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We describe the design of a temporal imaging system that simultaneously reshapes the temporal profile and
converts the frequency of a photonic wave packet, while preserving its quantum state. A field lens, which imparts
a temporal quadratic phase modulation, is used to correct for the residual phase caused by field curvature in the
image, thus enabling temporal imaging for phase-sensitive quantum applications. We show how this system can
be used for temporal imaging of time-bin entangled photonic wave packets and compare the field lens correction
technique to systems based on a temporal telescope and far-field imaging. The field-lens approach removes the
residual phase using four dispersive elements. The group delay dispersion D is constrained by the available
bandwidth �ν by D > t/�ν, where t is the temporal width of the wave form associated with the dispersion D.
This is compared to the much larger dispersion D � πt2/8 required to satisfy the Fraunhofer condition in the
far-field approach.
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I. INTRODUCTION

Quantum communication systems rely on transforming
and transmitting information using quantum systems, such
as atoms, trapped ions, and photons [1–5]. It is widely
believed that future quantum information systems will consist
of more than one type of physics system [2–5]; such hybrid
quantum connections have been demonstrated between ion and
photon [6] and proposed for atoms and quantum dots [7]. In
hybrid systems, photons are often used as quantum information
carriers, or flying qubits, to connect different quantum systems
[8,9]. In long-distance quantum communication between
hybrid quantum platforms, the wavelength, temporal scale,
and spectral profile of the photonic wave packet for the source
and target quantum memories and transmission channel are
very different [5]. We need an efficient interface to convert the
wavelengths and temporal scales of the photonic wave packet
to match quantum memories, while preserving the quantum
state. Here, we propose a quantum interface for flying qubits
(photons) using temporal imaging integrated with nonlinear
optical wavelength conversion.

The bridge between different wavelengths has been in-
tensely investigated in the quantum optics field. Quantum con-
nections are generated either via broadband entangled photon
pair sources [10], or via nonlinear frequency conversion of the
photonic wave packet [11–22]. Preserving the quantum state
is achieved using nonlinear frequency conversion processes
that do not amplify the input state (which adds noise), such as
three-wave mixing (3WM) [11–18] and Bragg-scattering-type
four-wave mixing [19–23]. In these schemes, the quantum
state of the signal beam is transferred to the idler beam at full
conversion without excess noise [21]. Additionally, the phase
of the pump beam is impressed onto the generated idler wave
form [22], enabling engineered phase modulation of the wave
packet.

At the same time, researchers have been investigating tem-
poral reshaping of the photonic wave packet, while preserving
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its quantum states [24–27]. Kielpinski et al. propose to use a
well designed frequency-dependent dispersion function and
temporal phase modulation to reconstruct the pulse shape
[25]. McKinstrie et al. suggest reshaping the signal pulse
profile using pump pulse that has a slight mismatch in
group velocity [27]. Both proposed schemes require tailored
dispersion functions that are highly dependent on the details
of the original pulse shape.

Temporal imaging techniques have been developed by the
ultrafast optics laser community for temporal rescaling of
optical pulses [28–32]. They are the temporal analog of spatial
imaging systems. As shown in Fig. 1, in a single-lens spatial
imaging system, spatial Fourier components of light waves
scattered from the object diffract into different angular direc-
tions. A lens encodes a quadratically varying phase to each
of these components according to the direction. The resulting
Fourier components then diffract and recombine to form an
image at the image plane. In a temporal imaging system,
temporal Fourier components of light waves are dispersed into
different temporal locations upon propagating in a medium
characterized by a nonzero group-velocity dispersion. The
dispersed (or chirped) light wave is modulated by a temporally
varying quadratic phase, known as a “time lens.”Similarly, a
temporal “image” is formed after a second dispersive medium
recombines (or dechirps) the Fourier components in time.

Here, we combine temporal imaging with a nonlinear
frequency conversion process that is pumped by a chirped
pulse with a quadratically varying phase profile, which
imposes the necessary time lens phase modulation. In this
way, we realize wavelength conversion and temporal imaging
simultaneously.

In a spatial single-lens imaging system, it is well known that
a residual quadratic phase is present at the image even if the
intensity profile is aberration free. Similarly, a residual phase
remains in a single-lens temporal imaging system. In most
classical ultrafast laser applications where only the intensity
of the wave form is detected, residual phase plays no significant
role. However, the phase of the photonic wave packet is
an essential feature in most quantum applications, such
as in conventional phase-encoded quantum key distribution
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FIG. 1. (Color online) Analog of spatial (a) and temporal
(b) imaging system. GDD: group delay dispersion; PM: phase
modulation.

systems, where the complete two-dimensional Hilbert space is
used for information processing [3]. In these applications, it is
highly desirable that this phase be compensated.

In this paper, we present a solution to the residual phase
problem by adding a field lens to the imaging system. We
describe the properties of this imaging system for the case
of a time-bin entangled photonic wave packet and compare
the field-lens technique with other solutions that are based
on temporal telescopes and far-field imaging. We find that
the field-lens approach has better performance with less
dispersion and a simpler setup. The field-lens approach uses
only four dispersive elements. The requirement for group
delay dispersion (GDD) D becomes D > t/�ν, where t is the
temporal width of the wave form associated with the dispersion
D. Compared to the Fraunhofer condition D � πt2/8 in the
far-field approach, the dispersion requirement is dramatically
reduced. As a result, inherent loss in the dispersive elements is
also reduced. This method thus paves the way toward the devel-
opment of a highly efficient and flexible flying qubit interface.

II. QUANTUM THEORY FOR TEMPORAL IMAGING
SYSTEMS

A. System design overview

The flying qubit interface consists of a single-lens imaging
system and a field lens placed in the image plane, as shown in

Fig. 2. An input wave packet (denoted by the annihilation
operator â0) first propagates through a dispersive medium
D1. The dispersed wave packet â1 then enters the time lens,
which is constructed using a 3WM process in a crystal with
a second-order nonlinear optical susceptibility χ2. The beam
that pumps the 3WM process (field Ep) has a quadratic phase
φp obtained upon propagating through another dispersive
material Df , which is encoded on the generated wave form
â2 in the 3WM frequency down-conversion process. The
phase-modulated wave packet â2 then propagates through
dispersive medium D2 to dechirp (into â3). Finally, a field-lens
(with quadratic phase φ′

p on the pump filed E′
p obtained from

dispersion Dr ) frequency up-converts the wave packet and
removes the residual phase θr . We obtain a chirp free temporal
image wave packet â4. Here all D’s are the group delay
dispersion D = β2L, where β2 and L are the group-velocity
dispersion parameter and length of the dispersive material,
respectively.

B. Quantum description of light propagating
in a dispersive material

To explore the evolution of the annihilation operator â for
a photonic wave packet propagating along the +z direction in
a dispersive material, we expand the operator in the temporal
t and frequency ω domains as [33]

â =
∫

dt â(t) =
∫

dω â(ω), (1)

where â(t) and â(ω) are Fourier-transform pairs and are the
temporal and spectral profile annihilation operators of the
mode, respectively. Dispersive propagation is best described
in the frequency domain and is governed by [33]

∂â(z,ω)

∂z
= i

ωn(ω)

c
â(z,ω), (2)

where c is the speed of light in vacuum, and n is the refractive
index of the material. For the case of small dispersion, ωn(ω)/c
is expanded around the carrier frequency ω0 as

ωn(ω)/c ≈ β0 + β1(ω − ω0) + β2

2
(ω − ω0)2 + · · · , (3)

where βi = ∂i[ωn(ω)/c]/∂ωn|ω=ω0 .

FIG. 2. (Color online) Abberation-corrected
flying qubit interface consists of a single-lens
imaging system and a field lens.

043808-2



ABERRATION-CORRECTED QUANTUM TEMPORAL IMAGING . . . PHYSICAL REVIEW A 87, 043808 (2013)

To second order in the dispersion and ignoring absorption,
the solution to the evolution equation (2) is given by

â(z,ω) = â(0,ω)ei(1/2)β2(ω−ω0)2z, (4)

when moving in a reference frame traveling at speed 1/β1.
We therefore obtain the results that

â1(ω) = â0(ω)ei(1/2)D1(ω−ω0)2
(5)

and

â3(ω) = â2(ω)ei(1/2)D2(ω−ω0)2
. (6)

C. Quantum theory of the time lens using the 3WM process

The time lens is constructed using a 3WM process in
a χ2 crystal. When pumped by a strong (classical) beam
Ep(t) = Ap(t)eiφp(t) (Ap and φp being the amplitude and
phase of the pump beam, respectively), the mode occurrence
probability oscillates back and forth between the two co-
propagating signal (âs) and idler (âi) beams as a result of
sum-frequency and difference-frequency generation. When
the energy-conservation and phase-matching conditions of
frequency ω and wave vector k,

ωi = ωs + ωp, ki = ks + kp,

are fulfilled, the Hamiltonian for the process is expressed
as [34]

H =
∫

dt γEp(t)a†
s (t)âi(t) + c.c., (7)

where the nonlinear coefficient γ is proportional to χ2. Note
the pump is assumed to not be depleted and thus Ep remains
unchanged throughout the process.

Solving the evolution equations of the wave-packet opera-
tors, namely

∂âs/∂z = i[âs ,H ], ∂âi/∂z = i[âi ,H ],

we find that the mode occurrence probabilities oscillate with
the pump amplitude. Particularly, when the Ap reaches the
critical value so that γApLc = π/2, where Lc is the length
of the crystal, the conversion efficiency becomes 100% and
the optical field switches between two frequency modes, as
expressed by

âi(z,t) = iâs(0,t)eiφp(t), âs(z,t) = iâi(0,t)e−iφp(t).

By using such a nonamplifying process, the quantum state of
the input signal wave form is transformed to the idler beam
(or vice versa) and the phase (or conjugated phase) from the
pump pulse is imposed onto the output beam as well [20,21].

The result is applied to the time lens sections in the imaging
systems. For the down-conversion time lens,

â2(t) = ie−iφp(t)â1(0,t), (8)

and for the up-conversion field lens,

â4(t) = ieiφ′
p(t)â3(0,t). (9)

D. Single-lens temporal imaging system with residual phase

We now consider the single-lens temporal imaging system
with two dispersive elements (D1, D2) and a time lens
(characterized by Df ). The pump pulse Ep(t) = A(t)eφp(t) has
a quadratic phase φp(t) = t2/2Df , generated via propagating
a short pulse through a dispersive element with total dispersion
Df [34].

Combining Eqs. (5) and (6) and Eq. (8), the output wave
packet â3(ω) at the image plane is expressed in terms of input
wave packet â0(ω) by

â3(ω) = ei[D2(ω−ω0)2/2]
∫

dt e−iωt e−it2/2Df

×
∫

dω′eiω′t â0(ω′)ei[D1(ω′−ω0)2/2]. (10)

Carrying out the integration over t , we obtain

â3(ω) = ei[D2(ω−ω0)2/2]
∫

dω′ei[−Df (ω−ω′)2/2+D1ω
′2/2]â0(ω′).

(11)

When the imaging conditions,

1/D1 + 1/D2 = 1/Df , − D2/D1 = M, (12)

are fulfilled, taking a Fourier transform of â3(ω) and carrying
out the integration over ω and ω′ results in the simplified
expression

â3(t) = i√
M

â0

(
0,

t

M

)
eiθr (t), (13)

where the output temporal profile is magnified by a factor M

and a quadratic phase θr = t2/(2MDf ) is left in the wave
form.

III. RESIDUAL PHASE CORRECTION SCHEMES
AND COMPARISON

The quadratic residual phase θr results from the temporally
curved wave front at the image plane, analogous to the spatial
image aberration known as Petzval field curvature [shown in
Fig. 3(a)]. Petzval field curvature cannot be corrected in a
single-lens imaging system, while other types of abberation
such as spherical aberration can be corrected by a well-
designed lens [35]. Similarly, we have a quadratic residual
phase in a single-lens temporal imaging system. [Note that
astigmatism and coma do not appear in a temporal imaging
system due to the one-dimensional nature of time.] Since
the phase does not affect the intensity profile, it is not
often considered in classical applications. Residual-phase free
temporal imaging is discussed by using a telescope in Ref. [31].
In quantum information processing, it is important to faithfully
preserve the phase profile of a photonic wave packet.

A. Three configurations to solve the residual-phase problem

One method is to reduce the residual phase using larger
dispersions, equivalent to “far-field imaging”in spatial imaging
systems. In far-field imaging, the variation of θr is reduced
across the output wave form duration time as a result of the
reduced curvature of the wave front at the image plane, shown
for the analogous spatial imaging system in Fig. 3(b).
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FIG. 3. (Color online) Residual phase in a spatial imaging system
and three configurations to correct for it. Here, D represents diffrac-
tion, which is proportional to the distance between each element.
Figure (a) shows the original single-lens system with image-plane
curvature, (b) far-field imaging with reduced Petzval field curvature,
(c) an imaging system with a field lens in the image plane, and (d) a
telescope imaging system with no field curvature.

A possible method to fully correct for the residual phase
is to include a second lens, known as a field lens, in the
image plane as shown in Fig. 2 and Fig. 3(c). Note that we
can set the field lens at the temporal image plane while still
spatially separating the imaged wave form from the lens via
nondispersive propagation. If the pump pulse of the field lens
is dispersed by an amount of Dr = MDf , a phase modulation
φ′

p(t) = −θr (t) will be generated and imposed on the wave
packet. The resulting output image wave packet is given by
Eq. (13) and Eq. (9) as

â4(t) = eiφ′
p(t)â3(t) = 1√

M
â0

(
0,

t

M

)
, (14)

where a constant π phase is ignored. We see that the residual
phase is eliminated, the quantum state of the input field is
transferred to the output field and the temporal profile is
extended by the factor M . The wavelength of the single photon
will be properly converted by choosing the appropriate crystal
and pump-beam carrier wavelength.

A third approach is to use the temporal telescope system
[31], as shown in Fig. 3(d). This configuration consists of two
time lenses (with focal dispersions Df 1 and Df 2, respectively)
and three dispersive elements (D1, D2, and D3). With similar
derivation, we find that an image with magnification M is
formed when

D1 = −Df 1, D3 = −Df 2 = −MD1, D2 = D1 + D3.

(15)

The output wave packet is given by

â4(t) = 1√
M

â0

(
0,

t

M

)
, (16)

where the residual phase is eliminated.

B. Comparison of three configurations with
a single Gaussian pulse

We now analyze the imaging of a single Gaussian pulse
using the three configurations and compare numerically the
required dispersion and bandwidth. Consider an input single-
photon wave packet with a Gaussian profile

â0(t) = α̂(t)e−2 ln2(t/ti )2
, (17)

where α̂(t) is the annihilation operator of the quantum mode
and ti is the full width at half maximum (FWHM) of the input
temporal profile. In the single-lens imaging system, according
to Eq. (13), the output photonic wave packet is

â3(t) = α̂(t)e−2 ln2[t/(Mti )]2
eit2/(2MDf ). (18)

The width of the pulse is expanded to to = Mti . The residual
phase θr = t2/(2MDf ) varies by an amount of

�
 = Mt2
i /(8Df ) (19)

over the temporal duration of the output waveform to. The
quadratic phase can be neglected when [36]

|�
| � π. (20)

Achieving this far-field criterion or Fraunhofer condition
requires that |Df | � πMt2

i /8. According to Eq. (12) we
require that |D1| � π (M + 1)t2

i /8 and |D2| � πt2
o /8. These

dispersion values quickly become large with increasing output
temporal width to. For example, if a 100-ps pulse is desired at
the output, we require |D2| � 3900 ps2. Note that 3900 ps2

corresponds approximately to the total dispersion of a 200-km
SMF-28 optical fiber at 1550 nm. The required dispersion
needs to be much larger, which is difficult to realize despite
various efforts to make large-dispersion devices for narrow-
band optical pulses. Popular approaches include virtually
imaged phased arrays [37], multimode dispersive fibers [38],
chirped volume holographic gratings [39], and chirped fiber
grating [40]. Nevertheless, it is challenging to obtaining a total
dispersion exceeding 1000 ps2, which is often accompanied
by nonideal characteristics, such as high loss, higher-order
dispersion, and group-delay ripple [40,41]. For example, a
200-km SMF-28 fiber at 1550 nm has a transmission of only
10−4. Such huge loss will have serious consequences for
successful quantum state transfer. These challenges limit this
aberration correction method to applications requiring pulse
in the ps range or shorter.

On the other hand, according to Eq. (14) and Eq. (16), the
output wave packet âo in both the field lens and the telescope
configurations are given by

â4(t) = α̂(t)e−2 ln2[t/(Mti )]2
, (21)

eliminating the residual phase independent of the scale of the
dispersions.

As a result, arbitrarily small dispersions can be used until
bandwidth broadening induced by strong (heavily chirped)
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TABLE I. List of dispersion and bandwidth requirements for the imaging of a single Gaussian pulse (temporal width FWHM = ti) using
three configurations.

Far field Telescope Field lens

Location Dispersion Bandwidth Location Dispersion Bandwidth Location Dispersion Bandwidth

D1 �π (M + 1)t2
i /8 >4 ln(2)/ti D1 >ti/�ν >4 ln(2)/ti D1 >

(M+1)ti
M�ν

>4 ln(2)/ti
Df �πMt2

i /8 >4 ln(2)/ti Df 1 >ti/�ν �ν Df >ti/�ν �ν

D2 �πM2t2
i /8 >4 ln(2)/Mti D2 >

(M+1)ti
�ν

�ν D2 >(M + 1)ti/�ν �ν

Df 2 >Mti/�ν �ν Dr >Mti/�ν �ν

D3 >Mti/�ν >4 ln(2)/Mti

time lenses hits the bandwidth limit. In spatial imaging
systems, we can move all components closer (less diffraction)
and maintain good imaging with shorter focal-length lenses.
Similarly, systems built with smaller dispersions require
larger quadratic phase modulation. However, strong phase
modulation will expand the spectral bandwidth of the optical
pulses, which may eventually exceed the available bandwidth
of the pump source and/or bandwidth of the 3WM process.
The practical bandwidth �ν, therefore, determines the limit of
the dispersions in these two temporal imaging configurations,
which is much reduced compared to the far-field approach. The
spectral bandwidth of the chirped pump pulse is estimated by
taking the Fourier transform of the pump wave form. Assuming
a Gaussian pump pulse with temporal width ti and a quadratic
phase φp(t) described by

Ep(t) = e−2 ln(2)t2/t2
i eit2/2Df , (22)

the spectral bandwidth (FWHM) of this pulse is �ν = ti/Df .
(Small dispersion |D1| � t2

i is assumed, so that the input
signal pulse â1 is not significantly broadened and maintains
the temporal width ti .) The lower limit of dispersion is set by
the available bandwidth |Df | > ti/�ν. Limits for the other
dispersions are obtained via Eq. (12) and summarized in
Table I.

As an example, consider magnifying a 5-ps input wave
form at 710 nm to 100 ps. Pump pulses of bandwidth �ν =
1 × 1012 rad/s (roughly twice the spectral width of the input
pulse) at 1550 nm are used as temporal lenses. The input signal
is first converted to 1310 nm, and after D2, converted back to
710 nm via the field lens. In this configuration, the required
dispersions are as follows:

(i) D1@710 nm: 5.25 ps2;
(ii) D2@1310 nm: 105 ps2;
(iii) Df @1550 nm: 5 ps2;
(iv) Dr@1550 nm: −100 ps2.
The largest dispersion is 105 ps2, well within reach for typi-

cal dispersion devices. These parameters can be obtained using
the following off-the-shelf fiber-based dispersive components:

(i) D1, 73 m of SM600 fiber;
(ii) D2, 6.2 km of LEAF fiber;
(iii) Df , 0.13 km of VascadeS1000 fiber;
(iv) Dr , 5.5 km of SMF28 fiber.
An input wave packet will go through dispersion material

D1 (loss = 0.7 dB) and D2 (loss = 2.1 dB), with total loss
of 2.8 dB. We see that the system now has much less loss,
which can be further reduced using special low-loss dispersion
compensation fiber for 1310 nm and 710 nm.

A similar procedure is used to analyze the telescope config-
uration. The results of the dispersion and bandwidth bounds
are listed in Table I. We find that the telescope configuration
uses similar dispersions as the field-lens configuration. In
both cases, the largest dispersion is |D2| > (M + 1)ti/�ν,
substantially lower compared to the far-field criterion (|D2| �
πt2

o /8). The telescope system requires one additional large
dispersion element D3 compared to the field-lens approach
which achieves complete residual phase correction with fewer
components and less loss.

IV. APPLICATION: QUANTUM TEMPORAL IMAGING OF
A TIME-BIN ENTANGLED STATE

As an example application of a quantum temporal imaging
system, we consider a time-bin entangled coherent photon
wave packet, prepared by splitting a coherent faint laser pulse
using a Franson interferometer (shown in Fig. 4). The input
wave packet is a coherent state with a double-Gaussian profile
given by

â0(t) = 1
2A+(t)α̂(t) + 1

2eıψA−(t)α̂(t), (23)

where

A±(t) = e−2 ln2(t/τ±d)2
, α̂(t) = exp(â† − â) (24)

is the coherent state operator, τ is the width of the Gaussian
profile (FWHM), �t = 2dτ is the propagation delay in the
interferometer, and ψ is the phase difference between the
entangled time bins. The total temporal width of the pattern
can be defined as ti = �t + τ .

FIG. 4. (Color online) Setup for preparation, temporal imaging,
and detection of a time-bin entangled photonic wave packet. Con-
structive interference (a) and destructive interference (b) in the central
peak denote the time-bin entangled state. BS = 50/50 beam splitter.
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FIG. 5. (Color online) Interference pattern of a temporal imaged
time-bin entangled photon wave packet. (a) Input wave form and
perfect image wave form. (b)–(d) Interference pattern after the second
interferometer, simulated for the single-lens imaging system (b), tele-
scope system (c), and field-lens system (d). Blue solid line shows the
constructive interference pattern when |ψ − ψ ′| = 0; red dashed line
shows the destructive interference pattern when |ψ − ψ ′| = π . The
visibility v is calculated for the central peak. We obtain v = 0.984 for
field lens and v = 0.986 for the telescope system, while in the single-
lens system, a fast varying residual phase washes out the visibility.

The image wave form of the time-bin entangled photonic
wave packet is given by Eq. (14),

â4 = 1

2
√

M
A+(t/M)α̂(t) + 1

2
√

M
eıψA−(t/M)α̂(t). (25)

As shown in Fig. 4, we split and recombine the output im-
age wave packet through another unbalanced interferometer,
where the time difference and phase between the two paths
are adjusted to M�t and ψ ′. The output temporal wave
form is expected to be a three-peak profile with interference
in the central peak. Constructive interference happens when
|ψ − ψ ′| = 0, while destructive interference happens when
|ψ − ψ ′| = π . Since the interference pattern crucially depends
on the phase, a complete true imaging of the phase information
encoded in the original time-bin qubit requires that the residual
phase is small throughout the image temporal profile.

We numerically simulate the evolution of the wave form
using Eq. (10). In the simulation, we set τ = 5 ps, ti = 20 ps,
pump pulse initial width τp = 0.5τ (pump spectrum is twice as
large as the input signal spectrum), and M = 20. We simulate
the image wave form intensity profile I (t) = 〈â(t)a(t)†〉 and
the interference pattern for the single-lens system, telescope
system, and the field-lens system. The largest dispersion in
each system is restricted to Mt2

i /8 = 1000 ps2. The output
intensity profiles are shown in Fig. 5(a) and Fig. 6(a). As
shown in the figure, good image wave form profiles are formed
regardless of the configuration. Residual phase aberration does
not affect the intensity profile of the image wave form, as
expected.
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FIG. 6. (Color online) Intensity profile aberrations. (a) Simulated
image wave forms using the single-lens imaging system (blue
dot-dash), telescope system (green dot), and field-lens system (red
dash), which are almost identical to each other and closely match
the expected perfect output wave form (black solid). (b) Output
wave forms in two severe-distorted situations, insufficient bandwidth
τp = τ (red dash) and large third-order dispersion β3/β2 = 1 ps ∼ τ

(blue dot-dash), compared to the expected perfect output wave form
(black solid).

The interference results for the time-bin qubit are shown in
Figs. 5(b)–5(d). We see that the interference patterns are quite
different due to the residual phase. In the single-lens system,
the residual phase is large over the temporal profile and washes
out the interference in the central peak [Fig. 5(b); visibility
v = 0]. The field lens [Fig. 5(c)] and telescope configuration
[Fig. 5(d)] both have successfully removed the residual phase,
resulting in a high interference visibility.

We also consider two nonideal factors that cause possible
distortions to the wave form in the simulation: pump-intensity
variation and third-order dispersion. The Gaussian profile of
the dispersed pump beam pulse has intensity variation, which
reduces the conversion efficiency in the side wings of the input
photonic wave packet, hence causing distortion of the imaged
wave form. A slight distortion of the wave form towards the
center is shown in Fig. 6(a). Such distortion becomes serious
when the pump pulse does not have sufficient bandwidth, as
shown in Fig. 6(b) for τp = τ . The distortion is reduced by
increasing the bandwidth of the pump pulse, which flattens
the intensity variation.

The dotted-dash line in Fig. 6(b) shows how higher-
order dispersion distorts the quadratic nature of the phase
modulation and causes aberration in the temporal imaging
system, similar to spherical aberration in the spatial imaging
system. It becomes serious when β3/β2 > τ , and introduces
asymmetric distortion to the wave form. In the simulation, we
use β3/β2 = 1 ps ∼ τ . This aberration is not apparent when
we use a value for third-order dispersion β3/β2 = 0.1 ps � τ

that is appropriate for a single-mode fiber SMF-28 at 1550 nm.

V. CONCLUSION

We demonstrate a quantum temporal imaging system that
allows us to simultaneously match the wavelengths of two
quantum memories and match their characteristic time scales,
enabling exchange of quantum information between different
quantum platforms such as quantum dots and ions. A field
lens in the image plane eliminates the residual phase in
the temporal imaging system. When applied to a time-bin
entangled photonic wave packet, the image wave form has
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good interference visibility, which demonstrates that the field-
lens configuration is a good candidate for phase-sensitive
quantum information applications.
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