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Effect of interparticle interaction in a free-oscillation atomic interferometer
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We investigate the dynamics of two interacting bosons repeatedly scattering off a beam-splitter in a free
oscillation atom interferometer. Using the interparticle scattering length and the beam-splitter probabilites as our
control parameters, we show that even in a simple setup like this a wide range of strongly correlated quantum states
can be created. This in particular includes the NOON state, which maximizes the quantum Fisher information
and is a foremost state in quantum metrology.
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I. INTRODUCTION

In all scientific pursuits accurate measurements are crucial
and many of the most successful techniques in quantum
metrology make use of the principles of interferometry.
Recently significant progress has been made by recognizing
that the use of quantum correlations, in particular entangle-
ment, enables us to make the most precise measurements
physically allowed by the Heisenberg uncertainty principle
[1–4]. Optical interferometers are able to generate a wide range
of quantum correlated states, such as the NOON state [5–8];
however, a major drawback is their short coherence times. In
order to enhance measurement precision through the use of
entanglement, longer coherence times are highly desirable.

Making use of atomic ensembles can enhance the lifetime
of a generated state; however, the often unwanted and hard-to-
control scattering interactions can make them difficult to work
with [2]. Nevertheless, some remarkable progress has been
made using Bose-Einstein condensates (BECs) as resources
[3,9,10]. For example, in the presence of attractive interactions
these allow for the formation of bright soliton states, which are
nondispersive and have been suggested as good candidates for
the creation of macroscopic spatial superpositions [11–14].
Furthermore, the ubiquitous presence of harmonic traps for
ultracold atoms has led to new ideas for interferometry designs
based on the periodic trap dynamics [15–18]. Such schemes,
which present a viable approach to atomic interferometry
require often minimal experimental efforts and are referred
to as free oscillation atom interferometers.

Here we investigate the behavior of two ultracold atoms
in such a free oscillation atom interferometer and fully
take their mutual interaction into account. We start with
two bosonic atoms located on one side of a harmonic trap
split by a δ potential, whose strength can be adjusted. The
atoms are then released and allowed to scatter off the barrier
twice, thus realizing a Michelson type interferometer. By
employing numerical diagonalization techniques we are able
to exactly solve the model and determine the atom pair’s full
density matrix at any moment in time. While previous studies
have explored how different properties of the trap affect the
performance of an interferometer [15,19], here we rigorously
assess the effects which different interaction regimes and
beam-splitter ratios have on the nonclassical nature of the states
created. We quantify this by calculating the quantum Fisher

information (QFI) [20] and show that for a certain range of
parameters this simple setup can generate the highly desirable
NOON state.

The remainder of the paper is organized as follows. In Sec. II
we formalize the physical model and present the various tools
to be used throughout. In Sec. III A we assess the case when the
atoms possess an attractive interaction, while in Sec. III B we
explore the repulsive regime. The experimental feasibility is
considered in Sec. IV and in Sec. V we present our conclusions
and discussions of the results.

II. PRELIMINARIES

A. The model

The atomic interferometer we consider is a harmonic
trap punctuated centrally by a δ-function potential. The δ-
function barrier will act as a beam-splitter for the interacting
atoms, and, for simplicity, we restrict our investigation to
the case of two atoms. We assume the trap is such that
only longitudinal motion is permitted and transverse motion
is tightly restricted, thus forming a quasi-one-dimensional
system. The Hamiltonian is then given by

H� =
2∑

n=1

[
− h̄2

2m

∂2

∂x2
n

+ 1

2
m�2x2

n + κ0δ(xn)

]

+V (|x1 − x2|) , (1)

where m is the mass of each particle, � is the frequency of
the harmonic potential, and κ0 is the height of the δ-function
barrier. Throughout the paper, unless otherwise stated, all
units are dimensionless. At low temperatures the boson-boson
interaction, V , can be approximated by a pointlike potential

V (|x1 − x2|) = g1Dδ (|x1 − x2|) , (2)

where g1D is the one-dimensional coupling constant between
particles defined in terms of the three-dimensional scattering

length as g1D = 4h̄2a3D

ma2
⊥(1− Ca3D

a⊥ )
with C � 1.4603 and a⊥ =

√
h̄

m�

[21]. This parameter will be central in our analysis of
different regimes and can be experimentally tuned by applying
a Feshbach resonance, a powerful technique that is well
established in cold atomic physics [22].

Initially, the two atoms are prepared in a separate tight
harmonic trap a distance d from the center of the interferometer
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trap and their state is given by the ground state of the
Hamiltonian,

Hω =
2∑

n=1

[
− h̄2

2m

∂2

∂x2
n

+ 1

2
mω2(xn − d)2

]
+ g′

1D(|x1 − x2|).

(3)

Here ω is the trap frequency of the preparatory trap and the
interaction is modified to reflect this different environment.
In the following, we will make use of natural units such that
the coordinates are rescaled with respect to the characteristic
scales of the harmonic oscillator, x̃n = xn/a⊥ and Ẽn =
En/(h̄�). Here a⊥ = √

h̄/m� is the width of the trap ground
state. Thus, we have

H̃� =
2∑

n=1

[
−1

2

∂2

∂x̃2
n

+ 1

2
x̃2

n + κδ(x̃n)

]
+ gδ(|x̃1 − x̃2|),

(4)

H̃ω =
2∑

n=1

[
− 1

2ε

∂2

∂x̃2
n

+ 1

2
ε(x̃n − d̃)2

]
+ gδ(|x̃1 − x̃2|),

(5)

where ε = ω/� is the ratio of the preparatory trap frequency
to the one of the interferometer trap, g = g1Da⊥ = g

′
1Da⊥/ε2,

d̃ = d/a⊥, and κ = κ0a⊥.
In order to solve the Hamiltonians, H̃� and H̃ω, we

must determine the single-particle eigenstates and associated
energies. For the preparatory stage the time-independent
Schrödinger equation

H̃ωψ(x̃1,x̃2) = Ẽ
′
nψn(x̃1,x̃2) (6)

can be treated by taking advantage of the separability of the
Hamiltonian into center of mass and relative coordinates,
for which the solutions are well known [23]. However,
the Schrödinger equation for the interferometer potential
H̃�φn(x̃1,x̃2) = Ẽnφ(x̃1,x̃2) does not allow such a luxury and
must be solved numerically using, for example, a discrete vari-
able representation (DVR) method [24,25]. The DVR method
allows exact diagonalization of the many-body Hamiltonian
and scales as Np

N2
, where Np is the number of points taken in

configuration space. In general, this is numerically expensive;
however, the restriction of our analysis to N = 2 particles
allows the calculations to be tractable. Time evolution is then
achieved by constructing the time-dependent wave function in
terms of the eigenstates of the Hamiltonian H̃�

ψm(x̃1,x̃2,t) =
∞∑

n=0

amnφn(x̃1,x̃2)e−iẼnt (7)

in which

amn =
∫

ψm(x̃1,x̃2)φn(x̃1,x̃2)dx̃1dx̃2 (8)

is the overlap of the individual solutions of the two Hamilto-
nians. Due to the atom’s initial potential energy they will gain
velocity, scatter at the barrier at time ts = π/2�δ (scattering
A), and return to the classical turning points of the trap at
tA = π/�δ (see the dynamics of the single-particle density in
Fig. 1). Here �δ � � is an effective trap frequency adjusted to

FIG. 1. (Color online) Single-particle density versus time for (a)
two attractive and (b) two repulsive atoms. The barrier is positioned
at x̃ = 0 and the two particles are initially trapped at d̃ = 6 with
ε = 5.164. At time ts the particles scatter off the barrier and come
to rest at time tA at the classical turning point. At time 3ts the atoms
recombine and scatter a second time and come to rest again at time tB .

the presence of the δ function barrier. At time 3ts = 3π/2�δ

the atoms scatter a second time (scattering B) and again
return to the classical turning points at tB = 2π/�δ . This
setup resembles an atomic Michelson interferometer. While
the following analysis can easily be performed by describing
the barrier with a well-localized potential of any shape, our
choice of a δ function is done to clearly isolate the interesting
physical effects and does not constitute any loss of generality.
A δ-function potential is a good approximation to a localized
laser potential or an interaction with an atomic impurity
fixed at x = 0. In the first case, the barrier height κ can be
experimentally tuned by changing the laser intensity, whereas
in the second case a Feshbach resonance can be employed.
This, coupled with the capacity to alter the interparticle
interaction, means we have a highly adaptable system with
which to create superposition states.

B. Quantum Fisher information and von Neumann entropy

In the following we will thoroughly explore the features
of the states at the times tA and tB . For this we will use the
quantum Fisher information [26], which defines the amount
of information an observable can obtain about an unknown
parameter. A state with maximal QFI will allow the most
sensitive measurements, for example, of relative phases. For a
pure state |ψ(ϕ)〉 the QFI is defined as

FQ = 4[〈ψ ′(ϕ)|ψ ′(ϕ)〉 − |〈ψ ′(ϕ)|ψ(ϕ)〉|2], (9)

where |ψ ′(ϕ)〉 = ∂|ψ(ϕ)〉/∂ϕ. For separable states the max-
imum QFI is equal to the number of particles (or quanta),
N , used in the interferometer, which corresponds to the
shot-noise limit. However, one can go beyond this limit by
using entangled states which can yield a maximum QFI of N2,
the Heisenberg limit [19]. One particularly important class of
states that reach this limit are the so-called NOON states,

|ψNOON〉 = 1√
2

(|N〉|0〉 + |0〉|N〉), (10)

which in our scheme corresponds to both particles being
simultaneously on the left-hand side and on the right-hand
side of the barrier. Thus, we are we are looking at the spatial
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correlations of the two atoms [27]. Of course, NOON states are
not the only interesting nonclassical states to study in interfer-
ometry; however, as we are examining N =2, they are the most
prominent and our study is in line with the optical counterpart
recent state-of-the-art experiments [28]. For larger systems,
i.e., N >2, we expect the scheme to be extremely versatile.

The scheme generates a pure bipartite entangled state, and
as such we will also make use of the von Neumann entropy
(vNE) to quantify the entanglement of the atoms. It is defined
by the entropy of the reduced single-particle density matrix,
ρ, as

S(ρ) = Tr[ρlog2ρ] =
∑

i

λi log2λi, (11)

where the λi are the eigenvalues of this matrix and defined
by

∫
ρ(x̃1,x̃2)χi(x̃2)dx̃2 = λiχi(x̃1). Due to the required

symmetry of the wave function for identical bosons, one must
be careful when dealing with the vNE as an entanglement
measure in certain situations as discussed in Ref. [29]. In our
setup, however, the dynamical scattering process and constant
interaction between the particles ensures that any finite von
Neumann entropy signals genuine entanglement. Since the
vNE measures the total entanglement, and therefore accounts
for both interparticle and spatial entanglement, it can be
expected to show some qualitative differences to the QFI.

III. ANALYSIS OF DIFFERENT INTERACTION REGIMES

A. Attractive interactions

1. Scattering A

We first examine the state of an attractive dimer after
scattering once off the δ barrier. In Fig. 2(a) we plot the

QFI as a function of attractive interaction strength, g, and
barrier height κ . The thick black line signifies the classical
shot noise limit at FQ = N = 2, which is attainable for
separable states. Interestingly, we find that even for a weakly
interacting dimer we can exceed this bound. As we increase
the attractive interactions between the atoms the QFI increases
to its maximal obtainable value of N2 = 4 for a barrier height
of κ ≈ 1. In Fig. 2(b) we see that the behavior of the vNE
is qualitatively in agreement, although more complex. The
small-scale details are due to the interparticle interaction
leading to a constantly varying interparticle entanglement,
which is not captured in the calculation of the QFI. Looking
at the transmission coefficient T , Fig. 2(c), we see that
the maximum QFI is achieved for symmetric splitting (T =
0.5). To confirm the state generated in this situation is the
NOON state 1√

2
(|20〉 + |02〉), we show the various population

coefficients in Figs. 2(d)–2(f). One can immediately see that
the region in which the QFI is maximized corresponds to states
for which the |11〉 component is suppressed and the |20〉 and
|02〉 components are equally populated. This can intuitively
be understood by realizing that the relatively strong attractive
interaction within the dimer makes it hard to split the pair of
atoms into one on the left and one on the right. In fact, the
situation is analogous to the one of bright, atomic solitons,
where it has been shown that macroscopic superposition states
can be created by moving an atomic soliton through a barrier
of finite width [11,14].

2. Scattering B

After the second scattering process the dynamics becomes
more complex for the attractive dimer. Examining the QFI,

FIG. 2. (Color online) Contour plots for the (a) QFI, (b) vNE, (c) transmission coefficient (T ), and population coefficients for states
(d) |20〉, (e) |11〉, and (f) |02〉 at time tA as a function of the attractive interaction strength g and the barrier height κ for ε = 5.164 and d̃ = 6.
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FIG. 3. (Color online) Contour plots for the (a) QFI, (b) vNE, (c) transmission coefficient (T ), and population coefficients for states
(d) |20〉, (e) |11〉, and (f) |02〉 as a function of attractive interaction strength g and barrier height κ at time tB for the same initial state as in
Fig. 2.

Fig. 3(a), we see that even for weakly attractive particles we
can attain FQ ≈ 4 and, as we increase the interaction strength,
we find the QFI peak at two values of the barrier height, κ . The
behavior of the vNE, Fig. 3(b), is qualitatively similar and is
also mirrored in the transmission coefficient, T , Fig. 3(c). Once
again, for T = 0.5 we see a maximum QFI. The most striking
feature is clearly the intricate series of maxima appearing in
all panels. This is due to the phases accumulated by the atoms
at the beam-splitter and when traveling along its two arms. For
the case of nonsymmetric splitting the different interaction
energies of the particles lead to a difference in phase, which
in turn leads to the observed interference fringes. We see the
same qualitative behavior in the various population coefficients
shown in Figs. 3(d)–3(f), where the maximum QFI again
corresponds to a suppression of the |11〉 state and an equal
population of the other two states. Interestingly, the value of
κ which resulted in a maximum QFI for scattering A results
in a minimum QFI for scattering B for the same value of the
interaction strength.

To get a deeper insight into the process, we show in Fig. 4
the densities of the four lowest lying eigenstates, |χ2

i |, (i =
0,1,2,3), of the reduced single-particle density matrix at times
tA and tB and for g = −7 and κ = 0.4. Figure 4(a) shows that at
tA (where we have FQ = 2.035) three of the orbitals are located
on the right-hand side of the trap and one on the left-hand side.
This is a result of the large attractive interaction, which does not
allow the particles to become spatially split by the barrier and,
thus, the transmission coefficient is either T = 0 or T = 1.
Even though each orbital occupies one side of the trap only,
this is not a NOON state as can be seen by looking at the orbital

occupation numbers [see Fig. 5(a)]. We find that at this point
the lowest orbital has still the largest occupation number and
higher-lying ones have lower occupation. Figure 4(b) shows
the situation at tB and we find two orbitals occupying each side
of the trap. The orbital occupation probabilities for the ground
and the first excited state are degenerate after the scattering
event B, which proves the NOON nature of the state and
explains the resulting FQ = 3.9998 ≈ N2 [see Fig. 5(b)]. The
fact that the occupations are not exactly degenerate close to tB
is due to the interparticle interaction, which is reflected in the
dynamics of the vNE [the dashed line Fig. 5(b)]. It displays two
pronounced dips exactly at tA and tB , indicating a prominent
change in the internal structure (due to the refocusing at the

FIG. 4. Densities of four lowest-lying eigenstates of the reduced
single-particle density matrix for the attractive dimer at times (a) tA
and (b) tB for κ = 0.4 and g = −7. At tA the lowest, the second
excited, and the third excited orbitals occupy the right-hand side of
the trap and the first excited orbital is localized on the left-hand side.
At tB the ground and the second excited orbitals are on the right-hand
side, whereas the other two orbitals are on the left-hand side.
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FIG. 5. (Color online) (a) The orbital occupation numbers versus
time for attractively interacting particles κ = 0.4 and g = −7. The
darkest line corresponding to lowest energy orbital, with each
progressively lighter shade representing the next higher energy
orbital. (b) The QFI (solid) and vNE (dashed) versus time. The
maximum FQ reached is N2 indicating that a NOON state is created.

classical turning point). Making the choice ω = � leads to
perfect degeneracy for all times after scattering B (and before
the next scattering event). Note that the stepwise behavior of
the QFI is due to its sensitivity to only spatial correlations and it
therefore changes only during the scattering process, while the
constant interaction between the atoms gives rise to the varying
vNE.

B. Repulsive interactions

1. Scattering A

We now turn our attention to the case of repulsive interac-
tion between the atoms. This regime gives rise to behaviors
that do not promote the generation of spatial entanglement
easily, as the repulsive nature prefers a situation in which one

FIG. 6. (Color online) Contour plots for the (a) QFI and (b) vNE
at time tA after scattering once off the barrier and the (c) QFI and (d)
vNE at time tB after scattering twice off the barrier, as a function of
repulsive interaction strength g and barrier height κ . The initial state
is the same as in the attractive case discussed above.

atom occupies each side of the trap. Figure 6(a) shows that
at time tA this setup cannot produce states that outperform
the best classically attainable states (since FQ � 2) for the
whole range of parameter space considered. The maximum
FQ = 2 occurs for a barrier height κ = 1.51 regardless of
the interaction strength g, reaching the classical limit for a
transmission coefficient of T = 0.5 (not shown). The vNE
[Fig. 6(b)] is also maximized for T = 0.5, reaching 0.9 for
g = 4 and increasing to a maximum of approximately 1 for
strongly repulsive atoms.

2. Scattering B

Similarly to the case of attractive interactions, the variety
of states created after the second scattering process becomes
much richer due to the phase acquired by the various compo-
nents of the two-particle state. States with aFQ > 2 can now be
generated; however, they are restricted to a much smaller area
of the parameter space compared to the attractive interaction.
In Fig. 6(c) we see for that small repulsive interaction a QFI
of FQ > 3.5 can be reached and the vNE in Fig. 6(d) shows
qualitatively similar behavior. As the interaction g is increased,
the atoms enter the Tonks-Girardeau (TG) regime and the
QFI approaches its classical limit of 2, corresponding to the
state |ψ〉 = 1

2 |20〉 + 1√
2
|11〉 + 1

2 |02〉 resulting from a 50/50
splitting.

The state with the maximum QFI in this regime is achieved
for g = 1 and κ = 2.1 and we show the corresponding lowest
two eigenstates of the reduced single-particle density matrix
in Fig. 7. At tA (upper panel) each orbital occupies both sides
of the trap with nearly equal probability due to the 50/50
splitting of the barrier and corresponds to FQ ≈ 2. At time tB
(lower panel) each orbital almost fully localizes on one side
of the trap and the respective occupation numbers approach
double degeneracy, cf. Fig. 8(a), indicating the presence of a
superposition state in accordance with FQ = 3.883, Fig. 8(b).

FIG. 7. The densities of the two lowest atomic orbitals of the
reduced single-particle density matrix at times tA (top panel) and tB
(bottom panel) with a repulsive interaction with g = 1 and κ = 2.1.
At tA the each orbital has equal probability to be in the left-hand side
or right-hand side of the trap. At tB each orbital is at opposite sides
of the trap, indicating a highly entangled quasi-NOON state.
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FIG. 8. (Color online) (a) The orbital occupation numbers are
plotted versus time for a repulsive interaction with g = 1 and κ =
2.1. The darkest line corresponding to lowest energy orbital, with
each progressively lighter shade representing the next higher energy
orbital. At time tB the ground and first excited orbitals become nearly
degenerate, while the higher-lying ones are only weakly populated.
(b) The behavior of the QFI (solid) and vNE (dashed) as a function
of time. The maximum FQ reached is 3.883.

Due to the relatively weak repulsive interaction strength we
see the vNE grow monotonically.

IV. EXPERIMENTAL REALIZATION

Evidently the scheme presented here has an immediate
experimental appeal as many of its components are readily
implementable. When a coherent bilocalized state is created
the detection of this state can be achieved by measuring
the fringe visibility of the two-particle interference, which
is maximal in the presence of a NOON state [13]. This can be
done by exploiting the free oscillations in the harmonic trap
after removing the barrier and a simulation of these fringes is
shown in Fig. 9. The solid line shows the pattern associated
with the generated NOON state for FQ = 3.9998 at g = −7
and κ = 0.4 and the dashed line shows what one would obtain
for a state near the shot noise limit, FQ = 2.0023 at g = −7
and κ = 1.0985. The difference in fringe contrast near the shot
noise limit and near the Heisenberg limit can be clearly seen.
One could also implement the scheme described in Ref. [27]
where, after the two sides of the trap are allowed to interfere

FIG. 9. (Color online) The beam-splitter is removed from the
interferometer and the bilocalized system is allowed to recombine.
Due to the coherent superposition an interference pattern is observed
for FQ = 2.0023 (red dashed line) and FQ = 3.9998 (black solid
line). The difference in fringe contrast is apparent.

at a beam-splitter, the correlations are measured by counting
the atoms collected at two different detectors.

V. CONCLUSIONS AND DISCUSSIONS

We have presented a comprehensive analysis of two
interacting particles in a harmonic oscillator interferometer. By
considering a wide range of parameters we have demonstrated
the importance of the interparticle interaction and its necessity
in creating metrologically useful states. By employing exact
numerical diagonalization methods we were able to study the
type of states dynamically created and assess their value by
studying the correlations via the quantum Fisher information
and von Neumann entropy. The QFI is a useful metric for
determining a states use in metrology and we found that the
maximally achievable values depends strongly on the number
of scattering events. After scattering on the barrier once,
the attractively interacting particles were able to exceed the
shot noise limit and even create NOON states for certain
parameters. However, for repulsively interacting particles a
single beam-splitting process does not allow us to exceed this
limit. After a second scattering from the barrier, thus realizing
a Michelson interferometer, we found that NOON states could
be created for both kinds of interactions, even though the range
of potential parameters in the repulsive case was more limited.
As previously noted, although our study explicitly considers a
δ-function barrier, the same results hold if one replaces it with
a Gaussian barrier of finite width. In this instance the exact
values of interaction strength and barrier height for optimal
state generation will slightly differ from those found here;
however, the qualitative conclusions remain unaffected.

Let us finally comment extending the presented results to
larger particle numbers. Treating the two-particle system has
allowed us to rigorously assess the effect the interparticle
interaction has on the generation of metrologically useful
states, while also allowing us to explore the entanglement
dynamics via the von Neumann entropy. Going beyond two
particles is computationally extremely costly, and it is clear
from our study that for ensembles of repulsive atoms highly
correlated states will be very sensitive to the parameters
involved. In fact, first calculations in the TG regime have
shown that the generation of NOON states cannot be achieved
this way. However, for attractive interactions, even for a larger
number of particles in the system, the scheme presented here
should realize NOON states. As we have shown, when the
atoms are strongly attractive, the bonds formed between the
atoms are extremely hard to break, hence after the scattering
processes they are much more likely to remain spatially close.
This is somewhat analogous to the behavior of bright solitons
recently analyzed [12,18].
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