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The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-
Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature
local pair correlations for the strong-coupling Bose gas at quantum criticality using the polylog function in the
framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal
value g(2)(0) ≈ 2p/(nε) in the quantum critical regime, the TLL phase, and the quasiclassical region, where
p is the pressure per unit length rescaled by the interaction energy ε = h̄2

2m
c2 with interaction strength c and

linear density n. This suggests the possibility to test finite temperature local pair correlations for the TLL in the
relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase.
Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial
expansion of the Yang-Yang thermodynamic equation.
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I. INTRODUCTION

Advances in the trapping and cooling of atoms in optical
waveguides have opened up exciting possibilities for testing
theory in low-dimensional quantum systems. Observed results
to date are seen to be in excellent agreement with results
obtained using the mathematical methods and analysis of
exactly solved models [1–3]. These include the remarkable
experimental realization of the Tonks-Girardeau gas [4–6], the
super Tonks-Girardeau gas [7], Yang-Yang thermodynamics
on an atom chip [8], and the phase diagram of the attractive
Fermi gas [9]. Such exquisite tunability with tightly confined
ultracold atoms provides unprecedented opportunities for im-
proving our understanding of novel quantum phenomena such
as quantum criticality, universal scaling theory, spin-charge
separation and Tomonaga-Luttinger liquid (TLL) physics.

The one-dimensional (1D) delta-function interacting Lieb-
Liniger Bose gas [1] is a many-body system solved exactly by
the Bethe ansatz hypothesis. It has had a tremendous impact
as an archetypical system in quantum statistical mechanics
[10]. It’s R matrix [11] provides the simplest solution of the
Yang-Baxter equation [12]. Yang and Yang [13] showed that
the thermodynamics of Lieb-Liniger bosons can be determined
from the minimization of the Gibbs free energy subject
to the Bethe ansatz equations [14,15]. This thermodynamic
Bethe ansatz (TBA) method has been extended to a wide
range of 1D quantum many-body systems [15]. In particular,
Yang-Yang thermodynamics is fundamental to the Y system
which has emerged as a ubiquitous integrable structure in
mathematical physics [16]. In the present context, it provides
the framework to study thermodynamics, quantum criticality,
and TLL physics. The equation of state for Lieb-Liniger bosons
has been obtained [17] analytically for strong coupling and low
temperature in terms of the polylog function. The expression

for the equation of state in this regime enables the exploration
of TLL physics and quantum criticality in this system.

In a recent experiment [18], thermal fluctuations were
studied in a highly elongated weakly interacting Bose gas
at high temperatures, where the quantum fluctuations are
strongly suppressed. In this regime, the measured thermal
fluctuations are in good agreement with the exact Yang-Yang
thermodynamics. However, at quantum criticality, where the
temperature is very low and interaction is very strong, quantum
fluctuations are strongly enhanced. Towards the quantum
critical regime, phonon fluctuations have been observed in
the regime where the temperature is less than the chemical
potential [19]. It is of particular interest to understand quantum
correlations and fluctuations at quantum criticality. A finite
temperature quantum phase transition does not exist in the 1D
Lieb-Liniger Bose gas. However, there is a critical point in
the grand canonical ensemble, when the chemical potential
μc = 0, which separates the vacuum from a filled “Fermi sea”
of particles at zero temperature. At finite temperatures, a TLL
with relativistic dispersions can be sustained in a region of
the T -μ plane. This implies that for temperatures below a
crossover value T ∗, the low-lying excitations have a linear
relativistic dispersion relation. If the temperature exceeds this
crossover value, the excitations involve free quasiparticles
with nonrelativistic dispersion. This crossover temperature
can be identified from the breakdown of linear temperature-
dependent entropy (see Fig. 1). In this phase diagram, quantum
criticality is in the regime where t = kBT /( h̄2

2m
c2) is small, but

kBT > |μ − μc|, or for the temperature below the degenerate
temperature kBT < h̄2

2m
n2. Here kB is the Boltzmann constant.

The local two-body (pair) correlations have been analyt-
ically calculated for a few limiting cases at T = 0 [20] and
at finite temperatures for the TLL phase from the Yang-Yang
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FIG. 1. (Color online) Quantum phase diagram of Lieb-Liniger
bosons. The plot shows the dimensionless entropy in the T -μ plane
obtained from the Yang-Yang thermodynamics (3), with ε0 = h̄2

2m
c2. A

crossover temperature separates the TLL critical phase with dynamic
exponent z = 1 and correlation length exponent ν = 1 from the
quantum critical regime (QC) with exponents z = 2 and ν = 1/2 near
the critical point μc = 0. Another crossover temperature separates the
quasiclassical gas from the quantum critical regime. The red dashed
lines indicate the values of the dimensionless coupling strength γ .

thermodynamic equations [21–25]. However, the local pair
correlations have not been derived in the quantum critical
regime. Moreover, it is very interesting to find an intrinsic
relation between the local pair correlation and the equation of
state. In principle, the Yang-Yang thermodynamic equations
enable the numerical calculation of the local pair correlations
in the whole parameter space. The local pair correlations are
related to the universal contact which measures the probability
of two bosons (or two fermions with opposite spins) at the same
position [26–28].

In the present paper, we calculate the local pair correlations
of Lieb-Liniger bosons in analytic fashion from the Yang-Yang
thermodynamic equations using the polylog function in order
to understand universal features of quantum fluctuations and
critical phenomena in an archetypical quantum system. The
local pair correlation is discussed in the T -μ phase diagram in
terms of quantum criticality. In addition, a high-temperature
expansion of the Yang-Yang thermodynamic equations is ob-
tained in the strong-coupling regime. This allows one to extract
the contributions from quantum and thermal fluctuations to the
classical Boltzmann gas at high temperatures.

II. MODEL AND EQUATION OF STATE

The Hamiltonian

H = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ g1D

∑
1�i<j�N

δ(xi − xj ) (1)

of the Lieb-Liniger Bose gas [1] describes N spinless bosons
with mass m constrained by periodic boundary conditions on a
line of length L. The contact interactions are governed by the

effective 1D coupling constant g1D = −2h̄2/(ma1D), where
a1D = (−a2

⊥/2as)[1 − C(as/a⊥)] is the 1D scattering length
with a⊥ = √

2h̄/mω⊥ and the numerical constant C ≈ 1.4603
[29]. The dimensionless interaction strength is defined by γ =
c/n with c = −2/a1D, where n = N/L is the linear density.
The interaction strength can be controlled by tuning either ω⊥
or as in experiments.

In describing the thermodynamics of the model the key
quantity is the dressed energy

ε(k) = T ln[ρh(k)/ρ(k)] (2)

which plays the role of excitation energy measured from the
energy level ε(kF) = 0, where kF is the Fermi-like momentum.
The thermodynamics of the model in equilibrium follows from
the Yang-Yang equation [13]

ε(k) = ε0(k) − μ − T

∫ ∞

−∞
dq a2(k − q) ln(1 + e−ε(q)/T ),

(3)

where ε0(k) = h̄2

2m
k2 is the bare dispersion, μ is the chemical

potential, and

a2(x) = 1

2π

2c

c2 + x2
. (4)

The pressure p(T ) and the free energy F (T ) are given in
terms of the dressed energy by

p(T ) = T

2π

∫ ∞

−∞
dk ln(1 + e−ε(k)/T ), (5)

F (T ) = μn − T

2π

∫ ∞

−∞
dk ln(1 + e−ε(k)/T ). (6)

The pressure of the strongly coupled gas at finite tempera-
tures has been obtained from (3) in the form [17]

p ≈ −
√

m

2πh̄2 T 3/2 Li3/2(−eA/T )

[
1 − p

h̄2c3/(2m)

]
, (7)

where Lis is the standard polylog function and

A = μ + 2 p(T )

c
+ 1

2
√

πc3

T 5/2(
h̄2

2m

)3/2 Li5/2(−eA0/T ). (8)

Furthermore, the Yang-Yang equation (3) can be expanded
in powers of the dimensionless temperature t = kBT /ε0

with ε0 = ( h̄2

2m
c2). Thus from (7) the dimensionless pressure

p̃ = p/(ε0c) at finite temperatures follows as

p̃ ≈ − t3/2

2
√

π
Li3/2(−eÃ/t )

[
1 + t3/2

2
√

π
Li3/2(−eÃ/t )

]
(9)

with

Ã = μ̃ − t3/2

√
π

Li3/2(−eÃ0/t ) + t5/2

2
√

π
Li5/2(−eÃ0/t ) (10)

and

Ã0 = μ̃ − t√
π

Li3/2(−eμ̃/t ). (11)

The result (9) is essentially a high-precision equation of
state for Lieb-Liniger bosons at quantum criticality. We will
verify that it is also valid for the high-temperature regime
as long as kBT � ε. Recalling the phase diagram Fig. 1,
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the density and the compressibility can be cast into universal
scaling forms [17,30–33]

n(T ,μ) − n0(T ,μ) ≈ t (d/z)+1−(1/νz)F
(

μ − μc

t1/νz

)
, (12)

κ(T ,μ) − κ0(T ,μ) ≈ t (d/z)+1−(2/νz)Q
(

μ − μc

t1/νz

)
(13)

near the quantum critical point μc = 0. Here the dynamic
exponent z = 2 and the correlation length exponent ν = 1/2
with the scaling functions given by

F(x) = − c

2
√

π
Li1/2(−ex), (14)

Q(x) = − c

2ε
√

π
Li−1/2(−ex) (15)

for t > |μ − μc| in dimensionless units. The background
density and compressibility in the vacuum are zero, i.e.,
n0(t,μ) = κ0(t,μ) = 0. These analytical results provide in-
sight into quantum fluctuations near the quantum critical point.
We will further demonstrate that the finite temperature local
pair correlations shed light on quantum critical behavior.

The thermodynamic Bethe ansatz equations (3) provide
a grand canonical description of the system (1), where the
chemical potential is fixed. Usually, the Lieb-Liniger gas is
discussed in the canonical ensemble, i.e., the particle number
is fixed.

In fact, the thermodynamics of a canonical ensemble can
be determined from the standard thermodynamic relation n =
(∂p/∂μ), where the pressure per unit length is given by (5).

However, in an experiment the quantum gas with fixed
number of particles is usually trapped by an external harmonic
potential. The trapped density varies smoothly along the axial
direction, with the density distribution read off from the local
density function n(x).

Each infinitely small interval around n(x) can be reviewed
as a grand canonical ensemble of the 1D integrable system.
At equilibrium, the thermodynamics of each interval requests
de(x) = −pdL + μdN . Through minimization of the total
energy of the gas trapped in the external potential E =∫

e(x)dx + ∫
n(x)V (x)dx, one can obtain the thermodynamic

condition for equilibrium [34]

μ + V (x) + λ = 0 (16)

with V (x) the external trapping potential and λ the Lagrange
multiplier. This equilibrium condition is nothing but the local
density approximation. For the Bose gas in a 1D harmonic
trap, we thus obtain its density distribution from the equation
of state within local density approximation [35,36].

Within the local density approximation, the chemical
potentials in the equation of state (7) as well as in the TBA
equations (3) are replaced by the local chemical potentials
given by

μ(x) = μ(0) − V (x). (17)

Here the external potential is defined as V (x) = mω2x2/2
with harmonic frequency ω and the characteristic length for
the harmonic trap is a = √

h̄/mω. In this setting, Eq. (17) can
be alternatively written as

μ(y)/ε0 = μ(0)/ε0 − y2 (18)

FIG. 2. (Color online) The density n vs normalized position at
different temperatures for fixing Na2

1D/a2 = 1. The intersection point
maps out the zero-temperature critical point at which the phase
transition from the vacuum to the filled Bose gas occurs in the
harmonic trap. Here t = T/ε0.

in which the dimensionless coordinate y = x/(a2c). In terms
of dimensionless units, the dimensionless density n/c can be
obtained for fixed dimensionless chemical potential μ/ε0. The
total particle number N is obtained from the relation

Na2
1D

a2
= 4

∫ ∞

−∞
n(y)/c dy (19)

with the 1D scattering length a1D = −2/c. For fixed value of
trapping center chemical potential μ(0)/ε0, we may determine
the value Na2

1D/a2.
In turn, for different values of Na2

1D/a2, i.e., for fixed
particle number, the thermodynamic properties can be mapped
out through the density profiles of the trapped gas at finite
temperatures. E.g., in Fig. 2, we show the scaled density dis-
tributions of bosons in the harmonic trap for Na2

1D/a2 = 1 at
different temperatures. It is clearly seen that the density curves
at different temperatures intersect at a common point. We read
off the dynamic exponent z = 2 and the correlation length
exponent ν = 1/2 from the universal scaling function (12)
within the local density approximation.

III. LOCAL PAIR CORRELATIONS

The general calculation of correlation functions in quantum
many-body systems is a notoriously difficult problem, even
more so at finite temperature [14]. Fortunately the two-particle
local pair correlation g(2)(0) can be calculated relatively easily
from the free energy. In the grand canonical description, the
Hellmann-Feynman theorem gives

g(2)(0) := 〈††〉 = 2m

h̄2n

(
∂f

∂c

)
n,t

, (20)

where f = μ − p/n is the free energy per particle. For
constant n the local pair correlations require the calculation
of the derivatives ∂μ/∂c and ∂p/∂c, which can be done by
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iteration. Using the result (7) we find

∂p

∂c
≈ −

√
mT

2πh̄2 Li3/2(−eA/T )

[
1 − 2p

h̄2c3/(2m)

]
∂A

∂c
, (21)

where ∂A/∂c can be calculated from (10) by iteration. The
calculation of ∂μ/∂c is cumbersome. To this end, we first find
the explicit form of the density n = ∂p/∂μ and then take the
derivative with respective to c. After a lengthy iteration, we
find

∂μ

∂c
≈−

√
2m

πh̄2

T 3/2

c2

{
Li1/2(−eA/T )2

Li−1/2(−eA/T )

×
[
1 + 1

c

√
2mT

πh̄2 Li1/2(−eA/T ) − 6mT

c2πh̄2 Li1/2(−eA/T )2

]

+ Li3/2(−eA/T )

[
1 − 12mT

c2πh̄2 Li1/2(−eA/T )2

]}
. (22)

Finally, from expressions (21) and (22), we obtain the local
pair correlations in the form

g(2)(0) ≈ −γ t3/2

√
π

Li3/2(−eÃ/t )

[
1 − 11t

π
Li1/2(−eÃ/t )

]
, (23)

where Ã is given by (10).
We note that the local pair correlations satisfy a simple

relation

g(2)(0) = 2p

nε
+ O

(
1

γ 4

)
, (24)

where t is small. It turns out that this simple looking result
not only holds for the quantum critical regime, but also for the
TLL phase and the ground state at T = 0. In this sense it is
a universal relation. The low-temperature local correlation for
the TLL phase follows from (24) as

g(2)(0) = 4π2

3γ 2

[
1 − 6

γ
+ T 2

4π2
(

h̄2

2m
n2

)2

]
+ O

(
1

γ 4

)
, (25)

which coincides with the result given in [21–24].
Figure 3 shows a plot of the local pair correlations obtained

from (23) in comparison with the numerical result. The

FIG. 3. (Color online) Local pair correlation g(2)(0) at low
temperatures in the t-μ plane. The black lines denote the crossover
temperature separating the TLL phase from the quantum critical
regime (CR) and the vacuum (V) from the quantum critical
regime (CR).

FIG. 4. (Color online) Local pair correlation g(2)(0) vs chemical
potential at quantum criticality. The correlation function g(2)(0) at
different temperature values shows good agreement between the
analytical relation (24) and the numerical result obtained from the
TBA equation (3).

crossover temperatures, which separate the quantum critical
regime from the TLL, are determined by the breakdown of
the TLL with the local correlation (25). The crossover line
is consistent with the phase diagram Fig. 1. The TLL phase
persists below the crossover temperatures, where both results
(24) and (25) coincide (see Fig. 3). This represents a smooth
crossover from the relativistic TLL regime to the regime
governed by a nonrelativistic dispersion relation. The local
correlations increase as the chemical potential becomes large
and positive because of the decrease of the interaction. The
temperature enhances the local pair correlations (see Fig. 4).
We see clearly that the local correlations (24) cover the quan-
tum critical region, the TLL phase, and ground state at T = 0.

For nonzero temperature, the vacuum can be taken
as a semiclassical gas regime, where the particle density
n ∼ 1

λ
e−|μ|/T with thermal wavelength λ−1 =

√
mkBT/2πh̄2,

which is much smaller than the mean distance between two
particles. The local pair correlation tends to zero. We see that
the relation (24) between the local correlations and pressure
holds in the physical regime as long as the temperature is below
the degenerate temperature and T � h̄2

2m
c2. Near the critical

point μc = 0, the density is very low, therefore the interaction
is strong and sits in the Tonks-Giraradau regime. At high
temperatures, this crossover disappears due to suppression of
the quantum fluctuations. At high temperatures, the chemical
potential becomes more negative. We consider this limit in the
next section.

IV. HIGH-TEMPERATURE EXPANSION

The recent measurements [18] on thermal fluctuations in
the 1D Bose gas were carried out in the weak-coupling and
high-temperature regimes. The variance of atom number 〈δN2〉
in a volume � can be evaluated as [18]

〈δN2〉 = �kBT

(
∂n(μ,T )

∂μ

)
T

, (26)
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where the local density n(μ,T ) can be determined from the
equation of state in the thermodynamic limit. In particular,
Armijo [19] has recently observed the quantum phonon
fluctuations in the 1D Bose gas using in situ absorption
imaging and statistical analysis of the density profiles. This
opens up further study of quantum vacuum fluctuations in a
finite Lieb-Liniger Bose gas.

Here we first consider the equation of state of this system
at high temperatures and in strong-coupling regimes. At high
temperatures, the TBA equation (3) can be expanded in an
appropriate form. For convenience, we define the function
η(k) = eε(k)/T and the inverse temperature parameter α =
h̄2c2/(2mT ). The TBA equation (3) can then be written

η−1(k) = xk exp

{∫ ∞

−∞
dq a2(k − q) ln[1 + η−1(q)]

}
, (27)

where xk = e[μ−ε0(k)]/T � 1 at high temperatures. We carry
out an expansion of this equation in powers of Z = eμ/T � 1
as T → ∞. Collecting the first few terms, we have

η−1(k) ≈ xk(1 + B1Z + B2Z
2 + B3Z

3) + O(Z5), (28)

where the coefficients Bi , for finite α, are given by

B1 = c

(c2 + k2)
√

απ
,

B2 = 1

(c2 + k2)απ
+ c2

2(c2 + k2)2απ
− c

2
√

2(c2 + k2)
√

απ
,

B3 = c

(c2 + k2)2(απ )3/2
+ c3

6(c2 + k2)3(απ )3/2

− 1√
2(c2 + k2)απ

− c2

2
√

2(c2 + k2)2απ
. (29)

Using the expansion (28) gives the pressure (5) in the
asymptotic form

p =
√

m

2πh̄2 T −3/2Z[1 + f1Z + f2Z
2 + f3Z

3] +O(Z5), (30)

with

f1 = eα[1 − Erf(
√

α)] − 1

2
√

2
,

f2 = eα[1 − Erf(
√

α)]

(
5

4
√

πα
−

√
α

2
√

π
− 1

2
√

2

)

− e2α[1 − Erf(
√

2α)] + 1

2π
+ 1

3
√

3
,

f3 = 9

8π3/2
√

α
−

√
α

12π3/2
− 1

2
√

2π
−

√
2

π

+ eα[1 − Erf(
√

α)]

(
1

2π3/2α
− 11 − α

12π
+ 1

16πα

− 5

4
√

2πα
+

√
α

2
√

2π
+ 1

3
√

3

)

+ e2α[1 − Erf(
√

2α)]

(
1

2
√

2
− 3

2
√

πα
− 2

√
α√
π

)

+ e3α[1 − Erf(
√

3α)], (31)

where Erf(x) is the standard error function.

The TBA results reduce to several limiting cases. The
pressure pc of the classical Boltzmann gas

pc =
√

m

2πh̄2 T −3/2eμ/T (32)

follows in the limit T → ∞. The pressure of the ideal Fermi
gas

p = −
√

m

2πh̄2 T 3/2 Li3/2(−eμ/T ) (33)

is obtained in the limit c → ∞. Similarly the pressure of the
ideal Bose gas

p =
√

m

2πh̄2 T 3/2 Li3/2(eμ/T ) (34)

follows in the limit c → 0.
In the high-temperature limit, the chemical potential tends

to negative infinity. In this region, far away from criticality,
the pressure (7) given in terms of the polylog function and the
high-temperature expansion result (30) are highly accurate for
α > 5 (see Fig. 5). The polylog function result (7) gives a better
fit with the numerical result obtained from the TBA (3) even
for large values of kBT /μ. At high temperatures, although
the thermal fluctuations dominate, the quantum statistics
are still microscopically significant. The quantum statistical
effect is evidenced from changing the value of α, which can
be controlled in current experiments [18,19]. In the Tonks-
Girardeau limit α → ∞ the gas approaches free fermions. For
small values of α, i.e., in the weak-coupling region, we see the
pressure (30) obtained from the high-temperature expansion is
consistent with the numerical result at high temperatures (see
Fig. 5). But as expected, the result (30) is no longer accurate
for α � 1.

In the weak-coupling limit and at high temperatures it is
more practical to consider a virial expansion with the TBA
equation (3), i.e.,

p

√
2πh̄2

m
T 3/2 = Li3/2(Z) +

√
2 p2Z

2 + O(Z3) (35)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.92

0.94

0.96

0.98

1

−k
B
T/μ

P
re

ss
ur

e 
P

/P
c

Numerical α=5
High−T expansion α=5
Polylog α=5
Numerical α=15
High−T expansion α=15
Polylog α=15
Classical gas
Ideal fermi gas

FIG. 5. (Color online) The ratio of the pressure p/pc vs kBT /μ

at high temperatures for α = 5 and 15. Here pc is the pressure of the
classical Boltzmann gas. High accuracy of the pressure (7) is seen for
−∞ < kBT/μ < 1. At high temperatures both pressure (7) obtained
from the polylog formalism and the one (30) obtained from high-
temperature expansion are accurate by comparing with the numerical
result from the TBA equation (3). The polylog formalism is also valid
at low temperatures as long as α � 1.
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Free bose gas

FIG. 6. (Color online) Comparison between different values for
the pressure p/pc vs kBT /μ at high temperatures for α = 0.1,0.2,1.0.
For small values of α, the pressure (35) obtained from the virial
expansion is in good agreement with the result obtained from the
numerical solution of the TBA equation (3).

with Z = exp(μ/T ). The first term in the right-hand side of
this equation comes from free bosons and

p2 = −1

2
− exp(α2/2)

2
[−1 + Erf(

√
α/2)] (36)

contributes to the second virial coefficient. From the compar-
ison shown in Fig. 6, we see clearly that the pressure obtained
from the virial expansion gives a high-precision equation of
state for α < 1. This result is valid for the experimental setting
with α < 1 [18,19].

V. CONCLUSION AND DISCUSSION

In conclusion, we have studied finite temperature local
pair correlations of the Lieb-Liniger Bose gas at quantum
criticality. A simple relation (24) between the local correlations
and the pressure has been obtained in the framework of the
Yang-Yang thermodynamic equations. This relation holds for
both the quantum critical regime and the TLL phase at quantum
criticality. It provides a simple way to probe finite temperature
local pair correlations for the TLL over the whole relativistic
dispersion regime and to test quantum criticality with the
local correlations beyond the TLL phase. In the quantum
critical regime, the thermal fluctuations strongly couple to

the quantum fluctuations with universal free fermion z = 2
quantum criticality. The local pair correlations provide insight
into the microscopic quantum statistical effects at quantum
criticality. We also derived the thermodynamic equations (30)
and (35) of the Lieb-Liniger gas at high temperatures using a
high-temperature expansion of the Yang-Yang thermodynamic
equations. The effect of quantum statistics is microscopically
significant even in the thermal fluctuation dominated high-
temperature regime. In particular, the equation of state given
by (35) is highly accurate for the weak-coupling and high-
temperature regimes.

Our analytical prediction (24) for local pair correlations can
be tested using current experimental techniques for preparing
and detecting 1D gases. An ensemble of parallel 1D Bose
gases can be prepared [5,6] by loading ultracold Bose atoms
into a two-dimensional (2D) optical lattice. The 2D optical
lattices, an ensemble of parallel 1D tubes, can be formed by
superimposing two standing-wave lasers on the crossed dipole
trap. The depth of the 2D lattice must be sufficiently large to
make the quantum tunneling among these 1D tubes negligible.
That is, atoms in these 1D tubes are almost all in the lowest
transverse vibrational state. The photoassociation techniques
for measuring local pair correlations in zero-temperature 1D
Bose gases [6] could also be used to explore local pair
correlations in nonzero temperature systems, such as the
Lieb-Liniger Bose gas at quantum criticality studied in this
paper. In particular, the universal relation between the local
pair correlation and the pressure at quantum criticality could
be explored following the experimental scheme for measuring
the homogeneous contact of a unitary Fermi gas [37].
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