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Strongly interacting bosons in multichromatic potentials supporting mobility edges: Localization,
quasi-condensation, and expansion dynamics
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We provide an account of the static and dynamic properties of hard-core bosons in a one-dimensional lattice
subject to a multichromatic quasiperiodic potential for which the single-particle spectrum has mobility edges. We
use the mapping from strongly interacting bosons to weakly interacting fermions and provide exact numerical
results for hard-core bosons in and out of equilibrium. In equilibrium, we find that the system behaves like a
quasi-condensate (insulator) depending on whether the Fermi surface of the corresponding fermionic system lies
in a spectral region where the single-particle states are delocalized (localized). We also study nonequilibrium
expansion dynamics of initially trapped bosons and demonstrate that the extent of partial localization is determined
by the single-particle spectrum.
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I. INTRODUCTION

The localization of quantum particles and waves in disor-
dered media has been a key theme common to several fields
of physics since Anderson’s prediction of the effect half a
century ago [1]. Among the different setups leading to local-
ization effects, quasiperiodic potentials with incommensurate
periods [2] provide a particularly attractive realization, as their
mathematical simplicity allows for various exact results. A
one-dimensional (1D) system subject to such a quasiperiodic
potential (Aubry-André potential [2]) has a localization tran-
sition at a finite value of the potential strength, in contrast
to a random potential, which in 1D causes localization at
infinitesimal strength. Recently, pioneering experiments have
explored the physics of bosons [3–6] and light [7,8] in such
potentials.

The single-particle spectrum acquires additional structure
upon modification of the quasiperiodic superlattice potentials,
e.g., when there are two superlattice potentials with different
wavelengths each incommensurate with the lattice, or by other
modifications of the basic Aubry-André (AA) potential [9–21].
In these cases, different energy regions of the single-particle
spectrum might become localized at different strengths of the
potential, so that at some strengths of the potential there are
both localized and delocalized eigenstates. Such a structure is
known as a mobility edge [9]. Mobility edges are well known to
exist in truly random potentials, but only in higher dimension.

The interplay between disorder and interactions is a promi-
nent theme in the study of strongly correlated systems. With
the realization of quasiperiodic potentials hosting bosonic
atoms [3–6], a natural question is the behavior of interacting
bosons in quasiperiodic potentials. References [22–43] have
studied tight-binding models with AA potential and nonzero
interactions. Some of these works [33–36,38] have used the
infinite-interaction or hard-core limit of the Bose-Hubbard
model, where multiple occupancies are disallowed. The hard-
core boson (HCB) model can be mapped onto free fermions,
allowing numerically exact calculations for relatively large
system sizes even in the absence of translation symmetry.
Ground-state, finite-temperature, and nonequilibrium proper-
ties of hard-core bosons in the AA potential have been analyzed
in some detail in these studies [33–36,38].

In this article, we address ground-state and nonequilibrium
properties of hard-core bosons in multichromatic quasiperi-
odic potentials (extended Aubry-André models) where the
single-particle spectrum displays mobility edges. Our main
result concerning equilibrium properties is a connection
between the behavior of the many-body system (insulating
or quasi-condensate) and the location of the Fermi energy
of the corresponding free-fermion system (which is the
chemical potential for both the corresponding free-fermion
system and for the HCB). The system acts like a quasi-
condensate (or insulator) when the chemical potential is in
an energy region where the single-particle states are extended
(or localized), irrespective of the nature of single-particle
states lying below the chemical potential. This phenomenon is
particularly puzzling in the case where the chemical potential
is in a localized region but there are filled extended states
at lower energies. One would expect superfluid properties
due to extended states being occupied. We demonstrate this
remarkable property, that the system behavior is determined
by the location of the chemical potential, through the study
of various quantities (quasi-condensate fraction scaling, off-
diagonal order, entanglement entropy, etc.).

We also study the dynamics after release of an initially
trapped cloud of hard-core bosons in multichromatic poten-
tials. Expansion of initially confined many-body systems in
potentials displaying mobility edges (higher-dimensional ran-
dom potential) has been explored recently in two experiments
[44,45], providing motivation for theoretical nonequilibrium
calculations such as ours (previous theoretical work involving
expansion dynamics in the presence of a mobility edge is
described in Ref. [46]).

We will start in Sec. II with a description of the model and
some single-particle properties of multichromatic potentials.
Section III presents various ground-state properties, highlight-
ing the connection to the position of the chemical potential.
Section IV discusses the nonequilibrium expansion dynamics.

II. MODEL AND METHOD

We consider a system of Nb hard-core bosonic atoms on a
chain with L sites and open boundary conditions, described
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by the Hamiltonian

H = −J
∑

n

(b†nbn+1 + b
†
n+1bn) +

∑

n

V (n)b†nbn, (1)

where bn and b
†
n are bosonic creation and annihilation

operators, [bn,b
†
n′ ] = δn,n′ . The hard-core constraint is imposed

through b2
n = b

†2
n = 0. We use several quasiperiodic potentials

V (n), specified below.
Such a hard-core bosonic system may be regarded as the

limit of the Bose-Hubbard model where the on-site Bose-
Hubbard interaction is much larger than all other energy scales
in the problem. This limit has the advantage of lending itself
to exact calculations, through mapping to a fermionic system
via the Jordan-Wigner (JW) transformation. Introducing the
fermionic operators cn (with {cn,c

†
n′ } = δn,n′ ), the mapping

bn = S(0,n − 1)cn, (2)

where S(n,n′) = ∏n′
j=n(1 − 2nj ) is the JW string operator,

reproduces the HCB commutation relations. After the JW
mapping the fermionic Hamiltonian can be obtained from
Eq. (1), replacing bn → cn. The bosonic one-body density
matrix

ρB
nn′ = 〈b†nbn′ 〉 (3)

can be computed from the fermionic one, ρF
nn′ = 〈c†ncn′ 〉, using

the approach described, e.g., in Ref. [47].
For uniform 1D bosons at zero temperature, the occupancy

of the lowest single-particle state (with momentum k = 0)
scales as nk=0 ∝ √

Nb. While Bose-Einstein condensation
(BEC) is not strictly present in 1D, the off-diagonal elements
of the density matrix still develop an algebraic decay ρB

nn′ ∝
1

|n−n′ |1/2 as |n − n′| → ∞ in the thermodynamic limit. In
spatially inhomogeneous situations, the quantity analogous
to nk=0 is the largest eigenvalue λ0 of the single-particle
density matrix. The eigenvalues are referred to as occupation
numbers of natural orbitals [47–49]. The natural orbitals are
the corresponding eigenvectors:

∑

j

ρB
ij �

n
j = λn�

n
j ,

with λ0 � λ1 � · · · . Quasi-condensation is signaled by the
behavior λ0 ∝ √

Nb. Since we are dealing with explicitly
nonuniform systems, we choose to use this language (rather
than momentum occupancies) in order to describe the presence
or absence of quasi-condensation.

We consider different types of quasiperiodic potentials. The
simplest is a single-frequency cosine periodic potential with an
irrational wave vector relative to the lattice spacing, generally
known as the Aubry-André (AA) potential [2]:

V (n) = V1 cos (2πq1xn) , q1 =
√

5 − 1

2
a−1. (4)

Here xn = an, with a being the lattice constant. The single-
particle eigenstates of the AA model are all localized for V1 >

2 and all extended for V1 < 2. In this paper we are interested
in extended Aubry-André models where the single-particle
spectra have more intricate structure, in particular mobility
edges. We introduce two potentials with two frequencies

(EAA-1,2):

V (n) = V1 cos (2πq1xn) + V2 cos (2πq2xn) . (5)

The first model (EEA-1) has the parameters

V2 = 1
6V1, q1 =

√
5 − 1

2
a−1, q2 = 3q1, (6)

and the other (EAA-2) has the parameters

V2 = 1
3V1, q1 = 0.7

2π
a−1, q2 = 2q1. (7)

We also consider another type of modification of the AA
potential (EEA’):

V (n) = V1 cos
(
2πq1x

αd

n

)
,

(8)

q1 =
√

5 − 1

2
a−1, αd = 0.7.

These models, EAA-1,2 [9,15] and EAA’ [12], are known
examples from a large class of extended Aubry-André models
whose single-particle spectrum possess mobility edges.

As a function of the ratio V1/J these models present the
same qualitative features: for small values of V1/J all the
single-particle eigenvectors are extended in real space, and for
large values of this ratio all the eigenstates are localized. For
an intermediate range of V1/J both localized and delocalized
eigenstates coexist. The single-particle spectrum is organized
in rather well defined regions corresponding to localized or
extended eigenvectors separated by sharply defined mobility
edges. The generic behavior of the localized-extended tran-
sition is illustrated in Fig. 1, where the inverse participation

AA

EAA’

IP
R

EAA − 1

EAA − 2

FIG. 1. Inverse participation ratio of all single-particle eigen-
states, for the Aubry-André (AA) model and for the extended models
EAA-1, EAA-2, and EAA’. Here i is the eigenstate index in order of
increasing eigenenergies. Except for AA, at intermediate potential
strengths V1 both localized and delocalized eigenstates coexist.
Mobility edges are observed as a function of energy as one crosses
boundaries between localized and extended regions.
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FIG. 2. (Color online) (left) Single-particle spectrum as a func-
tion of the quasiperiodic potential amplitude for the EAA-1 model.
The inset indicates IPR values. The localization-delocalization tran-
sition occurs where many eigenstates bunch together; this bunching
occurs at different V1 for different parts of the spectrum. (top
right) Some representative wave functions for V1 = 2.5J (mobility
edge region) for the states indicated with colored dots and the
corresponding numerical labels in the left panel. Both localized and
extended eigenfunctions are seen. (bottom right) Absolute value of
the localized wave functions is plotted in log-linear scale showing
that localization is exponential.

ratio (IPR) RI (ψ) =
∑

l |ψl |4
[
∑

l |ψl |2]2 is plotted for the single-particle
eigenstates of H . Note that for the AA model there are no
mobility edges in the spectrum; instead, the localized-extended
transition occurs for all eigenstates simultaneously for the
same value of V1/J . This nongeneric feature is due to
the self-duality of the model [2]. Figure 2 shows the single-
particle spectrum as a function of V1/J and illustrates the dif-
ference between (exponentially) localized and extended states.

Figure 1 illustrates that the models EAA-1, EAA-2, and
EAA’ present the same generic behavior. We therefore present
our results mainly for one of the models (EAA-1). The
expectation is that the concepts and results emerging from
this work are generically valid for any potential for which
the single-particle spectrum has mobility edges of this generic
type.

III. GROUND-STATE PROPERTIES

In this section we will present results characterizing the
ground-state properties of our system as a function of the
filling fraction ν = Nb/L. The energy of the last filled JW
fermionic level is the chemical potential of the system, μ (ν).
Our major result is that the system behaves like an insulator
or a quasi-condensate, depending on whether μ (ν) lies in an
energy region of localized or extended single-particle states,
which we will denote respectively by 
l and 
e.

In order to characterize the ground state we consider the
behavior of the natural orbital occupation, the characteristic
decay of the off-diagonal density matrix components, and
the entanglement entropy of a subsystem. For definiteness we
display results for the EEA-1 model with V1 = 5/2J , where
the single-particle spectrum has a well-defined intermediate
delocalized region (
e) separated by mobility edges from
higher- and lower-energy regions of localized states (
l).

ln
IP
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FIG. 3. (Color online) (bottom) Quasi-condensate fraction given
by λ0/

√
Nb as a function of the filling fraction ν = Nb/L. (V1 =

2.5J , EAA-1.) Quasi-condensation is observed when the chemical
potential μ (ν) lies in a spectral region with extended states (in this
case for ν around half filling, as seen from the top panel). Otherwise,
λ0/

√
Nb vanishes in the thermodynamic limit Nb → ∞. The lines

correspond to (from top to bottom) L = 200,300,500,600. (top)
Inverse participation ratio against eigenstate index.

When all the single-particle eigenstates are localized (1D
random potential or AA model with V1 > 2), λ0/

√
Nb → 0

[34,38], in contrast to the quasi-condensate behavior λ0 ∼√
Nb. In addition, in the localized (insulating) case, the

off-diagonal correlations decay exponentially ρB
nn′ ∝ e−|n−n′ |/ξ

[34,38], in contrast to the quasi-condensate behavior ρB
nn′ ∝

1
|n−n′ |1/2 . In the AA model the two behaviors are seen for V1 > 2
and V1 < 2 at any filling fraction [34]. We will show that
when the single-particle spectrum has mobility edges, either
behavior can appear, depending on the filling.

Figure 3 shows the rescaled lowest natural orbital oc-
cupation λ0/

√
Nb as a function of the filling fraction. The

finite-size scaling shows that if μ (ν) ∈ 
l , λ0/
√

Nb → 0 in
the thermodynamic limit, while λ0/

√
Nb approaches a finite

value for μ (ν) ∈ 
e.
The stark difference between the μ (ν) ∈ 
l and μ (ν) ∈ 
e

cases is also observed in the off-diagonal elements of the
averaged one-body density matrix ρ̄B(xj ) = 1

L

∑L
i |ρB

i,i+j |
(see Figs. 4 and 5). Here the average is taken to smoothen
oscillations introduced by the quasiperiodic potential. For
μ (ν) ∈ 
l the decay is exponential, ρ̄B (x) ∝ e−|x|/ξ , whereas
for μ (ν) ∈ 
e one observes an algebraic behavior, ρ̄B (x) ∝
|x|−α . We found the exponent α to be in the range α ∈ [0.5,0.7]
for our system sizes of O(103) for the EAA-1, EAA-2, and
EAA’ models. This is higher than in the bare tight-binding
lattice (V1 = 0) case, for which α = 1/2 [47]. It is currently not
known whether α would converge to 1/2 in the thermodynamic
limit in multichromatic potentials with fillings corresponding
to μ (ν) ∈ 
e.
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FIG. 4. (Color online) Decay of the off-diagonal elements of ρB

for three different filling fractions in (top) log-linear and (middle)
log-log scales. (V1 = 2.5J , EAA-1.) Data points are shown for three
different system sizes L to indicate the degree of convergence. The
straight lines are fits. For ν = 0.25 and 0.75 [μ (ν) ∈ 
l , no quasi-
condensation], the decay is seen to be exponential; ρ̄B (x) ∝ Ae−|x|/ξ .
For ν = 0.5 the decay is well approximated by the power law ρ̄B (x) ∝
a |x|−α , with α � 0.59. (bottom) The natural orbital occupations λn.
For ν = 0.25 and 0.75 the distribution is steplike. For ν = 0.5 it
diverges for n→0 in the thermodynamic limit. This can be seen in
the inset, where the black line corresponds to a divergence of the form
λn ∝ c (n/L)−κ , with κ � 0.3.

The occupation of the natural orbitals, displayed in Fig. 4
(bottom panel), shows that for μ (ν) ∈ 
l the distribution of λn

is steplike, contrasting with the smooth decay for the μ (ν) ∈

e case. Steplike features are usually assigned to fermionic
distributions. Here the natural orbitals are localized [38], and
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FIG. 5. (Color online) V1 = 2.5J , EAA-1. (a) Length scale ξ of
exponential decay of the off-diagonal elements of ρB , obtained by
fitting with an exponential form ρ̄B (x) ∝ e−|x|/ξ (see text). The error
bars are given by the fit to the numerical data. For the ν values where
quasi-condensation occurs, the behavior is algebraic (Fig. 4), and no
ξ values are shown. (b) Power-law exponent for off-diagonal decay
ρ̄B (x) ∝ |x|−α in the region where quasi-condensation is present.
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FIG. 6. (Color online) Ground-state entanglement entropy SD of
a subsystem D, averaged over the central position of the subsystem,
for various subsystem sizes LD; from the lowest to the highest line
in the center, LD = 10,50,100,250. (L = 1000.) For the ν values
where quasi-condensation does not occur [μ (ν) ∈ 
l], SD saturates
to a constant value with increasing LD . In the μ (ν) ∈ 
e region, SD

grows logarithmically with LD . A logarithmic fit (inset) shows that in
this region the coefficient c̃ approaches the value c = 1, which is the
exact result for the case where no quasiperiodic potential is present.

the bosons behave much like in a fermionic system as no
localized orbital can accommodate more than one HCB.

Another striking difference between the μ (ν) ∈ 
l and
μ (ν) ∈ 
e cases is observed in the behavior of λn at n → 0.
For μ (ν) ∈ 
e one observes a divergence λn ∝ (n/L)−κ . For
the example displayed in Fig. 4, κ � 0.3. However, this expo-
nent does depend on ν and on the specific model of disorder
and can even be larger than the value κ = 1/2 obtained for
V1,2 = 0. For μ (ν) ∈ 
l no divergence is observed.

Finally, in Fig. 6 we consider scaling of the GS entangle-
ment entropy of a subsystem D as a function of the subsystem
size LD . The entanglement entropy is defined as SD =
−TrD[ρ̂D ln ρ̂D], where ρ̂D = TrD̄ [ρ̂] and ρ̂ = |0〉〈0| are
many-body density matrices and TrD (TrD̄) denotes the trace
over the degrees of freedom in D (in the complement of D). For
HCB the expression for the entanglement entropy simplifies
[50] to SD = −∑

i νi ln νi + (1 − νi) ln(1 − νi), where νi are
the eigenvalues of the two-body density matrix of the JW
fermions restricted to the subsystem D, ρF

ij , with i,j ∈ D.
For μ (ν) ∈ 
l , SD saturates as LD → ∞. However, for
μ (ν) ∈ 
e it behaves as SD � c̃

3 ln LD for large subsystem
sizes LD with a prefactor c̃ � 1. This represents the well-
known logarithmic correction to the “area law” in gapless
one-dimensional systems [50,51], with the prefactor given by
the central charge c = 1 in this case. Once again, the bosonic
system behaves like a gapless quasicondensate or like a gapped
insulator depending on the location of the “Fermi energy” of
the corresponding free-fermion system.
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IV. EXPANSION DYNAMICS

In this section we address the non-equilibrium expansion
dynamics of an initially trapped cloud of bosons after the
trapping potential is turned off at time t = 0, using standard
methods for the dynamics as described in Ref. [52]. The
motivation for studying this type of dynamical protocol is that
expansion dynamics is particularly sensitive to the localization
properties of the underlying single-particle states: particles
will mostly fly off or mostly remain in the initial region
depending on whether the initial overlap is dominantly with
extended or localized single-particle states. This type of
physics has also been explored in two recent experiments,
which use higher-dimensional disordered potentials having
mobility edges [44,45].

The initial state (t < 0) is the ground state of the Hamilto-
nian (1) with an added harmonic trapping potential, i.e.,

H (t) = H + �(−t)
∑

n

W (n)b†nbn (9)

where �(...) is the Heaviside step function and

W (n) = W (xn − xn0 )2, (10)

n0 being a site near the center of the chain. We monitor the
cloud size σ (t) = [〈x̂2

i (t)〉 − 〈x̂i(t)〉2]1/2 and the fraction of
localized atoms Nloc(t)/Nb as a function of time. Here, Nloc(t)
is defined as the number of atoms remaining in the support S

of the initial density distribution, S = {i : 〈n̂i(t = 0)〉 �= 0}.
In the presence of a trapping potential and for V1,2 = 0,

a single dimensionless parameter ρ̃ = Nb

√
W/J controls

the behavior of the atomic density in the large-Nb limit
[47]. This means that ρB

nn → g(nρ̃/Nb; ρ̃)/Nb as Nb → ∞,
where g (y; ρ̃) is the normalized density distribution. For
ρ̃ � 2.6 − 2.7 a Mott insulator region builds up in the middle
of the trap, where the density is pinned to unity.

As in the last section we focus on the model EAA-1. We
study the dynamics for different values of V1 and ρ̃. We
separate the case ρ̃ → ∞, for which a simple interpretation of
the results can be given, from the finite ρ̃ that leads to more
complex dynamics.

A. Large ρ̃

We start by addressing the large ρ̃ limit where, in the initial
density distribution, all the atoms are in the Mott phase. In
other words, in the initial state a central block of the chain
is completely filled while the rest of the chain is empty.
Figure 7(a) shows snapshots of the time evolution of the initial
density profile (left panel) for different values of V1.

Figures 7(b) and 7(c) display the time evolution of the cloud
size and the fraction of localized particles. For V1 � 3.8J ,
σ (t) ∝ v t (for t → ∞), which means that at least some part
of the cloud spreads ballistically. The spreading velocity v is
a decreasing function of V1. The threshold value V1 � 3.8t is
that above which there are no more extended eigenstates in the
spectrum, as can be seen from Fig. 1(b). For V1 � 3.8J , σ (t)
saturates and the width of the cloud remains bounded for large
times.
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FIG. 7. (Color online) (a) Expansion dynamics of bosons initially
clustered in the center of the lattice, as shown in the top left panel.
(Nb = 100, L = 1000.) In the other panels in (a), the density profile
at t = 500J −1 is shown for V1 = 1J , 2.5J , and 4J (extended,
mobility-edge, and localized regimes). (b) Root-mean-square width
of the expanding cloud. When there is a fraction of extended states,
because they have a nonzero overlap with the initial state, the
evolution is always ballistic for large times σ (t) ∝ v t ; nevertheless,
the prefactor v gets smaller with increasing V1 as the fraction of
localized eigenstates increases. When all the single-particle states
are localized, the cloud width saturates for large times. From top to
bottom, V1/J increases. (c) Time evolution of the number of bosons
in the central region S (see text). The dashed lines give the fraction
of delocalized eigenstates in the single-particle spectrum. From top
to bottom, V1/J decreases.

From Fig. 7(c) one can see that, at long times, the fraction
of particles that remain within the region S is given by the
fraction of extended states in the spectrum (horizontal dotted
lines). This may be understood by considering the evolution in
the eigenbasis of the non-trapped Hamiltonian (Wn = 0) with
which the system evolves for t > 0. In the asymptotic long time
limit the fraction of delocalized atoms is proportional to the
overlap of the initial state with the extended eigenstates of the
non-trapped Hamiltonian. If the number of initially occupied
sites is not too small, the initial state has approximately an
equal overlap with all localized and extended eigenstates.
The fraction of particles localized in S should thus equal the
fraction of extended eigenstates in the spectrum.

B. Arbitrary ρ̃

Next, we address the time evolution starting from the
ground state of a harmonic trapping potential characterized by
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FIG. 8. (Color online) The main panel shows the fraction of
bosons remaining localized for asymptotically long times after
switching off the trapping potential, as a function of parameter ρ̃.
(L = 2000, EAA-1, various V1 and Nb.) For large ρ̃ the asymptotic
value is given by the fraction of delocalized eigenstates in the
spectrum (horizontal dashed lines). For small ρ̃ all the bosons remain
localized after releasing the trap. The inset displays the IPR (as in
Fig. 1); the colored lines correspond to the values of V1/J of the main
panel. The leftmost line in the inset corresponds to the lowest line in
the main plot; the second from the left in the inset corresponds to the
second, third, and fourth lowest lines in the main plot; the third from
the left in the inset corresponds to the fifth, sixth, and seventh lines
in the main plot; and the rightmost line in the inset corresponds to
the top line in the main plot. The top panels display the initial density
profile for V1/J = 0 [blue (dark gray)] and for V1/J = 1 (light gray)
for different values of ρ̃.

a finite value of ρ̃. Figure 8 shows the asymptotic long-time
value of the fraction of atoms localized in S as a function
of ρ̃ for different values of V1 and for Nb = 25,50,100.
The convergence of our results for increasing Nb shows that
the physics of the large-Nb limit is well-represented in our
numerical simulations and also that, for these Nb values, effects
of the location of the quasiperiodic potential is sufficiently
averaged over.

For ρ̃ = 0 (no trap) and V1 � 1.2J all the atoms are
localized as the ground state is obtained by filling the first Nb

single-particle levels, which are all localized for the EAA-1
potential in this filling region. For small ρ̃ (very shallow trap)
one can still find Nb localized single-particle eigenstates within

the trapping length � = Nba/ρ̃. This explains why all bosons
remain localized for small but nonzero values of ρ̃.

However, as ρ̃ increases, the number of localized states
available within a region of size � starts to be smaller than Nb

and the overlap with delocalized states is then finite. For large
ρ̃ the results of the last section are recovered and the fraction
of localized atoms equals the fraction of localized states in the
spectrum.

V. SUMMARY AND DISCUSSION

We have presented a study of a strongly interacting
many-boson system in extended Aubry-André models for
which the single-particle spectrum displays mobility edges,
i.e., in situations where both extended and localized states
are present in regions (
e and 
l) of the single-particle
spectrum. The bosonic system was treated by mapping to
free fermions, so that numerically exact calculations are
possible for relatively large systems. We have shown through
non-equilibrium calculations that expansion dynamics can be
used as a probe of the sizes of 
e and 
l regions in the
single-particle spectrum.

For ground-state properties, the most striking result is
that the properties of the many-body system (insulating or
quasi-condensate) is determined solely by the location of
the chemical potential μ(ν), which has the interpretation of
being the Fermi energy of the corresponding free-fermion
system. We have illustrated this by taking a representative
model where, in a range of potential strengths, increasing the
filling fraction ν takes the chemical potential from a μ (ν) ∈ 
l

region at low densities, through a region of μ (ν) ∈ 
e region
at intermediate ν, to a μ (ν) ∈ 
l region at high densities. For
different fillings ν, we presented the occupations of natural
orbitals (λn, particularly the quasi-condensate occupancy
λ0), the off-diagonal decay of the single-particle bosonic
density matrix, and the entanglement entropy scaling. These
observables all show characteristics of gapped insulators in
fillings for which μ (ν) ∈ 
l , and show characteristics of
gapless quasi-condensates at ν values for which μ (ν) ∈ 
e.

At present we lack a simple explanation for this result that
the location (relative to regions of the single-particle spectrum)
of the Fermi surface of the corresponding free-fermion system
determines off-diagonal properties of strongly interacting
bosons. While properties of fermionic systems are often
described by features near the Fermi surface, the properties
we have shown are bosonic rather than fermionic. Also, it is
rather unintuitive that, when μ (ν) ∈ 
l , no quasi-condensate
properties are seen even if a sizable fraction of Jordan-Wigner
fermions occupy extended states.

Reference [53] has observed, for another case (free
fermions in disordered 2D Chern insulators) where the
single-particle states has different natures in different parts
of the spectrum, that certain properties depend solely on
the nature of the eigenstates at the location of the Fermi
surface. This loosely similar observation in a very different
context suggests that the situation is generic for systems where
the single-particle spectrum contains regions of different
nature.

These results open up several questions that deserve to be
addressed in future research. Most prominently, one would
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like to know if this dependence on the location of the filling
fraction extends far beyond the hard-core limit for bosons
with strong but finite interactions (e.g., Bose-Hubbard chain
with finite U ). This would be particularly intriguing because
such a system does not map exactly to free fermions, so
that a simple picture of filling up the Fermi sea does not
hold. More speculatively, one might also wonder if bosons
in higher dimensional lattices with mobility edges also have

properties determined solely by the location of the chemical
potential, since in higher dimensions there is no connection
to a fermionic picture. Another interesting direction would
be to study finite-temperature properties. Finite temperatures
might allow the system to explore the 
l(e) region even when
the chemical potential is in the 
e(l) region, if the chemical
potential is sufficiently close to a mobility edge separating the
two regions.
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