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Soliton-radiation trapping in gas-filled photonic crystal fibers
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We propose an optical trapping technique in which a fundamental soliton traps an ultrashort small amplitude
radiation in a symmetric hollow-core photonic crystal fiber filled with a noble gas, preventing its dispersion.
The system is Raman- and plasma-free. Trapping is due to the cross phase modulation effect between the two
pulses. The trapped radiation inside the soliton-induced potential will oscillate periodically due to the shock
effect, similar to the motion of a mechanical pendulum.
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I. INTRODUCTION

Optical trapping has been predicted and demonstrated in a
variety of different situations since the invention of low-loss
optical fibers [1]. Self-trapping is at the core of the existence
of optical solitons, where the nonlinear self-phase modulation
(SPM) is used to compensate the group velocity dispersion [2].
Bright and dark solitons have been observed in the anomalous
and the normal dispersion regimes, respectively, in a number
of elegant experiments [3–5]. Hasegawa has suggested the
nonlinear cross-phase modulation (XPM) effect as a funda-
mental trapping mechanism between different pulses, when
their group velocities are matched [6]. Via XPM and by
utilizing the waveguide dispersion to compensate for the
group velocity mismatch, the possibility of forming ultrashort
pulses of stimulated Raman radiation has been predicted [7].
Trapping can also naturally occur between a pair of pulses
lying in opposite dispersion regimes, since the group velocity
matching condition is easily satisfied by frequency detuning.
For instance, redshifted solitons due to intrapulse Raman
scattering can trap across the zero dispersion wavelength
weak blueshifted dispersive wave packets on the femtosecond
scale [8–14]. In an unconventional situation, a bright soliton
can also be trapped in the normal dispersion, when it is coupled
to a dark soliton in the anomalous dispersion regime [15–17].
Moreover, a bright soliton can propagate stably in the normal
dispersion regime with the aid of a soliton-pair copropagating
in the anomalous dispersion regime [18,19].

The invention of photonic crystal fibers (PCFs) is a
milestone in the field of nonlinear fiber optics [20,21]. Hollow-
core (HC) PCFs have been exploited to explore the nonlinear
interaction of light in a new wide range of distinct media.
HC-PCFs based on a kagome lattice have been successfully
used recently in the investigation of light-matter interactions
in the presence of gases [22]. Filling these fibers by a
Raman-active gas, a drastica reduction in Raman threshold
has been obtained [23]. High harmonic, and efficient deep
UV generation have been also demonstrated in HC-PCFs
filled by noble (Raman-inactive) gases [24,25]. Using intense
broadband pulses to access the ionization regime of the noble
gases, soliton self-frequency blueshift has been observed and
thoroughly studied in these fibers [26–29]. On the other hand,
launching intense narrow-band pulses can lead to ionization-
induced asymmetric SPM and universal modulational
instability [30].

In this paper, we show that optical trapping between two
different short pulses can exist, when both pulses propagate
together in the anomalous dispersion regime of a HC-PCF
filled by a noble gas. The intensities of the two pulses are
below the ionization limit of the gas.

II. PRINCIPLE OF OPERATION AND SYSTEM DESIGN

Consider the propagation of two short pulses in a guided
nonlinear-Kerr medium. We assume that only one of the two
pulses is intense enough to induce nonlinear phenomena, and
that the dispersion is anomalous for both pulses. Hence, the
strong pulse can maintain its temporal shape due to the induced
SPM, while the other pulse will suffer from strong dispersion
due to the absence of compensation between nonlinear and
dispersive effects. Only if the two pulses can propagate with
the same group velocity, the nonlinearity of the strong pulse
will affect the second pulse via XPM that can compensate
the dispersion-induced broadening, and the weak pulse will
propagate as a temporally localized radiation. In analogy
with quantum mechanics, the strong pulse creates a potential
well that traps the weak pulse inside it, and both pulses
travel together without suffering from dispersion-induced
broadening [13,14,18,19]. If the nonlinear medium is Raman-
or plasma-free, the dispersion must be anomalous for both
pulses to allow dispersion compensation to take place.

To observe this temporal trapping due to the soliton-
induced potential, we require a nonlinear-Kerr medium, where
two different ultrashort pulses lying in the same anomalous
dispersion regime can acquire a common group velocity. In
previous works, the group velocity matching condition was
achieved when a redshifting soliton was in the anomalous
dispersion and a small amplitude wave was in the normal
dispersion regime [13,14]. One possible technique for our
proposal is to use a solid-core PCF with multiple zero
dispersion wavelengths. However, this type of fiber requires
high fabrication tolerance. Moreover, undesirable emission
of resonant radiation will be out of control in these fibers.
Another technique is to launch the two pulses in two different
polarization states in an elliptical solid-core fiber. In order
to minimize the Raman effect in both techniques, relatively
long pulses that suffer from insignificant dispersion-induced
broadening must be used. Hence, the attracting feature of
trapping ultrashort pulses will be lost.
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A HC-PCF filled by a noble (Raman-inactive) gas and
with a symmetric core is considered to be the perfect host to
demonstrate our proposal. This can be achieved by launching
two different pulses with the same frequency, however, in two
different circular polarization states, in the deep anomalous
dispersion regime of the fiber. Having the same frequency
allows the two pulses to have the same group velocity, as well
as to be naturally in the same dispersion regime. Using different
polarization states allows one to separate the two pulses at the
fiber output. The reason for using circular polarization states
is to avoid unwanted additional nonlinear phenomena that can
emerge if linearly polarized states are injected [2].

III. GOVERNING EQUATIONS FOR
SOLITON-RADIATION TRAPPING

To study the induced trapping between a propagating strong
pulse and a small amplitude radiation with the same central
frequency and different circular polarization states in a lossless
nonlinear medium, the following set of coupled nonlinear
Schrödinger equations can be used [2]:[
i∂z + D̂1(i∂t ) + 2

3
γ (|A1|2 + 2|A2|2)

]
A1 = i

2
�βA2,

(1)[
i∂z + D̂2(i∂t ) + 2

3
γ (|A2|2 + 2|A1|2)

]
A2 = i

2
�βA1,

where z is the longitudinal coordinate along the fiber, t is
the time coordinate, Aj (z,t) is the slowly varying amplitude
of the j th pulse, D̂j (i∂t ) = iβ1j ∂t − 1

2β2j ∂
2
t , β1j and β2j

are the first- and second-order dispersion coefficients of the
j th pulse (j = 1,2), higher-order dispersion coefficients are
neglected, γ is the nonlinear Kerr coefficient, and �β is
the fiber birefringence. A1 and A2 correspond to the strong
pulse and the weak radiation, respectively. In our proposed
system, the medium is Raman- and plasma-free, β11 = β12,
β21 = β22, and �β = 0 for perfectly symmetric cores. In each
equation, the first (second) nonlinear term represents the self-
(cross-) phase modulation effect. We introduce the following
rescalings: ξ = z/z0, τ = t/t0, ψ1 = A1/A0, ψ2 = A2/A0,
A2

0 = 3/(2 γ z0), and z0 = t2
0 /|β21|, where t0 is the input pulse

duration. In a reference frame moving with a group velocity
vg , which is defined as vg = 1/β11, the two coupled equations
can be replaced by

i∂ξψ1 + 1
2∂2

τ ψ1 + |ψ1|2ψ1 = 0,
(2)

i∂ξψ2 + 1
2∂2

τ ψ2 + 2|ψ1|2ψ2 = 0,

where the nonlinearity of the weak radiation is neglected. The
solution is well known for the first equation as a nonlinear
Schrödinger soliton, ψ1(ξ,τ ) = η sech(ητ )exp(iη2ξ/2), with
amplitude η [2]. We assume that the solution of the second
equation has the form ψ2(ξ,τ ) = ψ0f (τ )exp(iqξ ), where ψ0

and q are the amplitude and the propagation constant of a pulse
with temporal profile f (τ ). Substituting this form in the second
equation, we obtain a linear one-dimensional Schrödinger
problem in time,

− 1
2∂2

τ f + U (τ )f = −qf, (3)

where U (τ ) = −2η2sech2(ητ ) represents the potential well,
f (τ ) is the eigenfunction, and −q is the corresponding

eigenvalue that represents a discrete energy level. We have
found the analytical expressions of the modes of this potential
well. The fundamental (even) mode is f0(τ ) = sechp0 (aτ )
with q = 1

2η2p2
0, and p0 = 1

2 [−1 + √
17]. The first-order

(odd) mode behaves as f1(τ ) = sechp1 (aτ )tanh(aτ ), with
q = 1

2η2(2 − 3p1), and p1 = p0 − 1. For this system, there
are only two localized modes. In principle, ψ0 for either the
fundamental or the first-order mode can take an arbitrary value
as long as ψ0 � η, since these modes propagate linearly.
The problem can also be solved numerically by using sparse
matrices [31]. The obtained numerical results validate the
analytical formulas for the eigenfunctions and eigenvalues
given above. It is worth mentioning that Eq. (3) is known
since the early days of quantum mechanics as the Schrödinger
equation with symmetric Rosen-Morse [32] or modified
Pöschl-Teller potentials [33]. With the aid of this equation,
strong analogies of Schrödinger solitons with the well-known
quantum effects have been revealed very recently [34,35]. An
attempted solution of Eq. (3) in terms of Legendre functions
is presented in eminent quantum mechanics textbooks [36],
however, full analytical forms of the eigenfunctions are
presented in this work.

Propagation of a dispersive radiation in an argon-filled
HC-PCF is depicted in Fig. 1. Panels (a) and (b) show the
dispersion-induced broadening of the radiation in absence of
the soliton-induced potential, when the launched pulse takes
the shape of either the fundamental or the first-order mode,
respectively. In the presence of a fundamental soliton [with a
temporal and spectral evolution shown in Figs. 1(c) and 1(d)],
an XPM-induced trapping for the radiation can take place.
Figures [1(e), 1(f)] and [1(g), 1(h)] present the propagation of
a localized radiation, when it takes the form of the fundamental
or the first-order mode, respectively. Higher-order dispersion
coefficients and self-steeping effects are neglected in this
simulation.

IV. SHOCK EFFECT

Since the nonlinear medium is Raman- and plasma-free,
and the two pulses are supposed to be arbitrarily short, the
self-steeping (shock effect) will have a significant role in the
pulse dynamics. In this case, Eq. (2) becomes

i∂ξψ1 + 1
2∂2

τ ψ1 + |ψ1|2ψ1 = −iτsh ∂τ (|ψ1|2ψ1),
(4)

i∂ξψ2 + 1
2∂2

τ ψ2 + 2|ψ1|2ψ2 = −i2τsh∂τ (|ψ1|2ψ2),

where τsh ≡ (ω0t0)−1 is the normalized shock coefficient, and
ω0 is the input pulse central frequency. In order to study the
shock effect on both the soliton and the radiation, we will
adapt the variational perturbation method for our problem
[2]. Using this method, the right-hand sides of the above
coupled equations are considered as perturbations for the
previously obtained solutions of ψ1 and ψ2. Hence, the soliton
and the radiation will maintain their functional shape during
propagation, however, their parameters will vary. For both
pulses, one has to obtain the Lagrangian L = ∫ ∞

−∞ Ld dτ ,
where Ld is the Lagrangian density. Using the reduced Euler-
Lagrange equations, a set of ordinary differential equations
that tracks the spatial evolution of the pulse parameters can be
obtained. Since this technique is well illustrated in the literature
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FIG. 1. (Color online) (a), (b) Propagation of a dispersive radia-
tion solely in an argon-filled HC-PCF, when the radiation takes the
form of (a) the fundamental mode f0(τ ), or (b) the first-order mode
f1(τ ). (c)–(h) Propagation of a fundamental soliton and a dispersive
radiation together in an argon-filled HC-PCF. The group-velocity
matching condition is satisfied. The two pulses have the same central
wavelength λ = 800 nm, and opposite circular polarizations. (c), (d)
Temporal and spectral evolution of the soliton. (e)–(h) Temporal and
spectral evolution of the radiation, when it is in the fundamental
mode [(e),(f)], or in the first-order mode [(g),(h)]. Other simulation
parameters are η = 8.9, ψ0 = 0.5, and t0 = 50 fs. The higher-order
dispersion and self-steepening effects are neglected.

for the soliton case [2], we will show only its final result,
ψ1(ξ,τ ) = η sech[η(τ − β ′ξ )]exp(iη2ξ/2), with β ′ = τshη

2.
This means that the soliton acquires only a linear temporal shift
during propagation due to the shock term. For the radiation,
we found that

Ld = −Im{ψ2∂ξψ
∗
2 + 2εψ∗

2 } + 1
2 |∂τψ1|2 − 2|ψ1|2|ψ2|2, (5)

where ε = −2τsh∂τ (|ψ1|2ψ2) and Im stands for the imaginary
part. Assuming that the radiation is in the fundamental mode,

ψ2(ξ,τ ) = ψ0sechp0 [a(τ − τp)]exp[−iδ(τ − τp)], (6)

where τp and δ are the shifts due to the applied perturbation
in the temporal and spectral positions of the pulse center,
respectively. After calculating the Lagrangian and applying
the reduced Euler-Lagrange equations, one can show that the
following equations describe the variation of the parameters:

dδ

dξ
= − 2η2

ψ2
0 I

∫ ∞

−∞
g(τ )(Im{ε ψ∗

2 } + 2|ψ1|2|ψ2|2)dτ,

(7)
dτp

dξ
= −δ + 2η

ψ2
0 I

∫ ∞

−∞
Re{(τ − τp)ε ψ∗

2 }dτ,

FIG. 2. (Color online) Propagation of a fundamental soliton and
a dispersive radiation in an argon-filled HC-PCF in the presence of
the self-steepening effect. Other simulation parameters are similar to
those used in Fig. 1. Temporal and spectral evolution of the radiation,
when it is in the fundamental mode [(a),(b)], or in the first-order mode
[(c),(d)], respectively. Solid black lines are the numerical solutions of
the coupled differential equations (7).

where I = √
π�(p0)/�(p0 + 1

2 ), g(τ ) = p0tanh[a(τ − τp)],
� is the gamma function, and Re stands for the real part. These
coupled equations can be solved numerically.

The effect of the shock term on the radiation is depicted in
Fig. 2, which shows the temporal and the spectral evolution of
the dispersive radiation. As shown in panel (a), the radiation
acquires a varying group velocity, which differs from that
of the soliton. The reason is related to the factor 2 that
distinguishes between the SPM and XPM processes [see
Eq. (4)]. This group velocity difference between the two pulses
causes the observed periodic oscillations of the radiation inside
the soliton-induced potential. The dynamics of the radiation
is similar to the motion of a mechanical pendulum, or an
oscillating particle inside a potential. Initially, the particle is
settled at the potential minimum. Due to the shock effect,
it acquires a velocity that is highest in correspondence with
that minimum. As the “particle” (which is in our case the
small amplitude radiation) moves upward, it undergoes a
deceleration, resulting in a spectral blueshift as shown in
panel (b). When the particle reaches its maximum position,
it stops and changes its direction downwards, acquiring an
acceleration that corresponds to a spectral redshift. Passing by
the potential minimum, the particle goes upward to the other
side of the potential. This periodic motion continues during
the propagation along the fiber. In the case of the fundamental
mode, there is a good qualitative agreement between the
analytical and numerical results [see Figs. 2(a) and 2(b)]. The
odd mode behaves similarly to the even mode as portrayed in
panels (c) and (d). However, the analytical results fail to mimic
the numerical ones in this case. We attribute this to the fact
that the radiation does not preserve its temporal shape during
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propagation. The two lobes that constitute the radiation packet
exchange energy, similar to partial coupling between adjacent
waveguides, and this prevents the perturbation theory from
being a good approximation of the dynamics.

V. CONCLUSIONS

We present a trapping technique between a strong funda-
mental soliton and a weak dispersive radiation in a symmetric
HC-PCF filled by a noble gas. The medium is Raman- and
plasma-free. Trapping is due to the cross-phase modulation ef-
fect between the two pulses having the same central frequency
but opposite circular polarization states. Although both pulses
lie in the deep anomalous dispersion regime of the fiber, this
configuration satisfies unconventionally the group-velocity
matching condition. From a quantum mechanics point of view,

the soliton creates a potential well that traps the particlelike
radiation inside, and the two pulses travel together without
suffering dispersion-induced broadening. This potential well
allows for only two bound states. Exact analytical formulas
for the fundamental and the first-order modes of the radiation
have been obtained. The soliton shock effect leads to a periodic
oscillation of the radiation inside the potential, similar to a
pendulum motion. As a consequence, the radiation central
frequency is shifted periodically.
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