉a|1k〉 represents the state with one photon in the cavity,
one photon in the k mode of the outside fields, and the state
|0〉a|1p,1q〉 means that there is no photon in the cavity, two
photons are in the p and q modes of the outside fields. By
using these basis vectors for the fields, the state vector of the
total system at time t is denoted by

|�(t)〉 =
∞∑

m=0

Am(t)|2〉a|∅〉|m̃(2)〉b

+
∞∑

m=0

∫ ∞

0
dk Bm,k(t)|1〉a|1k〉|m̃(1)〉b

+
∞∑

m=0

∫ ∞

0
dp

∫ p

0
dq Cm,p,q (t)|0〉a|1p,1q〉|m〉b, (2)

where we have introduced the single- and two-photon dis-
placed number states for the moving mirror

|m̃(1)〉b ≡ eβ0(b†−b)|m〉b,
|m̃(2)〉b ≡ e2β0(b†−b)|m〉b, (3)

with β0 ≡ g0/ωM being the single-photon displacement quan-
tity. We note that these displaced number states are eigenstates
of the Hamiltonian

Hopc = h̄ωca
†a + h̄ωMb†b − h̄g0a

†a(b† + b) (4)

of the optomechanical cavity, as defined by the eigenequation

Hopc|l〉a|m̃(l)〉b = h̄(lωc + mωM − l2ν)|l〉a|m̃(l)〉b, (5)

where ν ≡ g2
0/ωM is the single-photon-state frequency shift.

The energy-level structure limited in the zero-, one-, and two-
photon subspaces of the optomechanical cavity is shown in
Fig. 1(b).

Based on Eqs. (1), (2), and the Schrödinger equation,
we obtain the following equations of motion for probability
amplitudes:

Ȧm(t) = −i(mωM − 4ν)Am(t)

− i
√

2ξ

∞∑
n=0

∫ ∞

0
〈m̃(2)|b|ñ(1)〉bBn,k(t)dk, (6a)

Ḃm,k(t) = −i(�k − ν + mωM )Bm,k(t)

− i
√

2ξ

∞∑
n=0

〈m̃(1)|b|ñ(2)〉bAn(t)

− iξ

∞∑
n=0

∫ ∞

0
〈m̃(1)|b|n〉bCn,p,k(t)dp, (6b)

Ċm,p,q(t) = −i(�p + �q + mωM )Cm,p,q(t)

− iξ

∞∑
n=0

〈m|b|ñ(1)〉b[Bn,p(t) + Bn,q(t)]. (6c)

Here, we point out that the transition rates associated with
photon scattering processes are determined by the Franck-
Condon factors 〈m̃(2)|b|ñ(1)〉b, 〈m̃(1)|b|ñ(2)〉b, 〈m̃(1)|b|n〉b,
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and 〈m|b|ñ(1)〉b, which can be calculated based on the relation
[28]

〈m|beβ0(b†−b)|n〉b =

⎧⎪⎨
⎪⎩

√
m!
n! e

− β2
0
2 (−β0)n−mLn−m

m

(
β2

0

)
, n � m√

n!
m!e

− β2
0
2 βm−n

0 Lm−n
n

(
β2

0

)
, m > n

(7)

where Ls
r (x) is the associated Laguerre polynomial.

III. TWO-PHOTON SCATTERING SOLUTION

Initially, the cavity field is in the vacuum state and two
photons are injected into the cavity. These two incident
photons are prepared in a wave packet form outside the cavity.
To facilitate analytic treatment by the Laplace transform,
we examine the two-photon wave packet with Lorentzian
spectrum. Without loss of generality, the initial state of the
mirror is assumed to be number state |n0〉b. Once the solution
in this case is found, the solution for general initial mirror states
can be obtained accordingly by superposition. Explicitly, the
initial condition is specified by Am(0) = 0, Bm,k(0) = 0, and

Cm,p,q (0) =
[ N δm,n0

(�p − δ1 + iε)(�q − δ2 + iε)
+ δ1 ↔ δ2

]
,

(8)

where δj=1,2 = ωj − ωc (ωj is the resonant frequency) and
ε define the center detuning and spectral width of the two
photons. The normalization constant N is

N = ε

π

(
1 + 4ε2

(δ1 − δ2)2 + (2ε)2

)−1/2

. (9)

By using the Laplace transform, analytical solution of
Eq. (6) subjected to the initial condition can be found (see
Appendix). In the long-time limit when the scattering is
completed and the two photons exit the cavity, the solution
is given by An0,m(∞) = 0, Bn0,m,k(∞) = 0, and

Cn0,m,p,q (∞) = N [(CI + CII + CIII + CIV)

+ (�p ↔ �q)]e−i(�p+�q+mωM )t . (10)

Here, we add the subscript n0 in An0,m(∞), Bn0,m,k(∞), and
Cn0,m,p,q (∞) to mark the mirror’s initial state |n0〉b. The four
transition amplitude components CI, CII, CIII, and CIV are
given by

CI = 1

(�p − δ1 + iε)

1

(�q − δ2 + iε)
δm,n0 ,

CII =
∞∑

n=0

−iγcFII

M1M2(�q − δ2 + iε)
+ δ1 ↔ δ2,

(11)

CIII =
∞∑

n,n′,l=0

−γ 2
c FIII

M1M3M4M5
+ δ1 ↔ δ2,

CIV =
∞∑

n,n′,l=0

−2γ 2
c FIV

M1M3M4M6
+ δ1 ↔ δ2,

where we have introduced FII–IV to denote products of Franck-
Condon factors

FII = 〈m|b|ñ(1)〉b〈ñ(1)|b|n0〉b,
FIII = 〈m|b|ñ(1)〉b〈ñ(1)|b|n′〉b〈n′|b|l̃(1)〉b〈l̃(1)|b|n0〉b,
FIV = 〈m|b|ñ(1)〉b〈ñ(1)|b|ñ′(2)〉b〈ñ′(2)|b|l̃(1)〉b〈l̃(1)|b|n0〉b.

(12)

In addition, the denominators in Eq. (11) are defined by

M1 = �p + ν + (m − n)ωM + i
γc

2
,

M2 = �p − δ1 + (m − n0)ωM + iε,

M3 = �p + �q − δ1 − δ2 + (m − n0)ωM + 2iε,
(13)

M4 = �p + �q − δ1 + ν + (m − l)ωM + i
γc

2
+ iε,

M5 = �p − δ1 + (m − n′)ωM + iε,

M6 = �p + �q + 4ν + (m − n′)ωM + iγc.

From Eq. (13), we are able to determine the resonance
conditions involved in the photon scattering process.

We point out that the four amplitudes CI−IV correspond to
four different physical processes in the two-photon scattering
(see Fig. 2). The state transitions associated with these
processes can be identified by FII−IV. For the term CI, it
describes a direct two-photon reflection by the fixed end mirror
without entering the cavity. Therefore, the mirror state does not
change, and the two reflected photons remain in the Lorentzian
wave packet state [Fig. 2(a)].

The term CII corresponds to the one-photon scattering and
one-photon reflection process, i.e., just one photon enters the
cavity and the other photon is reflected by the fixed end mirror.
The entered photon induces the transition process |0〉a|n0〉b →
|1〉a|ñ(1)〉b → |0〉a|m〉b [Fig. 2(b)], and such a process has the
resonance conditions n0ωM + ω1 = ωc − ν + nωM and ωp =
(ωc − ν + nωM ) − mωM [Fig. 2(e)], according to the poles of
CII, i.e., Re(M1) = 0 and Re(M1 − M2) = 0.

The third term CIII can be interpreted as a sequential two-
photon scattering process, in which the second photon enters
the cavity after the first photon emitted out of the cavity. Such
an interpretation is obtained from FIII that the maximum cavity
photon number is one. In this case, the system experiences the
following transitions: |0〉a|n0〉b → |1〉a|l̃(1)〉b → |0〉a|n′〉b →
|1〉a|ñ(1)〉b → |0〉a|m〉b [Fig. 2(c)]. As depicted in Fig. 2(e),
the photon excitation processes are governed by n0ωM +
ω2 = ωc − ν + lωM [i.e., Re(M4 − M3) = 0] and n′ωM +
ω1 = ωc − ν + nωM [Re(M1 − M5) = 0], and the frequen-
cies of the two resonant emitted photons are ωq = (ωc −
ν + lωM ) − n′ωM [Re(M4 − M5) = 0] and ωp = (ωc − ν +
nωM ) − mωM [Re(M1) = 0].

The fourth term CIV corresponds to a “genuine” two-
photon process involving the interaction with two pho-
tons inside the cavity. This is revealed in FIV hav-
ing the states with two cavity photons. The is a kind
of two-photon cascade scattering in which the sys-
tem experiences the transitions |0〉a|n0〉b → |1〉a|l̃(1)〉b →
|2〉a|ñ′(2)〉b → |1〉a|ñ(1)〉b → |0〉a|m〉b [Fig. 2(d)]. When the
two photons are in the cavity, the mirror will experience an
energy shift −4ν. This extra energy shift (and the phonon
sidebands, as we will show in the following) provides the

043809-3



JIE-QIAO LIAO AND C. K. LAW PHYSICAL REVIEW A 87, 043809 (2013)

ba
n 00

ba
m0

ba
n )1(~1

ba
n '0

ba
l )1(~1

ba
n )2('~2

Mnω0
Mnω'
Mmω

Mc lωνω +−

Mc nωνω +−

Mc n ωνω '42 +−

b
n0

b
m

b
n )1(~

b
n0

b
m

b
n )1(~

b
l )1(~

b
n )2('~

b
n0

b
m

b
l )1(~

b
n )1(~

b
n'

(c)(a) (b)

a0 a
1 a2

b
n0

a
0

a
1 a

2 a0 a
1 a2a0 a1 a2

(d)

(e)

1ω

pω

2ω
1ω

qω

pω

2ω

1ω

pω

qω

FIG. 2. (Color online) (a)–(d) Four types of transitions from states |0〉a|n0〉b to |0〉a|m〉b of the optomechanical cavity in the two-photon
scattering process. (e) The eigenenergies of these states involved in the four transition processes.

physical mechanism to create the photon blockade in the
cavity. Due to the two-cavity-photon state is involved, the
resonance conditions for the photon excitation processes
are n0ωM + ω2 = ωc − ν + lωM [Re(M4 − M3) = 0] and
(ωc − ν + lωM ) + ω1 = 2ωc − 4ν + n′ωM [Re(M6 − M4) =
0]. In addition, the frequencies of the two emitted photons
are ωq = (2ωc − 4ν + n′ωM ) − (ωc − ν + nωM ) [Re(M6 −
M1) = 0] and ωp = (ωc − ν + nωM ) − mωM [Re(M1) = 0].
These resonance conditions can also be seen from Fig. 2(e).

The above analysis expatiated the physical picture for
creation of two-photon correlation. In fact, after the scattering,
the two photons will also entangle with the mirror. We can
see this point by examining the scattering state of the system.
We know from Eqs. (2) and (10) that, corresponding to the
mirror’s initial state |n0〉b, the long-time state of the system is
|0〉a ⊗ |�n0 (∞)〉 with

|�n0 (∞)〉 =
∞∑

m=0

∫ ∞

0
dp

∫ p

0
dq Cn0,m,p,q (∞)|m〉b|1p,1q〉.

(14)

Physically, the cavity is in a vacuum in the long-time limit, and
hence it decouples with the environment and the mirror. The
state |�n0 (∞)〉 is an entangled state involving these outside
fields and the mirror. We can understand this entanglement
from the dependence of the emitted photon modes on the
mirror’s final state |m〉b. In the scattering process, the modes
of the two emitted photons depend on the final state of the
mirror [see Fig. 2(e)].

IV. TWO-PHOTON JOINT SPECTRUM

We know from the above section that the radiation-pressure
coupling can induce photon correlation. We now show how to

indicate qualitatively this correlation from the joint spectrum
of the two scattered photons. Corresponding to the cases where
the mirror is initially in a pure state |ϕ〉b = ∑∞

n0=0 cn0 |n0〉b and
a mixed state ρb = ∑∞

n0=0 pn0 |n0〉b〈n0|b, the joint spectrum
functions [6] are defined by

S(�p,�q) =
∞∑

m=0

∣∣∣∣∣
∞∑

n0=0

cn0Cn0,m,p,q (∞)

∣∣∣∣∣
2

, (15a)

S(�p,�q) =
∞∑

m=0

∞∑
n0=0

pn0 |Cn0,m,p,q (∞)|2. (15b)

In Fig. 3, we plot the two-photon joint spectrum S(�p,�q)
as a function of the frequencies �p and �q when the initial
state of the mirror is |0〉b. We first consider the case of β0 � 1
so that it is reasonable to approximately expand the probability
amplitude Cn0,m,p,q (∞) up to the zero and first orders of β0,
i.e., using the approximations

〈m|beβ0(b†−b)|n〉b ≈ δm,n,

〈m|beβ0(b†−b)|n〉b ≈ δm,n + β0(
√

n + 1δm,n+1 − √
nδm,n−1)

(16)

in the zero- and first-order expansions, respectively. We note
that the energy shift terms ν and 4ν in Eq. (13) are kept
because ν = g0β0 could be larger than γc even for small β0.
Actually, the Kerr nonlinear energy shift ν(a†a)2 is responsible
for the generation of photon correlation. For the zero-order
expansion, the effect of the sidebands is completely canceled,
and the present optomechanical system reduces to a Kerr
nonlinear cavity with the Kerr parameter ν. When ν > γc,
two free photons scattered by the Kerr nonlinear cavity will
be correlated [6]. This can be seen from the joint spectrum
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FIG. 3. (Color online) Plot of the two-photon joint spectrum
S(�p,�q ) for the ground state |0〉b case. For a small β0 � 1,
we plot the spectrum by expanding the Cn0,m,p,q (∞) up to (a)
the zero order (ν = 0.2) and (b) the first order (β0 = 0.4) of β0.
(c) For a large β0, the joint spectrum includes many sidebands
(β0 = 0.6). (d) The zoomed view of the peak with the center position
�p/ωM = �q/ωM = −0.36 from the subfigure (c). Other parameters
are γc/ωM = 0.1, ε/ωM = 0.01, and δ1 = δ2 = −ν.

of the two photons [Fig. 3(a)]. The two scattered photons are
frequency anticorrelated with a probability concentrated along
the line parallel to �p + �q = 0. For larger β0, the phonon
sidebands will be involved in the spectrum. In the first-order
expansion case, we can see two sideband peaks in the two
directions of the joint spectrum. With the increasing of β0,
more and more sidebands can be observed in the spectrum.
In Fig. 3(c), we plot the joint spectrum in the single-photon
strong-coupling regime β0 = 0.6. From the spectrum, we can
see that the pattern of these sideband peaks is concentrated
along the line parallel to �p + �q = 0. This point can be seen
clearly from Fig. 3(d), which is a zoomed view of the peak
with the center located at �p = �q = −ν in Fig. 3(c). We
should emphasize that the joint spectrum is experimentally
measurable by detecting the probability distribution of the two
scattered photons.

V. PHOTON BLOCKADE IN CAVITY

In the previous section, we have studied the two-photon
joint spectrum based on the long-time scattering solution.
Actually, we can quantitatively study the photon correlation
by calculating the second-order correlation function for cavity
photons. However, we now need to consider the transient
dynamics rather than the long-time dynamics of the system
because there are no photons in the cavity in the long-time
limit. In the following, we calculate the transient dynamics
of the system based on the solution given in the Appendix.
Corresponding to these two cases of initial states |ϕ〉b and ρb,
the probabilities for finding one and two photons in the cavity

can be obtained as

P1(t) =
∞∑

m=0

∫ ∞

0
dk

∣∣∣∣∣
∞∑

n0=0

cn0Bn0,m,k(t)

∣∣∣∣∣
2

,

(17)

P2(t) =
∞∑

m=0

∣∣∣∣∣
∞∑

n0=0

cn0An0,m(t)

∣∣∣∣∣
2

,

and

P1(t) =
∞∑

n0=0

pn0

∞∑
m=0

∫ ∞

0
dk|Bn0,m,k(t)|2,

(18)

P2(t) =
∞∑

n0=0

pn0

∞∑
m=0

|An0,m(t)|2,

where An0,m(t) and Bn0,m,k(t) are obtained by making the
inverse Laplace transform on Eqs. (A10) and (A11).

For the cavity field, the equal-time second-order correlation
function is defined by [29]

g(2)(t) ≡ Tr[ρ(t)a†a†aa]

(Tr[ρ(t)a†a])2
, (19)

where ρ(t) is the density matrix of the total system at time t .
In terms of Eqs. (2), (17), and (18), Eq. (19) can be expressed
as

g(2)(t) = 2P2(t)

[2P2(t) + P1(t)]2
. (20)

Photon blockade effect corresponds to g(2)(t) � 1 [30], and
the effect is measured by how small g(2)(t) is.

In what follows, we will study how the cavity photon
statistics depends on the radiation-pressure coupling strength
g0. In Fig. 4, we plot the time evolution of P1(t), P2(t), and
g(2)(t) for various g0 at δ1 = δ2 = −ν, which corresponds to
a single-photon resonance [see Fig. 1(b)]. Here, we assume
that the initial state of the mirror is |0〉b, i.e., cn0 = δn0,0. We
see that the probabilities P1(t) and P2(t) increase gradually
from zero to a maximum value and then decrease to zero as
time increases. At first glance, the maximum value of P2(t)
is expected to decrease with the increase of g0 because the
two-photon detuning −2ν (i.e., the difference between the
two-photon frequency shift −4ν and two photon’s total energy
−2ν) is proportional to g2

0, and therefore the photon blockade
effect becomes stronger as g0 increases. This trend is shown
in the figure for g0/ωM from 0.01 to 0.6. However, we see
that the dependence of P2(t) on g0 is not monotonic due
to the phonon sideband resonance effect. In fact, Fig. 4(c)
shows that the photon blockade effect becomes weaker when
g0/ωM = 1. We can explain this feature by the fact when
g0/ωM = 1, the two photons can induce the resonant tran-
sitions |0〉a|0〉b → |1〉a|0̃(1)〉b and |1〉a|0̃(1)〉b → |2〉a|2̃(2)〉b,
and so the maximum of P2(t) in this case is larger than that for
g0/ωM = 0.6.

The oscillating feature of the correlation function g(2) as
a function of g0 was found in Ref. [17], which is based on
an approximate steady-state solution of a continuously driven
system. In our case, our exact solution also indicates such a
feature at transient times. This is shown in Fig. 5 in which
the dependence of g(2)(t) on g0 at a given time tp is plotted.
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FIG. 4. (Color online) Evolution of (a) the single-photon prob-
ability P1(t) and (b) two-photon probability P2(t) in the cavity
for various g0. (c) Equal-time second-order correlation function
g(2)(t) vs the scaled time ωMt . Other parameters are γc/ωM = 0.1,
ε/ωM = 0.01, cn0 = δn0,0, and δ1 = δ2 = −ν.

Here, tp is chosen when there is an appreciable amount of
photons inside the cavity. We can see clearly resonance peaks
at specific values of g0. To explain the resonance, we note
that when the frequencies of two photons are δ1 = δ2 = −ν

used in the figure, resonant transitions |0〉a|0〉b → |2〉a|ñ(2)〉b
are allowed if −4ν + nωM = −2ν. This is the resonance
condition allowing two photons to exist in the cavity at the
same time. Specifically, the values of g0 associated with these

FIG. 5. (Color online) Plot of the equal-time second-order cor-
relation function g(2)(tp) at time ωMtp = 50 vs the scaled coupling
strength g0/ωM in the single-photon resonance case δ1 = δ2 = −ν.
Other parameters are the same as those in Fig. 4.

FIG. 6. (Color online) The second-order correlation function
g(2)(t) vs the scaled time ωMt when the mirror’s initial state is Fock
state |1〉b (blue dotted-dashed curve) and thermal state ρth

b (n̄ = 1)
(black solid curve). The ground state |0〉b case (red dashed curve)
is presented as a reference. Other parameters are g0/ωM = 0.3,
γc/ωM = 0.1, ε/ωM = 0.01, and δ1 = δ2 = −ν.

resonance peaks are located at

g0

ωM

=
√

n

2
, n = 0,1,2, . . . , (21)

which are consistent with the locations of the resonance peaks
in Fig. 5. We know from Eq. (21) that, with the increasing
of g0, the sideband modulation peaks become more and more
dense.

The above discussions have considered the initial ground
state of the mirror. It is interesting to ask how the g(2)(t) be-
haves when the mirror is in excited states initially. Suppose the
initial state of the mirror is |n〉b, then the system can undergo
the transitions |0〉a|n〉b → |1〉a|ñ(1)〉b → |2〉a|m̃(2)〉b. There-
fore, the Franck-Condon factors 〈n|b|ñ(1)〉b and 〈ñ(1)|b|m̃(2)〉b
are important to determine the magnitude of g(2)(t). In Fig. 6,
we illustrate this feature by considering a Fock state |1〉b as
an initial state (blue dotted-dashed curve). For the parameters
used in this figure, the relatively small Franck-Condon factor
〈1̃(1)|b|1̃(2)〉b < 〈0̃(1)|b|0̃(2)〉b leads to a suppression of P2(t),
and hence g(2)(t) can be substantially lower than that of the
initial ground state (red dashed curve). In Fig. 6, we have also
plotted the g(2)(t) (black solid curve) for the initial thermal state
ρth

b (n̄ = 1) = ∑∞
n0=0 2−(n0+1)|n0〉b〈n0|b (n̄ being the average

thermal phonon number). We see that the g(2)(t) in this case
is between those in the cases of |0〉b and |1〉b due to statistical
mixture.

VI. CONCLUSION

In conclusion, we have studied analytically the two-photon
scattering in a cavity optomechanical system. Under the
Wigner-Weisskopf framework, we have obtained the exact
transient solution of the system with the Laplace transform
method. On one hand, the long-time solution reveals the
detailed physical transitions for the two photons in the scatter-
ing process. This could help us to understand the physical
mechanism to induce two-photon correlation. In addition,
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from the poles of these scattering amplitudes, we have
obtained the resonance conditions of these transitions. In
particular, the final state of the two photons is generally
correlated in frequency space because of the frequency sum
appearing in the denominator of the amplitudes CIII and CIV.
Based on the long-time solution, we have calculated the
two-photon joint spectrum, which shows clear evidence for
two-photon frequency anticorrelation. On the other hand, the
transient dynamics of the equal-time second-order correlation
function of the cavity photons has been calculated in order
to address the photon blockade effect. We have found that
the photon blockade effect can be induced by the optome-
chanical coupling. Besides, the correlation function has also
been found to exhibit resonance peaks as a function of the
optomechanical coupling strength, and we have determined
the peak positions in Eq. (21) by a two-photon resonance
condition.

Note added. We notice a related paper that appeared
recently [31].
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APPENDIX: DERIVATION OF EQ. (10)

In this appendix, we give a detailed derivation of the
two-photon scattering solution in Eq. (10). By the Laplace
transform f̃ (s) = ∫ ∞

0 f (t)e−st dt , Eq. (6) becomes

[s + i(mωM − 4ν)]Ãm(s) = Am(0) − i
√

2ξ

∞∑
n=0

∫ ∞

0
〈m̃(2)|b|ñ(1)〉bB̃n,k(s)dk, (A1a)

[s + i(�k − ν + mωM )]B̃m,k(s) = Bm,k(0) − i
√

2ξ

∞∑
n=0

〈m̃(1)|b|ñ(2)〉bÃn(s) − iξ

∞∑
n=0

∫ ∞

0
〈m̃(1)|b|n〉bC̃n,p,k(s)dp, (A1b)

[s + i(�p + �q + mωM )]C̃m,p,q(s) = Cm,p,q(0) − iξ

∞∑
n=0

〈m|b|ñ(1)〉b[B̃n,p(s) + B̃n,q(s)], (A1c)

where Am(0), Bm,k(0), and Cm,p,q(0) are the initial conditions, which are given in Eq. (8). From Eqs. (A1a), (A1c), and (8), we
have

Ãm(s) = −i
√

2ξ

[s + i(mωM − 4ν)]

∞∑
n=0

∫ ∞

0
〈m̃(2)|b|ñ(1)〉bB̃n,k′(s)dk′, (A2a)

C̃m,p,q(s) = 1

[s + i(�p + �q + mωM )]

(
Cm,p,q (0) − iξ

∞∑
n=0

〈m|b|ñ(1)〉b[B̃n,p(s) + B̃n,q(s)]

)
. (A2b)

Substitution of Eqs. (A2a) and (A2b) into Eq. (A1b) leads to[
s + γc

2
+ i(�k − ν + mωM )

]
B̃m,k(s)

= −
∫ ∞

0

∞∑
l,n=0

(
2ξ 2〈m̃(1)|b|ñ(2)〉b〈ñ(2)|b|l̃(1)〉b

[s + i(nωM − 4ν)]
+ ξ 2〈m̃(1)|b|n〉b〈n|b|l̃(1)〉b

[s + i(�p + �k + nωM )]

)
B̃l,p(s)dp

+ 2iπξN 〈m̃(1)|b|n0〉b
(

1

[�k + δ1 + n0ωM − i(s + ε)](�k − δ2 + iε)
+ δ1 ↔ δ2

)
, (A3)

where γc = 2πξ 2 is the cavity-field decay rate. We introduce a new variable F̃m,k(s) by

B̃m,k(s) = 2πiξN 〈m̃(1)|b|n0〉b[
s + γc

2 + i(�k − ν + mωM )
] (

1

[�k + δ1 + n0ωM − i(s + ε)](�k − δ2 + iε)
+ δ1 ↔ δ2

)
[1 + F̃m,k(s)]. (A4)
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Then, the equation for F̃m,k(s) is obtained as( 〈m̃(1)|b|n0〉b
[�k + δ1 + n0ωM − i(s + ε)](�k − δ2 + iε)

+ δ1 ↔ δ2

)
F̃m,k(s)

= −
∫ ∞

0

∞∑
l,n=0

(
2ξ 2〈m̃(1)|b|ñ(2)〉b〈ñ(2)|b|l̃(1)〉b

[s + i(nωM − 4ν)]
+ ξ 2〈m̃(1)|b|n〉b〈n|b|l̃(1)〉b

[s + i(�p + �k + nωM )]

) 〈l̃(1)|b|n0〉b[
s + γc

2 + i(�p − ν + lωM )
]

×
(

1

[�p + δ1 + n0ωM − i(s + ε)](�p − δ2 + iε)
+ δ1 ↔ δ2

)
F̃l,p(s)dp + S1, (A5)

where

S1 = 1

[δ1 + δ2 + n0ωM − i(s + 2ε)]

∞∑
l,n=0

[(
2γc〈m̃(1)|b|ñ(2)〉b〈ñ(2)|b|l̃(1)〉b〈l̃(1)|b|n0〉b

[s + i(nωM − 4ν)]
[
δ1 − ν + lωM − i

(
s + ε + γc

2

)]
− iγc〈m̃(1)|b|n〉b〈n|b|l̃(1)〉b〈l̃(1)|b|n0〉b

[δ1 + �k + nωM − i(ε + s)]
[
δ1 − ν + lωM − i

(
s + ε + γc

2

)]
)

+ (δ1 ↔ δ2)

]
. (A6)

By introducing a new variable xm(s),

F̃m,k(s) =
( 〈m̃(1)|b|n0〉b

(�k − δ2 + iε)[�k + δ1 + n0ωM − i(s + ε)]
+ δ1 ↔ δ2

)−1

[S1 + xm(s)] , (A7)

we obtain the equation for xm(s) as follows:

xm(s) +
∞∑

l,n=0

γc〈m̃(1)|b|ñ(2)〉b〈ñ(2)|b|l̃(1)〉b
[s + i(nωM − 4ν)]

xl(s) = −
∞∑

l,n=0

2γ 2
c 〈m̃(1)|b|ñ(2)〉b〈ñ(2)|b|l̃(1)〉b〈l̃(1)|b|n0〉b

[δ1 + δ2 + n0ωM − i(s + 2ε)][s + i(nωM − 4ν)]2

×
(

1[
δ1 − ν + lωM − i

(
s + ε + γc

2

)] + δ1 ↔ δ2

)
. (A8)

The solution of Eq. (A8) can be found as

xm(s) =
∞∑

l,n=0

2γ 2
c

[s + γc + i(nωM − 4ν)]

〈m̃(1)|b|ñ(2)〉b〈ñ(2)|b|l̃(1)〉b〈l̃(1)|b|n0〉b
[s + 2ε + i(δ1 + δ2 + n0ωM )][s + i(nωM − 4ν)]

×
(

1[(
s + ε + γc

2

) + i(δ1 − ν + lωM )
] + δ1 ↔ δ2

)
. (A9)

Then, by Eqs. (A2a), (A2b), (A4), (A7), and (A9), we can obtain

Ãm(s) = 2
√

2πNγc

[s + 2ε + i(δ1 + δ2 + n0ωM )][s + γc + i(mωM − 4ν)]

∞∑
n=0

(
〈m̃(2)|b|ñ(1)〉b〈ñ(1)|b|n0〉b[

s + ε + γc

2 + i(δ1 − ν + nωM )
] + δ1 ↔ δ2

)
, (A10)

B̃m,k(s) = − 2πξN 〈m̃(1)|b|n0〉b[
s + γc

2 + i(�k − ν + mωM )
] (

1

(�k − δ2 + iε)

1

[s + ε + i(�k + δ1 + n0ωM )]
+ δ1 ↔ δ2

)

−
∞∑

l,n=0

4πiξNγc〈m̃(1)|b|ñ(2)〉b〈ñ(2)|b|l̃(1)〉b〈l̃(1)|b|n0〉b[
s + γc

2 + i(�k − ν + mωM )
]
[s + 2ε + i(δ1 + δ2 + n0ωM )]

× 1

[s + γc + i(nωM − 4ν)]

(
1

[s + ε + γc

2 + i(δ1 − ν + lωM )]
+ δ1 ↔ δ2

)

−
∑
l,n

2πiξNγc〈m̃(1)|b|n〉b〈n|b|l̃(1)〉b〈l̃(1)|b|n0〉b[
s + γc

2 + i(�k − ν + mωM )
]
[s + 2ε + i(δ1 + δ2 + n0ωM )]

×
(

1

[s + ε + i(�k + δ1 + nωM )]
[
s + ε + γc

2 + i(δ1 − ν + lωM )
] + δ1 ↔ δ2

)
, (A11)
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C̃m,p,q (s) = N
[s + i(�p + �q + mωM )]

[
1

(�p − δ1 + iε)

1

(�q − δ2 + iε)
δm,n0 +

∞∑
n=0

iγc〈m|b|ñ(1)〉b〈ñ(1)|b|n0〉b[
s + γc

2 + i(�p − ν + nωM )
]

×
(

1

[s + ε + i(�p + δ1 + n0ωM )]

1

(�p − δ2 + iε)
+ δ1 ↔ δ2

)

−
∞∑

n,n′,l=0

γ 2
c 〈m|b|ñ(1)〉b〈ñ(1)|b|n′〉b〈n′|b|l̃(1)〉b〈l̃(1)|b|n0〉b

[s + 2ε + i(δ1 + δ2 + n0ωM )]
[
s + γc

2 + i(�p − ν + nωM )
]

×
(

1[
s + ε + γc

2 + i(δ1 − ν + lωM )
] 1

[s + ε + i(�p + δ1 + n′ωM )]
+ δ1 ↔ δ2

)

−
∞∑

n,n′,l=0

2γ 2
c 〈m|b|ñ(1)〉b〈ñ(1)|b|ñ′(2)〉b〈ñ′(2)|b|l̃(1)〉b〈l̃(1)|b|n0〉b

[s + 2ε + i(δ1 + δ2 + n0ωM )][s + γc + i(n′ωM − 4ν)]
[
s + γc

2 + i(�p − ν + nωM )
]

×
(

1[
s + ε + γc

2 + i(δ1 − ν + lωM )
] + δ1 ↔ δ2

)]
+ �p ↔ �q. (A12)

The transient solution of these probability amplitudes An0,m(t), Bn0,m,k(t), and Cn0,m,p,q (t) can be obtained by the inverse Laplace
transform. Here, we add the subscript n0 in the transient solution to mark the mirror’s initial state |n0〉b. The corresponding
long-time solution is given in Eq. (10).
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