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Modulational instability (MI) in a twin-core optical fiber with the combined effect of saturation of nonlinearity
(SNL) and coupling coefficient dispersion (CCD) is presented. The CCD does not dramatically modify the
spectrum of the symmetric or antisymmetric continuous wave (CW) case, but the SNL on the other hand behaves
in a perceptible manner such that the gain and the unstable region inherently decrease. In the anomalous dispersion
region, the gain of the instability spectrum increases (decreases) monotonously with power (coupling coefficient).
The effective nonlinearity and the power threshold for the sustained CW solution becomes a function of power
for the SNL case. The so-called nonlinear factor behaves in a unique way such that there exist two powers for the
same value of nonlinear factor. The interplay between CCD and SNL is emphasized, where any nonzero value
of CCD leads to new instability bands and the saturation on the other hand suppresses the gain of the instability
band. We identified a pair of power corresponding to the constant value of the nonlinear factor, where the system
becomes invariant, such that the number of instability bands, the gain, and the range of the unstable region are
all preserved. In the case of the normal dispersion case, the MI is achieved purely by means of the coupling
coefficient. In both cases, a critical CCD is predicted, where the system evolves dramatically in a different manner.
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I. INTRODUCTION

The interaction between the natural phenomena such as the
linear dispersion due to the frequency-dependent refractive
index and the nonlinearity due to the intensity-dependent re-
fractive index generates interesting features which has aroused
a great deal of interest both from the fundamental point of view
as well as the applications perspective [1,2]. The stability
of the input light beam under various physical situations is
one of the most exciting issues of modern nonlinear optics.
One such exciting prospect that deserves renowned interest is
the so-called modulational instability. The MI is a universal
instability process which is identified as a characteristic of
wave propagation in dispersive nonlinear systems, such as fluid
dynamics [3], nonlinear optics [4], and plasma physics [5].
In the context of nonlinear optics, the MI can be explained
as the continuous wave (CW) or quasi-CW propagating in
the nonlinear dispersive medialike optical fibers, becoming
inherently unstable under weak perturbation and evolving into
a train of ultrashort pulses as a consequence of temporal
modulation due to MI.

The history of the MI dates back to the mid-1960s, courtesy
of Lighthill, who is responsible for the famous Lighthill
criterion which sets the conditions for the stability of the
plane wave in a nonlinear dispersive medium [6]. Such an
instability condition later in the name of MI was observed
first in hydrodynamics by Benjamin and Feir in 1967 [3]. In
the same year, Ostrovskii predicted the possibility of MI in
nonlinear optics [7] and this was later explained in detail by
Hasegawa et al. in 1973 in the context of optical fibers [8].
Ever since these pioneering works, MI picks momentum
and evolves as one of the most fascinating phenomena in
the field of nonlinear optics. The sweeping interest of MI
for more than five decades in various disciplines of science
and technology is a clear manifestation about the everlasting
interest of MI in the exciting fields of research such as

in optical communications and signal processing systems,
ultrafast pulse generation, supercontinuum generation [9,10],
new laser sources [11,12], all-optical switching [13,14], optical
amplification of weak signals, material absorption and loss
compensations, etc. [14–16]. MI, over the years has been
systematically investigated in connection with numerous non-
linear processes. In principle, MI can be classified as temporal
or longitudinal MI [1,8,17] or spatial or transverse MI [18,19]
based on the linear part of the system, depending on whether
the CW wave disperses or diffracts in the nonlinear medium.
The spatiotemporal MI has also been observed, especially
in the bulk media when both dispersion and diffraction act
simultaneously [19,20].

The MI is governed by the nonlinear Schrödinger equation
(NLSE), which inherently admits the formation of solitary
pulses or envelope solitons as a result of the delicate balance
between the anomalous group velocity dispersion (GVD) and
the self-focusing Kerr nonlinearity [1,8,17]. The periodic pulse
trains that emerge as the result of the temporal modulation due
to MI is in fact identified as the train of the ideal soliton pulses.
This emphasizes the close relation between MI and soliton and
hence, at times, MI is called as a soliton precursor. The MI in
the conventional dispersive nonlinear media has been widely
studied. The MI scenario in photorefractive media has been
studied in detail by Staffman et al. [21]. In general, MI occurs
in the anomalous group-velocity dispersion (GVD) regime for
a self-focusing nonlinearity and results in the symmetrical pair
of side bands corresponding to the Stoke’s and anti-Stoke’s
component. However, the domain of MI can be extended to
the normal GVD regime, under some special cases, such as in
the presence of higher even-order linear dispersions, typically
fourth-order dispersion [22–24], or loss dispersion [25], in
the case of co-propagation of two or more optical fields in the
optical fiber as in the case of cross-phase modulation instability
[26,27] and polarization modulation instability [28,29].
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Following the detailed introduction with historical perspec-
tives, we are now moving on to the objective of the paper. Ever
since the discovery of the nonlinear directional coupler by
Jensen, there has been profound interest in the study of the
nonlinear directional coupler in various applications such as
ultrafast optical switching, wavelength division multiplexing,
power splitters, optical logic gates, multifrequency generation
or supercontinuum generation, etc. [30–35]. The study of MI
in the nonlinear directional coupler or the dual core fiber is not
new, since a good amount of research work has been dedicated
to understand the MI dynamics in such a fiber system. For
instance, Trillo et al. in 1988 analyzed extensively the impact
of various combinations of physical effects in the MI dynamics
of the nonlinear directional coupler and studied the close
relation between the MI in two-core fibers and the birefringent
glass fibers. Along similar lines, Tasgal et al. extended study to
the case of an asymmetric dual-core optical fiber and analyzed
the MI with reference to the bifurcation point [36].

The evolution of the optical beam in the twin-core fiber
is given by a pair of linearly coupled nonlinear Schrödinger
equations [37–39]. The periodic power transfer between the
two cores of the fiber is governed by the linear coupling
coefficient [40,41]. However, in the ultrashort pulse regime, the
so-called CCD arising as a result of the wavelength-dependent
coupling coefficient is found to be crucial [42–44] especially
in long fibers and can cause severe pulse distortion, which
eventually leads to pulse break-up [45,46]. The effect of CCD
and its relative influence on various physical mechanisms
was studied in detail both theoretically and also through
experiments by Chiang and his group through various analysis
[37–39,42,43,46]. Considering the importance of CCD, Li
et al. extended the results of Refs. [14,36] with the inclusion
of CCD [47]. The authors have reported that CCD does not
affect the symmetric or asymmetric CW state but dramatically
changes the MI of the asymmetric CW state. Over the years the
perception of analyzing MI in a two-core fiber system takes a
different dimension based on the linear and nonlinear contribu-
tion of the refractive index of the medium. One such interesting
prospect is the study of the saturation of nonlinear response
in the propagation dynamics of two-core fibers [48–52]. In
principle, for any material medium, there is an upper limit
for the optically induced nonlinear refractive index, beyond
which the higher-order nonlinear susceptibilities inevitably
get excited and after a certain power threshold the nonlinear
response saturates [53,54]. In particular, a fiber system such
as semiconductor doped fibers, and the modern nonsilica
technology such as SF6, TF10, CS2, or nitrobenzene-filled
photonic crystal fibers, possesses nonlinearity approximately
200 times larger than the conventional silica-based fiber
system and hence the nonlinear saturation occurs even at a
moderate power level. In recent times, the liquid core photonic
crystal fibers deserve considerable interest especially in the
context of soliton propagation due to its high nonlinearity and
requirement of low input pulse energy [55–58]. Similarly, dual
core photonic crystal fibers with selective liquid filling have
also found serious interest in wide application [59]. Although
a good number of works involving the study of saturation
in the propagation dynamics of the two-core fiber system
have been reported, no convincing report to the best of our
knowledge is available in the study of saturation of nonlinear

response in the context of MI in two-core fibers. However,
the study of MI in SNL is not novel as one can see from
Refs. [60–62], but what differentiates our present problem
from the rest is the investigation of MI in two-core fibers with
the effect of saturation and the interplay between the CCD,
which has not been discussed yet to our knowledge and hence
deserves attention. Thus the end of the article will discuss
the characteristic properties of MI with the effect of SNL in
two-core fibers and the interplay between the SNL and CCD.

II. THEORETICAL MODEL

The propagation of a high intense optical beam in the
single-mode twin-core fiber in the limit of a slowly varying
envelope approximation is given by the pair of linearly cou-
pled nonlinear Schrödinger equations (CNLSE). The CNLSE
describing the evolution of the slowly varying envelopes (Uj ,
j = 1,2) with the effect of SNL is given by the equation as
follows [47–52]:

i
∂Uj

∂z
− 1

2
β2

∂2Uj

∂t2
+ κ U3−j + iκ1

∂U3−j

∂t

+ γ
f (�|Uj |2)

�
Uj = 0, (1)

where t = (τ − β1z) is the retarded time and z is the longitu-
dinal coordinate. The group velocity is given by β1 and β2 is
the group velocity dispersion parameter. The nonlinear Kerr
coefficient (γ ) is of the form γ = n2ω0

cAeff
, where ω0 is the carrier

frequency, n2 is the nonlinear index coefficient, and Aeff is the
effective core area. The coefficient of linear coupling is given
by κ , and κ1 = dκ/dω is the coupling coefficient dispersion
due to the wavelength dependence of κ .

The function f (�|U |2) describes the intensity-dependent
refractive index. In principle, all nonlinearities saturate, that
is, there is an upper limit in all optical materials for the
refractive index change that can be induced optically and a
further rise in power does not modify the nonlinear refractive
index. At a higher input power level, higher-order nonlinear
susceptibilities inevitably get excited which eventually leads to
the saturable behavior. In addition, it is reported in Ref. [63],
that the saturation of cubic nonlinearity is equivalent to the
presence of higher-order nonlinearities as a result of χ (3) χ (5)

and χ (7). Thus, we stick to the case of saturation of cubic
nonlinearity as it is the most practical model representing
saturable nonlinearity [48–52]. It is quite understandable
that, in most nonlinear liquids, as the input power reaches
a certain level, the photon energy certainly tends to approach
the absorption edge, which leads to ultimate large nonlinear
absorption. As it is well known that MI stems on the optical
nonlinearities and the associated pump power of the system,
any detrimental effects such as nonlinear absorption is quite
serious and will lead to undesirable features (i.e., inhibits
the MI as a result of the depletion of pump power due to
nonlinear absorption and subsequently suppresses the gain
and the side-band growth). In order to overcome the above
penalizing factor, the considered twin-core fiber system is
assumed to be transparent for the input carrier frequencies
(i.e., the input carrier energy is below the band gap of the fiber
material and it is not in resonance with impurity trap levels
or any other energy level of the fiber system). This is indeed
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a valid assumption, since it takes into account only the real
part of the higher-order nonlinear susceptibilities and keeps
away the contribution from the imaginary part. The resulting
functional form of the saturable nonlinear response that is
commonly used in the literature in the context of the nonlinear
directional coupler is given by

f (�|U |2) = 1 − exp(−�|U |2), (2)

where � is the saturation parameter of the form � = 1/Ps , and
Ps is the power corresponding to the nonlinear saturation. The
other empirical forms of saturable nonlinearity can be seen
from Refs. [24,61,62].

The pertinent equation incorporating the above assumption
leads to the modified coupled nonlinear Schrödinger equation
(mCNLSE) of the form as follows:

i
∂Uj

∂z
− 1

2
β2

∂2Uj

∂t2
+ κ U3−j + iκ1

∂U3−j

∂t

+ γ
1 − exp(−�|Uj |2)

�
Uj = 0. (3)

It is worth noting that the above equation governing the
dynamics of MI in the two-core fiber system switches back to
the conventional Kerr case when the field intensity �|U |2 � 1.
Thus for low-input intensity the Kerr-type nonlinear response
is more pronounced. Considering all the above-mentioned
critical points, we study the mechanism of MI in the twin-core
LCPCF in the saturation windows of nonlinear response.

III. LINEAR STABILITY ANALYSIS

A. Symmetric and antisymmetric solutions

The fundamental framework of MI analysis relies on the
linear stability analysis (LSA), such that a CW solution is
perturbed by a small amplitude or phase perturbation satisfying
the condition |aj (z,t)|2 � |P0|2, and then study whether the
perturbation amplitude grows or decays with propagation.

The symmetric or antisymmetric CW steady-state solution
can be written as

UCW
1 = P0 exp[iφ(z)], UCW

2 = δP0 exp[iφ(z)], (4a)

where P0 is the input pump power and φ is the nonlinear phase
shift.

φ(z) = (γ P̃0 + δκ)z, (4b)

with P̃0 = ( 1−e−�P0

�
) and δ = +1 (−1) corresponding to sym-

metric or antisymmetric solutions.
The stability of the steady state can be examined by

introducing a perturbed field qj (z,t) of the form,

UP
j = [P0 + qj (z,t)] exp[iφ(z)]. (5)

The linearized equation for the perturbation can be obtained
by using Eq. (5) in Eq. (3) and neglecting the higher-order
perturbation terms as follows:

i
∂qj

∂z
− 1

2
β2

∂2qj

∂t2
+ κ (q3−j − δ qj )

+ iκ1
∂q3−j

∂t
+ γ̃ P0(qj + q∗

j ). (6)

The following ansatz is assumed for the perturbation with
frequency detuning from the pump �, and K will be the wave
number of the perturbation.

qj (z,t) = Uj exp[−i(Kz − �t)] + Vj exp[i(Kz − �t)],

(7)

where Uj and Vj are the perturbation amplitudes of anti-Stokes
and Stokes side bands, respectively. Using Eq. (7) in Eq. (6)
results in four homogenous equations for Uj and Vj .

The compatibility condition for two equations in U1 and V1

lead to the dispersion relation as follows:

(K − δκ1�)2 = 1
4β2�

2(β2�
2 + 4γ̃ P0). (8)

However, for U2 and V2 the compatibility condition deviates
from the earlier one due to linear coupling between the modes
and the dispersion relation is of the form,

(K + δκ1�)2 = 1
4 (β2�

2 − 4δ κ)(β2�
2 − 4δκ + 4γ̃ P0). (9)

The resulting general relation corresponding to the stability of
the steady-state solution of the two-core fiber system can be
written as

[(K − δκ1�)2 − h1][(K + δκ1�)2 − h2)] = 0. (10)

h1 = 1
4β2�

2(β2�
2 + 4γ̃ P0), (11a)

h2 = 1
4 (β2�

2 − 4δκ)(β2�
2 − 4δκ + 4γ̃ P0), (11b)

γ̃ = γ e−�P0 . (11c)

As it is well known that the MI is said to occur only for the
nonzero imaginary part of K and the amplitude perturbation
grows with propagation with a gain given by Im[K]. This
can be achieved by either h1 < 0 or h2 < 0; this is possible
only when the dispersion coefficient takes a negative value.
However, the presence of the linear coupling coefficient in
the dispersion relation satisfies the condition of the nonzero
imaginary part for the wave vector and thereby extends the
domain of MI to the normal dispersion regime.

A more comprehensive theoretical analysis featuring the
role of saturation of nonlinear response in the instability
spectra of the twin-core fiber system in the absence of CCD can
be seen from Refs. [2,14,36]. As we are interested in studying
the interplay between CCD and κ1, it is observed that in the
case of the symmetric or antisymmetric case the CCD (κ1)
does not have much impact on MI dynamics (no change in the
gain) and SNL on the other hand hardly does much, apart from
suppressing the MI [61,62]. The intermodal dispersion does
not have much effect, since only one supermode corresponding
to symmetric (even supermode) or antisymmetric (odd super-
mode) exists. [47]. Thus we conclude from this section that
the role of CCD in the symmetric or antisymmetric solution is
found to be insignificant and the saturation on the other hand
behaves very much in a perceptible manner as it is published
elsewhere [24,60,61] and hence will not be discussed.

B. Asymmetric solutions

Along similar lines with the symmetric or antisymmetric
CW solution, the so-called asymmetric CW solution can be
obtained as follows:

UCW
1 = P1 exp[iφ(z)], UCW

2 = P2 exp[iφ(z)]. (12)
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The nonlinear phase shift φ(z) can take the form φ(z) =
γ (P̃1 + P2)z = γPz, with P̃1 = ( 1−e−�P1

�
). It is worth noting

that our calculation is in agreement with the report of Ref. [47]
at the limiting case of the Kerr-type nonlinear response.

There exists a minimum power threshold to sustain the
CW solution for a given κ . The power threshold is found to
be Pmin = 2κ/γ̃ and at Pmin the system switches back to the
symmetric CW state. Following a similar procedure for linear
stability analysis as in the preceding section, the dispersion
relation after some mathematical manipulations can be written
as [(

K + κ1 �√
2

)2

− h1

] [(
K + κ1 �√

2

)2

− h2

]
= h, (13)

h1 = 1

2

[
γ̃ 2P 2 − 4κ2 + (

κ2
1 − 2

√
2β2κ

)
�2 + β2

2�4

2

]
,

(14a)

h1 = 1

2

[
γ̃ 2P 2 − 4κ2 + (

κ2
1 + 2

√
2β2κ

)
�2 + β2

2�4

2

]
,

(14b)

h = 1

4
(γ̃ 2P 2 − 4κ2)2 − (γ̃ 2P 2 − 4κ2)

(
β2γ̃ P + 2κ2

1

)
�2

− (
5β2

2κ2 + κ4
1 − β2

2 γ̃ 2P 2
)
�4 + 1

2
β2

2κ2
1 �6, (14c)

γ̃ = γ exp−�P . (14d)

The MI gain spectra are given by the relation G(�) =
2 Im[K] and it is observed that the spectrum is symmetrical
G(�) = G(−�) across the center frequency; therefore, we
prefer to show only the positive side of the spectrum for
better illustration. In what follows, we consider the nonlinear
parameter and dispersion coefficient as γ = 3.05 kW−1m−1,
β2 = ±0.02 ps2m−1. The saturation power is assumed to
be Ps = 100 kW and the operating input power varies in
the range P = 0 − 200 kW. The coupling coefficient and
the coupling coefficient dispersion varies, respectively, in the
range κ = 0 − 25 m−1 and κ1 = 0 − 10 ps m−1. It should be
noted that the above set of parameters will be used all through
our analysis and will not be specified always, unless and
until any change in the choice of the parameters. We have
chosen alphabets A < B < C < D < E < F for variables in
the plots based on the increasing order of the numerical value
(a similar pattern is followed for the choice of the colors in the
figures and will be maintained throughout the discussion).

IV. MODULATIONAL INSTABILITY ANALYSIS

Following the detailed mathematical treatment pertaining
to the MI dispersion relation corresponding to the two-core
system with the effect of SNL. The subsequent section is
intended to provide an insight analysis about the interplay
between the CCD and SNL in the MI dynamics. In order
to provide a comprehensive picture, we consider both the
dispersion regime, namely, anomalous and normal dispersion
regime. The analysis is documented in such a way that in
addition to the exclusive investigation about the interplay
between SNL and CCD, an interactive discussion will be
emphasized between the SNL and the conventional Kerr case,

so as to explore the impact of saturation in the MI dynamics
of the two-core fiber system in the presence of CCD.

A. Anomalous dispersion regime

The anomalous dispersion regime corresponds to the case
where the dispersion coefficient β2 takes a negative value,
and the MI is said to occur due to the interplay between the
self-focusing nonlinearity and the negative group dispersion
coefficients, which results in the growth of the weak perturba-
tion and eventually leads to the breakup of the CW into a train
of solitonlike pulse trains.

To put things in a self-explanatory way, before dealing with
the interplay between CCD and SNL, it is more instructive
to investigate the impact of pump power and the coupling
coefficient in the MI dynamics of the SNL system without the
effect of CCD.

1. Impact of pump power in the MI spectrum

To give a quantitative picture of the impact of pump power
in the SNL system, the gain spectrum of MI as a function of
pump power is studied.

(a) First, the MI spectrum corresponding to the conventional
Kerr case is considered by making � → 0. Figure 1 shows
the MI gain spectrum as a function of power and one can
straightforwardly notice from the contour map that the MI
gain monotonously increases with the power.

(b) Now we incorporate the saturation into the picture and
therefore the effective nonlinear coefficient becomes γ → γ̃ .
The MI gain spectrum as a function of power is shown in
Figs. 2(a) and 2(b). Basically, we divided the operating power
into two regimes with reference to the saturation power. For
instance, without loss of generality, the saturation power (Ps)
is set to be equal to 100 kW, thus the saturation parameter �

becomes 0.01 kW−1. We classified the operating power regime
as Type I and Type II corresponding to the pumping at below
saturation power (P > Ps) or above saturation power (P >

Ps), respectively. The corresponding MI spectrum as a function
of power is shown in Figs. 2(a) and 2(b). The behavior of the
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FIG. 1. (Color online) The MI gain spectra in the anomalous
dispersion regime as a function of input power. Parameters are β2 =
−0.02 ps2m−1, γ = 3.05 kW−1m−1, κ = 10 m−1.
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FIG. 2. (Color online) Plot showing the variation of MI gain
spectra of SNL as a function of input power at � = 0.01W−1.
(a) MI spectrum at Type-I regime. (b) MI spectrum at Type-II regime.

MI gain spectrum in the Type-I regime for different power is
shown in Fig. 2(a) and resembles in principle the one obtained
for the conventional Kerr-type nonlinear response, that is, the
MI gain increases nearly monotonously with power. On the
contrary, the behavior of MI gain for different powers in the
Type-II regime is interesting, since the power-gain relation is
exactly opposite to the case of the conventional Kerr response
[i.e., instead of increasing with power, the MI gain decreases
with increase in power as shown in Fig. 2(b)].

The aforementioned interesting behavior of pump power
is identified to be unique in the context of MI, such that the

increasing power either increases or decreases the MI gain
relative to the saturation power. For the better illustration
and to give insight in the view of understanding the unusual
observation of the role of pump power in the SNL system,
we studied the impact of different parameters as a function
of power. First, the nonlinear coefficient as a function of
power is drawn for different saturation parameters as shown
in Fig. 3(a). It is observed that for the case of the Kerr-
type nonlinear response the effective nonlinear coefficient
becomes γ̃ → γ and it is found that the variation of the
effective nonlinear coefficient is independent of the input
power.

On the other hand, the nonlinear coefficient in the SNL
system is found to be a sensitive function of the power and γ

decreases with an increase in the pump power. It is obvious
from Fig. 3(a) that as the saturation parameter increases (curve
C), the nonlinear coefficient γ̃ decreases very rapidly. Since
the nonlinear coefficient decreases unusually with increases
in power, it opens the possibility that there must exist an
interesting relation between the effective nonlinearity and the
input power. To account for that, we have plotted the product of
nonlinear coefficient and power as a function of power and we
called it the nonlinear factor. It is evident from Fig. 3(b), that
the nonlinear factor increases with power for power P < Ps

(i.e., Type I reaches a maximum at P = Ps and decreases with
further increase in power, Type II for P > Ps , whereas the
nonlinear factor corresponding to the conventional Kerr case
increases monotonously [curve A of Fig. 3(b)]. The nature of
the curve for the case of SNL in Fig. 3(b) illustrates that there
exist two pump powers for the same value of the nonlinear
factor. Since, the nonlinear factor is identified to be a crucial
determining factor, hence an insight analysis is expected to
be useful. To demonstrate, an arbitrary line corresponding to
the nonlinear factor 100 m−1 is drawn across the curve and
the line bisects the curve at two points, which corresponds
to two powers—one at the Type-I regime (59.45 kW) and
the other at the Type-II regime (155.7 kW). It is interesting
to note that for each value of nonlinear factor there exists
a set of power corresponding to one at the Type-I regime
(P < Ps) and the other at the Type-II regime (P > Ps). It
is noteworthy that the system behaves similarly in the two
different powers. The MI gain spectrum related to the two
input powers, 59.45 kW and 155.7 kW, respectively, is shown
in Fig. 4 alongside the conventional Kerr case. Unarguably,
the MI gain of the SNL system is less than the conventional
Kerr case, which is attributed to the inherent depletion in the
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FIG. 3. (Color online) Plot showing the variation of the system parameter as a function of power. (a) Nonlinear coefficient as a function of
power. (b) Nonlinear factor as a function of power. (c) Pmin as a function of power.
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FIG. 4. (Color online) The instability spectra of the Kerr and SNL
system corresponding to a nonlinear factor equals 100 m−1.

effective nonlinearity (γ̃ ) of the SNL system. Interestingly,
one could not differentiate (appears as if a curve for a single
power) the curves corresponding to the two different powers
(59.45 kW and 155.7 kW) which is identified as the signature
of the SNL system.

In this conjecture, it is worth saying that the behavior of
the SNL system is indeed interesting, such that the system
becomes invariant at two different powers (one at Type I
and other at Type II) for a constant nonlinear factor. We
speculate the aforementioned observation as interesting and
can be useful in many circumstances. As it is known that the
nonlinear coefficient depends on the input power in the SNL,
the so-called Pmin, which is a certain function of the nonlinear
coefficient also depends on the input power, whereas in the
conventional case the Pmin is independent of the input power
(curve A) as shown in Fig. 3(c).

2. Variation of MI spectrum with kappa

The influence of the coupling coefficient κ in the MI
spectrum of the SNL system is shown in Fig. 5. Figure 5
is plotted for different κ at a constant power (P = 20 kW).
It is straightforward to notice that as κ increases the Gmax

decreases and the maximum gain is achieved for the uncoupled
case (κ = 0).

3. Interplay between saturation and coupling coefficient
dispersion in the MI spectrum

Following the understanding of the role of the pump power
and κ in the instability spectrum of the SNL system, the
featuring section is dedicated exclusively to the investigation
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FIG. 5. (Color online) The MI spectra of SNL at κ(A = 5; B =
10; C = 15; D = 20) m−1 for power P = 20 kW.
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FIG. 6. (Color online) Plot showing the instability spectra at P =
8 kW for different coupling coefficient dispersions κ1(A = 0; B =
−0.2; C = −0.45; D = −0.6; E = −0.8; F = −1) ps m−1. (a) The
MI spectra of Kerr at low power with the effect of coupling coefficient
dispersion (κ1). (b) The MI spectra of SNL at low power with the effect
of coupling coefficient dispersion (κ1).

of the interplay between saturation and coupling coefficient
dispersion. For better illustration, the conventional Kerr case
is considered alongside our purported SNL case. The choice of
the parameters is defined by ensuring a sustained CW solution
in the system. We fix the coupling coefficient κ = 10 m−1, and
the calculated power threshold for sustained CW is found to be
6.55 kW and 7.10 kW, corresponding to the conventional and
SNL system, respectively. It is straightforward to notice that
the incorporation of saturation increases the Pmin. In similar
lines with Ref. [47], we consider two power schemes (should
not be confused with Type I and Type II of the SNL system),
one at or near Pmin and the other at far from Pmin, typically 7
and 20 kW for the conventional case and 8 and 20 kW for the
SNL case.

For instance, we begin the discussion by considering
the low power case (i.e., pumping slightly above the Pmin,
8 kW. Figures 6(a) and 6(b) depict the instability spectrum
corresponding to the conventional Kerr and SNL cases for
some representative value of CCD. It is apparent that both
systems closely resemble each other, and the notable difference
is the range of the unstable frequency and the gain of the
instability band. It is obvious from Figs. 6(a) and 6(b) that at
zero CCD, there exists a single band of maximum gain at the
center frequency. Although our strategic view is on the role
of CCD in the MI spectrum of the SNL system, an interactive
comparison will be made with the conventional counterpart for
a better understanding. From Fig. 6(b), one can observe that
as CCD increases (scaled by the parameter κ1), the instability

043805-6



MODULATIONAL INSTABILITY IN A TWIN-CORE FIBER . . . PHYSICAL REVIEW A 87, 043805 (2013)

FIG. 7. (Color online) Plot showing the instability spectra at P =
20 kW for different coupling coefficient dispersions. (a) The MI
spectra of Kerr at high power with the effect of coupling coefficient
dispersion (κ1). (b) The MI spectra of SNL at high power with the
effect of coupling coefficient dispersion (κ1).

band drifts slightly towards the higher detuning frequencies
and the gain of the primary band (instability band near the
center frequency) decreases. With further increase in CCD, it
is observed that there exists a critical CCD at which a new
instability band appears near the center frequency whose gain
increases and eventually saturates for a higher value of κ1. On
the hand, there appears a secondary band at higher detuning
frequency as soon as the CCD crosses the critical limit |κ1|.
The gain of the secondary band at higher detuning frequency
decreases with an increase in the CCD as shown in Fig. 6(b) for
different values of CCD. The significant difference between
the conventional and SNL case is observed to be the critical
value of CCD, where κ1 in SNL is higher than that of the
conventional Kerr case.

Now we switch to the case of input power higher than the
Pmin, typically 20 kW. As in the case of low power, here, too,
the nature of the spectrum of the SNL does not deviate much
from the Kerr case. However the gain and the instability region
marginally differs between the two. Figures 7(a) and 7(b)
portray the instability spectrum at a power 20 kW for the
conventional and SNL cases, respectively. One can observe
that the gain of the band corresponding to κ1 = 0 registers
maximum and with an increase in κ1 the gain decreases until
the critical CCD, beyond which there appear two instability
bands: One is near the center frequency and the other is the
secondary band at higher detuning frequency. The critical
CCD is found to be more than the case of the low power

-1

FIG. 8. (Color online) Illustration of the variation of critical CCD
(κ1cr) with system parameters in the anomalous dispersion regime.
Parameters are β2 = −0.02 ps2 m−1, γ = 3.05 kW −1 m−1, P =
10 kW, κ =10 m−1.

regime. In addition, the primary band near the center frequency
possesses lower gain and the secondary band at higher detuning
frequency features higher gain, which is identified as exactly
opposite to the one that was observed for the lower power
scheme. Further increase in CCD saturates the primary band
and the gain of the secondary band constantly decreases.

A brief demonstration of the variation of κ1cr as a function
of the system parameter is shown in the Fig. 8. For the better
manifestation, we consider both the conventional Kerr case
and the SNL, to explicitly figure out the interplay between
CCD and SNL in the instability spectrum. It is apparent from
Fig. 8, the CCD corresponding to the splitting of the spectral
band varies nearly linear. For instance, with an increase in
the system parameters, such as power [Fig. 8 (a)], nonlinear
coefficient [Fig. 8 (c)], and dispersion coefficient [Fig. 8(d)]
the magnitude of κ1cr (|κ1cr |) increases, whereas κ decreases
|κ1cr | as shown in Fig. 8. One can straightforwardly observe
no significant change in the nature of the curve, which shows
that at typical operating conditions both SNL and Kerr are
closely related and similar in principles. However, although
the nature of the curve is preserved in both cases, a slight
change in the numerical value of the parameter is observed,
which is inevitable owing to the different functional form of
the nonlinear response. For instance, in all cases the magnitude
of CCD (measured by |κ1cr |) corresponding to SNL is slightly
more than the conventional counterpart. It should be noted
that our results are in complete agreement with the results of
Ref. [47] at the limit � → 0 and γ̃ → γ corresponding to the
conventional Kerr case.

Needless to say, the incorporation of SNL appears to bring
no changes to the spectrum or to any additional new physics
to the system. It should be noted, what has been discussed
until now is with an assumption that the system is in the
Type-I regime,(P < Ps) and the dynamical behavior of SNL
is identified to be in close proximity to the conventional
Kerr case. Moving on to the higher power regime, typically
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above the saturation power results in the Type-II regime,
the SNL systems hold their signature and promise novel
behavior. One such observation is system invariance at powers
corresponding to the constant nonlinear factor. For example,
consider the input power at the Type-I regime, typically P =
8 kW. The calculated nonlinear factor and the power threshold
for sustained CW is given by 22.524 m−1 and 7.103 kW,
respectively (refer to the formula discussed earlier). The power
corresponding to the nonlinear factor equal to 22.524 m−1 in
the Type-II regime is found to be 398.93 kW [value obtained
from Fig. 3(b) at � = 0.01 kW−1]. The resulting Pmin for the
respective power is calculated to be equal to 354.281 kW. An
insight observation of the relation between the power threshold
for sustained CW and the input power reveals the existence of
an interesting relation between Pmin and P , that is, the ratio of
the combination of the two powers in the two regimes is exactly
equal to the ratio of the power threshold for CW. The relation
can be written as P I/P II = P I

min/P
II
min, and the superscript

denotes the corresponding power regime (Type I or Type II).
This shows that there exist two Pmin at the two power regimes
with constant nonlinear factor, against the constant Pmin for
the Kerr case. Interestingly, the MI spectrum corresponding
to the power P = 398.93 kW in the Type-II regime is found
to be exactly identical to Fig. 6(b); this shows that the system
possesses two isolated powers at two regimes for any constant
arbitrary value of nonlinear factor and becomes invariant at the
particular powers. Similar behavior is observed at P = 20 kW
(larger deviation from Pmin); the nonlinear factor and Pmin

can take values, respectively, as 49.94 m−1 and 8.01 kW. The
power corresponding to the nonlinear factor equal to 49.94 m−1

[evaluated from the curve in Fig. 3(b)] is found to be ≈ 286 kW
and the calculated Pmin is equal to 114.502 kW. As in the
previous case, assuming input power equal to 286 kW leads to
an identical spectrum similar to Fig. 7(b), and once again
ensures the emphasized system invariance at two different
powers. Thus, we conclude this section with this significant
outcome and the underlined behavior is highlighted to be a
signature of the SNL system.

B. Normal dispersion regime

This section corresponds to a particular case, where MI is
generally proven to be impossible, owing to the lack of phase
matching between the linear dispersive and nonlinear effects.
The reason for this is the fact that, whenever the propagation
of pulse is below the zero dispersion wavelength, then the
dispersion coefficient takes a negative value. Therefore the
delicate balance required for achieving the soliton or the MI
between the dispersion and the self-focusing nonlinearity is
not possible. However, MI is still proven to be possible in
the normal dispersion regime with the aid of the higher-order
dispersive effects, cross-phase modulations, and the delayed
response. In the context of couplers or the two-core fibers, the
presence of coupling between the two cores will extend the
domain of MI to the normal dispersion regime as reported in
Refs. [2,36,47,64].

Figure 9 depicts the instability spectrum for the Kerr and
SNL cases. One can observe that both the Kerr case and
SNL behave in a similar manner, except a slight modulation
in the gain and the range of the unstable frequency, which
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FIG. 9. (Color online) The instability spectra of Kerr and SNL
in the normal dispersion regime at power P = 10kW. Parameters are
β2 = 0.02 ps2 m−1, γ = 3.05 kW−1m−1, κ = 10 m−1, κ1 = 0 ps m−1,
and � = 0.01 kW−1.

is inevitable owing to the different functional form of the
nonlinear response. To figure out the impact of pump power
in the MI spectrum in the normal dispersion regime, first we
consider zero CCD for the case of the conventional system,
followed by the SNL case. Figure 10 shows the MI gain
spectrum as a function of power at β2 = −0.02 ps2 m−1 and
κ = 10 m−1. At power P = Pmin a single broad instability
band is observed at or near the center frequency. A slight
increase in the pump power leads to two instability bands away
from the center frequency and with an increase in the power the
two instability bands drift towards the higher frequency side
and the separation between the two instability band widens at
higher powers. The gain of the instability band close to the
center frequency increases and the band at higher detuning
frequencies decreases with an increase in power. A continuous
increase in power eliminates the band at the higher detuning
frequency, and only one band survives. A similar behavior is
observed for the case of SNL in the Type-I regime (P < Ps)
as shown in the Fig. 11, except there is a slight change in
the gain and the range of the unstable frequencies. However,
what differentiates SNL from the conventional case is the

FIG. 10. (Color online) The contour plot showing the gain spectra
of the Kerr case in the normal dispersion regime as a function of input
power.
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FIG. 11. (Color online) The instability spectra of the SNL system
in the Type-I regime at different input powers P (A = 7.035; B =
10; C = 20; D = 30; E = 50) kW.

Type-II regime, where one can straightforwardly observe from
the Fig. 12, as power P is higher than the saturation power
(typically, Ps = 100 kW) the two instability bands approach
each other and a wide gap between the two instability bands
is observed at P = Ps = 100 kW; this is interesting since it is
exactly opposite to what has been observed in the Type-I case.

The influence of coupling coefficient in the instability
spectrum at fixed power (P = 20 kW) is shown in Fig. 13
for different values of κ . At κ = 0, there is no instability band
since there is no coupling between the two cores and the system
resembles a conventional single-core fiber in the normal
dispersion regime. Hence, the absence of the instability band
is obvious since the system does not meet the much-required
phase matching for the MI. Nonetheless, for any finite value
of κ two instability bands arise, whose gains increase with an
increase in κ before merging into a single broad band.

1. Interplay between CCD and SNL in the normal
dispersion regime

We now switch to investigate the interplay between �

and κ1 in the MI spectrum. As in the case of the positive
group dispersion coefficient, two different input powers are
chosen: one near Pmin and the other far from Pmin. For typical
system parameters the Pmin for Kerr and SNL is found to be
7 and 8 kW, respectively. Figures 14(a) and 14(b) show the
instability spectrum at low input power corresponding to the
Kerr and SNL systems. It is straightforward to notice that as
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FIG. 12. (Color online) The instability spectra of the SNL system
in the Type-II regime at different input powers P (A = 100; B =
150; C = 200; D = 300; E = 400) kW.

FIG. 13. The instability spectra of the SNL case as a function of
coupling coefficient.

in the earlier cases, both Kerr and SNL in the Type-I regime
closely resemble each other. It is apparent that there exist two
instability bands at zero CCD, and with an increase in the value
of the CCD the two instability bands approach each other and
coalesce to form a single band of large gain and bandwidth.
Similar to the earlier case of anomalous dispersion regime,
here, too, there exists a critical CCD at which the dynamics
evolves differently. However, the definition of critical CCD
differs significantly from the anomalous dispersion case and it
can be stated as the value of the CCD at which the coalesced
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FIG. 14. (Color online) Plot showing the instability spectra at P =
8 kW in the normal dispersion regime for different coupling coef-
ficient dispersions κ1(A = 0; B = −0.2; C = −0.4; D = −0.6; E =
−0.8) ps m−1.(a) The MI spectra of Kerr at low power with the effect
of coupling coefficient dispersion (κ1). (b) The MI spectra of SNL at
low power with the effect of coupling coefficient dispersion (κ1).
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FIG. 15. (Color online) Plot showing the instability spectra at
P = 20 kW in the normal dispersion regime for different coupling
coefficient dispersions. (a) The MI spectra of Kerr at high power
with the effect of coupling coefficient dispersion (κ1). (b) The MI
spectra of SNL at high power with the effect of coupling coefficient
dispersion (κ1).

band results in the reappearance of two instability bands. Thus
for κ1 > κ1cr the primary instability band near the center
frequency registers maximum gain, and the secondary side
band at higher detuning frequencies leads to continuous upshift
whose gain increases with an increase in CCD.

Figures 15(a) and 15(b) represent the instability spectrum
of the conventional and SNL cases at higher power, typically
20 kW, which is more than the Pmin. As in most cases,
the SNL case does not bring new changes in the spectrum;
the reasons are understandable since the SNL in the Type-I
regime resembles closely the conventional Kerr case. However,
the gain of the instability band in the SNL case is reduced,
which is due to the inherent depletion in the nonlinear response
of the SNL system.

Now we consider the pumping in the Type-II regime (P >

Ps); the saturation power is fixed at 100 kW. It should be noted
that the nonlinear factor is independent of the nature of the
dispersion regime, therefore, the power corresponding to the
constant nonlinear factor in the Type-II regime is the same as
that for the anomalous dispersion regime. Thus, the system
invariance at higher power above the power threshold is even
observed in the normal dispersion regime. For an input power
equal to 7 kW and 20 kW, the power corresponding to the
constant nonlinear factor in the Type-II regime can be rewritten

-1

FIG. 16. (Color online) Plot showing the variation of critical
CCD (κ1cr) with system parameters in the normal dispersion regime.
Parameters are β2 = 0.02 ps2 m−1, γ = 3.05 kW −1 m−1, P =
10 kW, κ =10 m−1.

as 398.93 kW and 286 kW, respectively. It should be noted that
for powers 354.281 kW and 286 kW the instability spectra
resembles exactly Figs. 14(b) and 15(b), and thus emphasize
the system invariance corresponding to the constant nonlinear
factor.

To infer the influence of critical CCD in the instability
spectrum, we have plotted critical CCD as a function of system
parameters for both the conventional and the SNL case. As
in the previous case, a near linear variation of critical CCD
as a function of the system parameter is observed as shown
in Fig. 16. One can readily observe that the nature of the
curve is different from the anomalous dispersion case for both
the conventional and SNL system, however, the conventional
and SNL systems in the normal dispersion regime follow the
same pattern with a slight difference in the numerical value.
It is apparent from Fig. 16 that the magnitude of the critical
CCD, |κ1cr | decreases with an increase in P [Fig. 16(a)] and
γ [Fig. 16(c)] and increases with an increase in κ [Fig. 16(b)]
and β2 [Fig. 16(d)].

V. SUMMARY AND CONCLUSION

In summary, we have presented a theoretical investigation
of MI in the twin-core fiber with the effect of saturation of the
nonlinear response and coupling coefficient dispersion. The
equation is suitably modeled to account for the SNL and CCD,
thus the resulting equation can be used as a model equation
for the highly nonlinear fibers such as semiconductor doped
fibers, liquid core fibers, etc., An exact dispersion relation has
been arrived using linear stability analysis and the detailed MI
analysis is performed.

First, the symmetric or antisymmetric case is considered
and it is observed that CCD does not dramatically modify the
spectrum and SNL behaves in a perceptible manner such that
the gain and the unstable region decreases. Hence, our spotlight
is on the asymmetric case; first we studied the impact of various
system parameters such as power and coupling coefficient in
the instability spectrum. It is observed that with increase in
power (coupling coefficient) the gain of the instability band
increases (decreases) monotonously. For better insight, we
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have divided the operating power regime as Type I and Type II,
corresponding to input power below and above the saturation
power. To illustrate, the conventional Kerr-type nonlinear
response has also been considered alongside the SNL case. It
is observed that both the Kerr and SNL cases behave similarly
in the Type-I regime, but a slight decrease in the instability
gain and frequency is observed for SNL, owing to the inherent
depletion in the effective nonlinearity. On the other side of the
picture, the Type-II regime behaves in the opposite way such
that the increase in power above the saturation power leads to
the suppression of MI by decreasing the gain and the unstable
frequency window. To account for this interesting observation
we plotted various system parameters such as nonlinearity,
nonlinear factor, and power threshold for sustained CW as a
function of power. It can be inferred from Fig. 3 that the SNL
and Kerr cases play qualitatively in a different way under the
influence of power. For instance, the nonlinearity and Pmin

is found to be independent of input power in the Kerr case,
whereas both are functions of power in the SNL case. In
addition, the product of effective nonlinearity and power is
identified to be a crucial factor in all the observed effects and
we called it the nonlinear factor. It is evident from Fig. 3(b)
that the nonlinear factor increases monotonously for the Kerr
case and behaves in a unique manner in the SNL system. It is
observed that the nonlinear factor increases with an increase in
power in the Type-I regime and reaches a maximum at P = Ps ,
and additional increase in power takes to the Type-II regime
where the nonlinear factor progressively decreases. There exist
two powers corresponding to the same nonlinear factor and the
behavior of the system at the two respective powers is indeed
the same, that is, the physical quantities, like the MI gain and
the unstable frequency window, are preserved.

Following the detailed interpretation about the role of SNL
in the MI spectrum, the subsequent section was dedicated
to investigating the interplay between CCD and SNL in the
anomalous dispersion regime. CCD leads to the emergence
of a new spectral band; the number of bands, gain, and the
unstable window are all characteristics of the value of the CCD.
The saturation on the other hand inherently suppresses the
MI by depleting the effective nonlinear coefficient. Basically,
we consider two power schemes, one near and the other
far from Pmin. Along similar lines as Ref. [47] for the Kerr
case, the instability spectrum of the SNL case also differs
at the two power schemes. The interesting observation is the
existence of a critical CCD at which the system evolves in a
different manner. For better insight, the critical CCD is plotted
as a function of different system parameters such as power,
coupling coefficient, nonlinear coefficient, and dispersion
coefficient. A linear variation is observed for all the cases
(refer to Fig. 8). An interesting feature which we speculate as
unique in the system is the observation of system invariance
at two different powers. Irrespective of the power scheme, the
system remains invariant at two powers for the same nonlinear
factor and the two powers are identified to be in two regimes,

Type I and Type II, respectively. Furthermore, we extended the
study to the case of the normal dispersion regime; it is obvious
that MI generally is not feasible, however, the presence of
the nonzero coupling coefficient ensures the required phase
matching for MI. The behavior of MI in the normal dispersion
regime differs a great deal from the anomalous dispersion
case, such that two instability bands are observed against the
single band in the anomalous dispersion regime. However, as
in the anomalous case the gain of the SNL system is lesser than
the conventional counterpart. As power increases the Pmin, two
instability bands are observed and with an increase in power
two bands drift away from the center frequency and at higher
power only a single instability band survives. The coupling
coefficient on the other hand behaves similarly as the power,
such that any nonzero value of κ leads to two instability bands;
it is worth noting that the instability band vanishes when κ

equals zero, owing to the lack of phase matching for MI. The
interplay between CCD and SNL is observed to be nearly
the same as that of the anomalous dispersion case, except for
the change in the definition of the critical CCD. Similar to the
case of the anomalous dispersion regime, the system invariance
is observed at two different powers.

Overall, the study based on the incorporation of saturation
of the nonlinear response is interesting and offers a rich
variety of information as follows: (i) the observation of the
unique role of pump powers such that increasing power either
increases or decreases the MI gain relative to the saturation
power; (ii) the existence of two different powers for the
same value of nonlinear factor; and (iii) the observation of
the system invariance at two different powers. The above
results are interesting and can pave the way for the design and
development of twin-core fiber-based couplers, since one can
maneuver the different characteristics of the fibers by merely
tailoring the input power relative to the saturation power.
Particularly, the observed unique role of pump power in the
saturable system can revolutionize the dynamics of nonlinear
directional couplers in such systems and can be useful in
the ultrafast optical switching, power splitters, etc. Thus the
present paper with the aforementioned results featuring the
interplay between the SNL and CCD should be of good
scientific value and we hope that our theoretical results can
stimulate new experiments in the context of twin-core fibers.
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