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Tunneling decay of two interacting bosons in an asymmetric double-well potential:
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We study the full-fledged microscopic dynamics of two interacting, ultracold bosons in a one-dimensional
double-well potential, through the numerically exact diagonalization of the many-body Hamiltonian. With the
particles initially prepared in the left well, we increase the width of the right well in subsequent trap realizations
and witness how the tunneling oscillations evolve into particle loss. In this closed system, we analyze the spectral
signatures of single- and two-particle tunneling for the entire range of repulsive interactions. We conclude that
for comparable widths of the two wells, pairwise tunneling of the bosons may be realized for specific system
parameters. In contrast, the decay process (corresponding to a broad right well) is dominated by uncorrelated
single-particle decay.
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I. INTRODUCTION

One of the hallmarks of quantum mechanics is tunneling
through energy barriers that classically cannot be overcome.
It is at the heart of fundamental dynamical phenomena like
Josephson oscillations [1], the spatial flipping of the nitrogen
atom in the ammonium molecule [2], or quantum lattice
dynamics [3]. Tunneling is also one of the major mechanisms
that provoke the loss of particles from quantum systems [4].
The latter occurs whenever a quantum system is coupled via a
potential barrier to a continuum, i.e., to a set of asymptotically
free states. Such particle loss is omnipresent in nature, e.g.,
in radioactive decay or in the autoionization of excited atomic
states.

While the tunneling and loss dynamics are thoroughly
understood for single particles [5], much less is known
about the generic case of interacting many-body systems.
Furthermore, in the vast majority of physical realizations, the
interparticle interactions are immanent and, hard to manipulate
if it can be done at all. An archetypical example is the inter-
electronic Coulomb interaction which plays a crucial role in
the nonsequential double ionization of helium [6], or in the
sequential double ionization of argon [7].

In this respect, the advent of ultracold atoms in optical po-
tentials prepared the stage for a new generation of experiments
in which all relevant control parameters can be controlled
essentially at will, ranging from the potential landscape [8–10],
over the initial state (and number) of atoms [11], to the inter-
particle interaction, which can be tuned over several orders of
magnitude from attractive to repulsive [12,13]. Consequently,
several authors have studied the decay of particles from a Bose-
Einstein condensate (for recent experiments, see [14,15]). The
two major theoretical tools used in this context are the mean-
field (Gross-Pitaevskii) description [16–22], and effective
Hamiltonian or master equation approaches [23–27], to name
a few of them. While both methods can yield valuable insight,
they face fundamental limitations: The mean-field treatment
(applicable in the limit of large particle numbers) is based on
the assumption that the condensate is in a coherent state and
breaks down [28–31] when the interparticle interaction leads
to considerable dephasing [32,33]. The master equation, on

the other hand, is typically introduced in an ad hoc procedure
without a rigorous justification, and few authors went beyond
the standard Markovian treatment [34–36].

In contrast, the microscopic decay process of interacting
particles is only beginning to be explored on a fundamental
level. Recent experiments reported the interaction-dependent
loss of the first of a few atoms from a one-dimensional
trap [37], and the corresponding escape rate was successfully
described by a quasiparticle wave-function approach [38].
The theoretical works that describe the full-fledged decay
dynamics rely on the propagation of the time-dependent
Schrödinger equation either by direct integration [39],
by combining a matrix-product state approach with
Bose-Hubbard-like chains [40], or via multiconfigurational
Hartree-Fock methods [41,42].

In our present work, we take a complementary approach to
tunneling decay and study the numerically exact many-body
dynamics of two interacting bosons which are initially pre-
pared in the left site of a double-well potential. In subsequent
realizations of the trapping potential, we gradually increase
the extension of the right well which—in the limit of large
widths—mimics the unconfined configuration space (to which
the particles escape), by a dense quasicontinuum of states. Of
course, the finite extension of the broad well defines a maximal
observation time before the particles hit the rightmost bound-
ary. This limitation is, however, more than compensated by two
major benefits: On the one hand, we can directly monitor the
transition from the regime of tunneling oscillations between
the two wells to the regime of tunneling decay from the left
well, in a single setup. On the other hand, we gain complete
access to all spectral quantities of the system (e.g., its eigenval-
ues, eigenfunctions, and the density of states), thus providing
insight into the inner workings of many-body tunneling.

The key problem is to expose the physical nature of the
many-body decay process: Given, for example, the quantum-
mechanical correlations naturally present in the initial state of
two interacting bosons, do the particles leave the left well as
a pair or do they tunnel independently? That is, depending
on the strength of the interatomic interactions, will we
observe predominantly correlated or uncorrelated processes?
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We would as well like to know which quasicontinuum states
actually support the decay process, and how interaction energy
is converted into kinetic energy during the tunneling decay. To
answer these questions, we shall investigate two-body as well
as reduced single-particle quantities.

The narrative of this work is as follows: In the next section
we introduce our model, the double-well potential, and those
quantities used throughout the paper to study particle loss.
Section III is devoted to the tunneling decay of a single particle
and sets the frame of reference for the two-body problem. From
a spectral perspective, we analyze the transition from tunneling
oscillations to tunneling decay as the width of the right well
is increased, and will see that the participation number of the
initial state in the eigenstates of the double well is an excellent
figure of merit to characterize this transition. We briefly revise
single-particle decay theory and elaborate on the validity of
our quasicontinuum approach.

In Sec. IV we introduce the initial state of the dynamical
two-boson evolution, and define the principal physical observ-
ables. Our central results are presented starting from Sec. V
where we analyze the spectral properties of the tunneling
process of two interacting bosons as the width of the right
well is gradually increased. Specifically, we identify those
particle configurations in the quasicontinuum states which
support single- and two-particle tunneling, respectively, and
calculate the associated density of states. This procedure
parallels the analysis of Sec. III, and the differences to the
single-particle case are exposed. In Sec. VI the predictions of
our spectral analysis are compared to the numerically obtained
time evolution. We develop a complete picture of the decay
process by means of two- and single-particle quantities and
compare our results to related studies on the time-resolved
decay dynamics [39,41,42]. We conclude with a summary and
discussion in Sec. VII.

II. DOUBLE-WELL POTENTIAL AS A MODEL
FOR TUNNELING DECAY

We now prepare our tools to describe the tunneling dynam-
ics of two ultracold, interacting bosons in a one-dimensional
double-well potential. For x and y the respective coordinates
of the (indistinguishable and spinless) bosons, the two-particle
Hamiltonian reads

Htp(x,y) = Hsp(x) + Hsp(y) + W (x,y) , (1)

where Hsp is the single-particle Hamiltonian and W (x,y) ac-
counts for the interparticle interaction (see also Appendix A).
The former is given by

Hsp(x) = − d2

dx2
+ V (x), (2)

where we have fixed the particle mass m ≡ 1/2 and h̄ ≡ 1.
The corresponding single-particle potential V (x) is depicted
in Fig. 1(a): The left well of width � (interval I) is coupled via
a potential barrier of width b and height V0 (interval II) to a
second well of width r (interval III),

V(x) =
⎧⎨
⎩

0, x ∈ I or x ∈ III,
V0, x ∈ II,
∞ else.

(3)

(2)

(2)(1)

x

y

b r

V0

V (x )

x

I IIIII

(3)

(a)

(b)

FIG. 1. (Color online) (a) Schematic sketch of the single-particle
potential V (x) as defined in Eq. (3). The left well of width � (interval I)
is coupled via a potential barrier of width b and height V0 (interval II)
to the right well of width r (interval III). (b) Potential landscape of (1)
in the two-boson x-y configuration space. Two particles confined in
the left well correspond to region (1) (black), one particle in either
well corresponds to the two regions (2) (red or light gray), and both
particles in the right well corresponds to region (3) (blue or dark
gray). The tunneling barrier is depicted in white. The dashed white
line denotes the diagonal (x = y) at which the contact interaction U

between the two particles arises.

The interaction term W (x,y) is assumed to result predomi-
nantly from s-wave scattering [43], due to the extremely low
temperature of the bosons. This leads to a δ-like interaction
between the particles, i.e., W (x,y) = Uδ(x − y) with U =
2h̄ωradas [44]. Here, as is the s-wave scattering length, which
can be tuned experimentally over several orders of magnitude,
from attractive to repulsive [12,13], and ωrad denotes the
frequency of the harmonic radial trapping potential which
acts transversally to the direction of (2). For a cigar-shaped
trap (i.e., a small longitudinal trap frequency ωlong � ωrad)
we can effectively treat the potential as being one dimen-
sional, since—due to the low total particle energy—only the
transversal ground state is occupied. To define the units (of
energy, etc.), we introduce a reference length scale L. With
the above convention on h̄ and m, energy is thus measured in
units of 1/L2, time in units of L2, and length in units of L.
The interaction strength U carries the dimension energy times
length and is thus measured in units of 1/L.

To investigate tunneling decay (or, synonymously, particle
loss) we consider the following dynamical scenario: Initially,
the particles are prepared in the many-body ground state of the
isolated left well, corresponding to an infinitely high tunneling
barrier V0 = ∞ (or b = r = 0). Then, the barrier height is
instantaneously reduced to a finite value V0 = 0.1. We study
the ensuing time evolution for different trap configurations,
at fixed widths � = 51 and b = 2, but for ever broader right
wells. The values for b and V0 are chosen such that significant
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tunneling takes place within comparatively short times. At the
same time, this choice ensures that the energy of the initial
state is always considerably smaller than the height V0 of the
barrier, such that quantum tunneling is the only way to leave
the left well.

In this way, we define a closed setup, in which the left well
serves as the system while the broad right well possesses a
large density of states and can be regarded as the environment
to which the bosons escape. Throughout this work, “environ-
ment” is to be understood as a quasicontinuum of (two-boson)
states, i.e., as the unconfined configuration space. The rationale
behind this approach is twofold: On the one hand, we can fol-
low the crossover from tunneling oscillations (expected for r ≈
�) to particle loss—realized in the limit of a large width r � �.
On the other hand, the corresponding Hamiltonians (1) and (2)
can be numerically exactly diagonalized (see Appendix A for
details). The price we pay is a finite observation time, defined
by the condition that no reflections from the hard-wall bound-
ary of the right well must occur. We are, however, rewarded
with direct access to all spectral quantities of the problem. This
represents a complementary approach to the direct solution
of the time-dependent Schrödinger equation [39–42], and
yields fundamental insight as to which quasicontinuum states
actually support the decay. This information should also
advance the derivation of a microscopic master equation, and
we shall shortly return to this issue at the very end of this article.

The major theme of our study is under what circumstances
and to what extent the bosons tunnel as individual particles
or in a correlated manner, i.e., as a pair. To facilitate the
forthcoming discussion, we visualize the potential landscape
of Eq. (1) in the x-y plane [see Fig. 1(b)]. The white regions
denote the tunneling barrier of height V0, and the dashed
line represents the diagonal (x = y) at which the contact
interaction U arises. Region (1) corresponds to both particles
being in the left well, while regions (2) indicate that one
boson is in either well. Finally, region (3) corresponds to both
particles being located in the right well. In this representation,
uncorrelated tunneling of the two bosons would manifest in
a transition (1) → (2) → (3) while correlated tunneling (of
a pair of bosons) would correspond to a direct transition
(1) → (3). Later, in Eqs. (23)–(25), we shall define the
associated probabilities with which the two-particle wave
function populates the corresponding regions.

As an aside, we point out that the transitions considered
above can be regarded as sequential [(1) → (2) → (3)] or
nonsequential [(1) → (3)] double ionization of many-electron
atoms. The continuing interest in the helium problem is
driven by the same question as in the present study: That
is, to identify the role of the interelectronic interactions and
correlations in the ionization process (for recent publications,
see, e.g., [45–47]).

III. SINGLE-PARTICLE CASE

As a preliminary step toward the tunneling of two in-
teracting bosons, we recall the single-particle scenario of
Hamiltonian (2) and investigate the spectral signatures of
the transition from tunneling (r ≈ �) to particle loss (r � �).
This allows us to introduce—in the familiar single-particle
context—one of our main spectral tools, the participation ratio
(PR) of the initial state in the Hamiltonian’s eigenbasis, i.e., the

number of eigenstates that mediate the dynamics. The analysis
of the PR constitutes the first part of the present section and will
prove beneficial once we turn to the two-particle dynamics. At
the end of this section, we demonstrate the validity of the qua-
sicontinuum approach, by comparing our results for the single-
particle spectrum to the time evolution of the initial state and
to analytical predictions. We note that for a single particle in
an (asymmetric) polynomial potential, the transition from tun-
neling oscillations to tunneling decay was studied in Ref. [48].

A. Initial state

Throughout this contribution, we focus on the ground state
of the isolated left well as the initial state |ψ(t = 0)〉 of the
dynamics. For a single particle in a box potential of width �,
the configuration-space representations of the eigenstates |χ�

n〉
are sinusoidal [49], i.e.,

χ�
n(x) =

√
2

�
sin

(
k(sp)
n x

)
, (4)

where k
(sp)
n = πn/� denotes the single-particle momentum and

the corresponding eigenenergies are

ε(sp)
n = (

k(sp)
n

)2 = π2n2

�2
. (5)

Thus, with the numbers from above the ground-state energy
ε

(sp)
1 = 3.79 × 10−3 is well below the barrier height V0 = 0.1.

Here and in the following, the superscript (sp) indicates single-
particle quantities. If not stated otherwise, the quantities k

(sp)
n

and ε
(sp)
n pertain to the left well, and hence we drop the index �.

Since the |χ�
n〉 are typically not eigenstates of the double-

well potential (also referred to as the total system in the
following), we generally observe nontrivial dynamics once we
set |ψ(0)〉 = |χ�

n〉. Since numerically exact diagonalization is
at the heart of our approach, we obtain the time-evolved state
by spectral decomposition. That is, we expand |ψ(0)〉 in terms
of the eigenstates {|E(sp)

n 〉} of the total system (2),1

cn = 〈
E(sp)

n

∣∣ψ(0)
〉
, (6)

and use the familiar expression

|ψ(t)〉 =
∑

n

cne
−iE

(sp)
n t

∣∣E(sp)
n

〉
. (7)

B. Participation ratio I: From tunneling oscillations
to tunneling decay

A robust and intuitive spectral measure to characterize the
quantum dynamics is the participation ratio (or participation
number)

PR(|ψ〉) =
[ ∑

n

|cn|4
]−1

, (8)

which represents the number of eigenstates |E(sp)
n 〉 that

significantly contribute to the initial state |ψ(0)〉. The par-
ticipation ratio varies from unity—when |ψ(0)〉 coincides

1In the two-boson dynamics studied from Sec. IV onwards, we
expand the (two-body) initial state (17) in terms of the two-particle
eigenstates of the total system.
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with one eigenstate—to N , for |ψ(0)〉 an equally weighted
superposition of all eigenstates. Here, N is the dimension
of the associated Hilbert space which is always finite in our
numerical study (see Appendix A).

Yet, as defined in Eq. (8), the participation ratio does not
take into account the spatial density distribution of the |E(sp)

n 〉,
i.e., the PR cannot resolve which part of configuration space is
populated by the contributing eigenstates. Such a distinction,
however, is highly desirable since it can provide valuable
insight into the systems dynamics, as we shall see below. To
achieve this, we employ the probability P� to find the particle
described by |ψ(t)〉 in the left well,2

P�(|ψ(t)〉) =
∫ �

0
dx |ψ(t)|2; Pr = 1 − P�. (9)

With the help of (9) we can define weighted versions of the
PR as follows:

PRr,�(|ψ〉)

=
[ ∑

n |cn|4Pr,�

(∣∣E(sp)
n

〉)2[∑
n |cn|2Pr,�

(∣∣E(sp)
n

〉)]2

]−1 ∑
n

|cn|2Pr,�

(∣∣E(sp)
n

〉)
.

(10)

The numerator in the first term of (10) weights each coefficient
|cn|2 with P�(|E(sp)

n 〉) [Pr (|E(sp)
n 〉)], i.e., with the probability

that a particle in the corresponding eigenstate |E(sp)
n 〉 is found

in the left (right) well, while the denominator fixes the range
of the first term in (10) between 1 and N . The last term
in Eq. (10) represents an additional weighting which we
explain in the discussion around Footnote 4. Put differently,
PRl(|ψ〉) [PRr (|ψ〉)] provides a measure for the number of
those eigenstates that participate in the time evolution and
have a fraction in the left (right) region of configuration space.

With these quantities at hand, we now discuss the tunneling
dynamics of a particle initially prepared in the ground state
|χ�

1 〉 of the isolated left well, in Fig. 2, for variable width
r of the right well. Consider first the familiar case of a
symmetric double-well potential (r = � = 51). The PR takes
the value 2 which can be easily understood by the following
argument: In the symmetric case, the ground states |χ�

1 〉 and
|χr

1 〉 of the isolated left and right wells are in resonance.
Thus, the eigenstates |E(sp)

n 〉 of the total system are the
symmetric and antisymmetric superpositions of the isolated
wells’ eigenfunctions, such that the two lowest states read
|E(sp)

1,2 〉 ≈ (|χ�
1 〉 ± |χr

1 〉)/√2. Accordingly, the initial state |χ�
1 〉

is a superposition of these two eigenstates and hence the PR
equals 2.3 As a result, the associated tunneling dynamics
displays perfect Rabi oscillations with a period inversely
proportional to the energy splitting E

(sp)
2 − E

(sp)
1 (not shown).

How does the weighted participation ratio PR� (black curve)
behave? Given the above it is clear that two eigenstates

2Note that the probability density within the barrier is negligible.
Hence, Pr can be regarded as the probability to find the particle in
the right well.

3Throughout the paper we consider the weak-coupling regime (see
Appendix D), otherwise more states could contribute to |E(sp)

1,2 〉, even
in the case of the symmetric double well.
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FIG. 2. (Color online) Single-particle case: The participation
ratio PR (magenta), and the weighted participation ratios PR� (black)
and PRr (blue) for different widths r of the right well [see Eqs. (8)
and (10)]. The dashed green line denotes a linear fit with slope
a = 1.02 × 10−3. The participation ratios exhibit resonances which
increasingly overlap as r → ∞. Inset: The absolute value squared
(black circles) |cn|2 of the expansion coefficients (6) of the initial state,
versus the level index n, for a broad right well of width r = 3000.
The blue solid line represents a Lorentzian fit of width 	 = 1.3.

contribute to |ψ(0)〉 which (partially) populate the left well,
and thus the first term in (10) equals 2. Since each of these
states amounts to half the norm of the initial state and
P�(|E(sp)

1 〉) = P�(|E(sp)
2 〉) = 1/2, the second term equals 1/2.

In total we have PR� = 1 and, due to parity symmetry, also
PRr = 1 (blue curve).

As r increases to, say, 75, the PR approaches 1, indicating
that |χ�

1 〉 is approximately an eigenstate of the double-well
system. The physical origin is that at r = 75, the eigenstates of
the isolated right well are maximally detuned from resonance
with |χ�

1 〉. Accordingly, PRr tends to zero4 and PR� ≈ 1.
The associated dynamics is trivial: The particle is persistently
trapped in the left well and only small amounts of probability
leak out.

Once r is further increased, the PR exhibits a sequence
of equally spaced peaks. These occur whenever an eigenstate
of the isolated right well |χr

n〉 comes into resonance with the
ground state of the isolated left well |χ�

1 〉, i.e., for r ≈ n�,
n = 1,2, . . .. Accordingly, we will refer to the maxima as
resonances. At these values of r , one observes Rabi oscillations
while, in between two peaks, the tunneling is suppressed.5

The situation drastically changes once the width r is
substantially increased. Then, the oscillations in the PR are
reduced, the PR and the PRr become larger than one 1, for
all r , while PR� decreases. In this regime, the widths of the
resonances (between eigenstates of the left and the right wells)
are larger than their respective spacing, which is simply given
by the difference of two consecutive eigenenergies ε

(sp)
n of the

4In this case all coefficients {|cn|2Pr (|E(sp)
n 〉)} are approximately

zero. However, due to the normalization via the denominator in
Eq.(10), the PRr could become very large. This artificial increase is
prevented by the additional weighting with the last term in Eq. (10).

5We note that a similar situation arises in lattices systems subject
to an additional tilt: At appropriately tuned values of the lattice tilt,
neighboring sites become resonant, which leads to the resonance-
enhanced tunneling (see, e.g., [50]).
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right well.6 In our setup, this transition takes place around
r ≈ 1000, that is, r � 1000 denotes the regime of overlapping
resonances, where the density of states in the right well is large
enough such that many states contribute to the initial state, and
a quasicontinuum is formed; a prerequisite to observe loss dy-
namics rather than Rabi oscillations. Regarding the weighted
participation ratios in the limit of large r , we observe that PR�

saturates at a finite value.7 At the same time, PRr approaches
PR, since the eigenstates |E(sp)

n 〉 that contribute to the initial
state |ψ(0)〉 have an ever-increasing overlap with the right well.

C. Participation ratio II: Tunneling decay rate

Before we turn to the corresponding time evolution, let us
formulate the expected particle loss quantitatively. According
to Wigner’s theory of decaying systems (see, e.g., [51]), the
coefficients |cn|2 should follow a Lorentzian distribution of
width γ in energy space [see also the schematic illustration in
Fig. 7(a) below] leading to an exponential decay behavior in the
time domain with rate γ .8 For large enough r and sufficiently
weak coupling between the two wells (as in our case), the
mean level spacing of the total system �n = E

(sp)
n+1 − E

(sp)
n

can be safely assumed as constant within the extension of the
Lorentzian. In this way, we can consider the |cn|2 as a function
of the level index n rather than of the energy E

(sp)
n , what is

much closer to the definition of the PR. In the inset of Fig. 2,
we plot |cn|2 versus n, together with a Lorentzian fit (solid
line) of width 	 = 1.3 for r = 3000. The agreement with the
theoretical prediction is almost perfect, and it remains to con-
nect 	 to the decay rate γ and, ultimately, to the participation
ratio PR. The first step is a simple proportionality relation:

γ = 	

ρsp
(
ε

(sp)
1

) , (11)

where

ρsp(E) = r

2π

1√
E

(12)

is the single-particle density of states in the quasicontinuum,
evaluated at the energy E = ε

(sp)
1 of the initial state. In a second

step, we calculate the PR for perfectly Lorentzian distributed
expansion coefficients |cn|2 to be PR[|ψ(0)〉] = π	. Hence,

6We note that the width of the resonances increases monotonically
with r .

7We note in passing that the asymptotic value of PR� can be
derived by assuming that, within the energy window in which
the coefficients |cn|2 are large, the PR�(|E(sp)

n 〉) follow the same
Lorentzian distribution as the coefficients |cn|2 (see the following
section). We obtain an asymptotic value of 16/40 = 0.4 which
agrees well with our numerics. We numerically confirmed that this
assumption on the distribution of the PR�(|E(sp)

n 〉) is indeed justified
for r → ∞ (see Appendix D).

8We note that this holds only for the initial state |ψ(0)〉 = |χ�
n〉 an

eigenstate of the isolated left well (see Appendix D). Furthermore,
we stress that the exponential decay is realized on intermediate time
scales, while deviations from it naturally occur for ultrashort and
ultralong times and have even been experimentally observed [52,53].

the loss rate becomes

γ = PR[|ψ(0)〉]
πρsp

(
ε

(sp)
1

) = 2PR[|ψ(0)〉]
r

√
ε

(sp)
1 . (13)

It is physical to assume that for large enough r , the rate γ of
the decay should not depend anymore on the width r of the
right well. We thus conclude from (13) that the participation
ratio grows linearly with r , i.e., PR(|ψ(0)〉)/r → a = const
for r → ∞. The expected linear increase is confirmed by
Fig. 2 where the dashed green line represents a linear fit on the
PR. From the slope a = 1.02 × 10−3 we obtain the loss rate

γ
(
ε

(sp)
1

) = 2a

√
ε

(sp)
1 = 1.25 × 10−4. (14)

D. Time evolution and analytical treatment

We now turn to the particle loss dynamics, with the
probability P�(t) = P�(|ψ(t)〉) that the particle is still located
in the left well [see Eq. (9)], as the relevant observable. The
time evolution is obtained from Eq. (7) by diagonalization
of the single-particle Hamiltonian (2). In Fig. 3, we plot
P�(t) versus t , for |ψ(0)〉 = |χ�

1 〉. We observe an exponential
decay, as expected from the Lorentzian behavior in the energy
domain. The dynamical loss rate is obtained by an exponential
fit to be

γ
(sp)
1 = 1.16 × 10−4 (15)

and thus found in good agreement with the spectrally deter-
mined rate (14). In anticipation of the two-particle dynamics
discussed further on, we also consider the decay of the first
excited state |χ�

2 〉, which will play a role when the interparticle
interaction leads to fermionization of the bosons. The decay
of |ψ(t = 0)〉 = |χ�

2 〉 is plotted as a red line in the same figure,
with a fitted decay rate

γ
(sp)
2 = 8.5 × 10−4. (16)

Due to its larger energy, |χ�
2 〉 effectively experiences a

lower barrier than |χ�
1 〉; hence γ

(sp)
2 is considerably larger as

compared to the rate γ
(sp)
1 .
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FIG. 3. (Color online) Single-particle decay: Semilogarithmic
plot of the probability P�(t) of finding the boson in the left well
versus time t , Eq. (9). The black (red) line corresponds to an initial
condition defined by the ground state |χ�

1 〉 (first excited state |χ�
2 〉) of

the isolated left well Eq. (4). Circles denote exponential fits [Eqs. (15)
and (16)] while diamonds represent the analytical result (see text and
Appendix B).
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The question naturally arises whether the results derived
with the above quasicontinuum approach agree with the actual
loss physics to a perfect continuum, associated with a right
well that stretches out to infinity. Therefore, we analytically
solve the related scattering problem as a benchmark. We
obtain complex eigenenergies with imaginary parts which can
be interpreted as loss rates (cf. Appendix B). The induced
decay is represented in Fig. 3 by diamonds, and agrees well
with the quasicontinuum results. We thus conclude that our
quasicontinuum approach is indeed the appropriate tool for
our study of the temporal behavior on not too long time scales.

In the familiar single-particle case, we thus successfully
used the participation ratio to observe the transition from
tunneling oscillations (isolated resonances) to tunneling decay
(strongly overlapping resonances). In the next sections, we will
generalize this concept to the case of two interacting bosons.

IV. TWO-PARTICLE CASE: INITIAL STATE AND
PHYSICAL OBSERVABLES

A. Ground state of two bosons in a box potential as initial state

We now turn to the case of two interacting particles. As
a first step, we define the initial state of the system, i.e., an
eigenstate of two bosons in the isolated left well of width
� = 51. The latter can be obtained analytically by means of a
Bethe ansatz [54] from the corresponding Hamiltonian (1) with
r = 0 = b. More precisely, the nth eigenfunction ψk1,nk2,n

(x,y)
is completely characterized by two wave vectors k1,n and k2,n

and reads, for y � x [55,56],

ψk1,nk2,n
(x,y)

∝ [A1 exp (ik1,nx)−A2 exp(−ik1,nx)] sin(k2,ny)

+ [A3 exp (ik2,nx) − A4 exp(−ik2,nx)] sin(k1,ny). (17)

The amplitudes Ai(k1,n,k2,n) are functions of the two-particle
wave vectors ki,n which, in turn, depend on the interparticle
interaction strength U and represent the solutions of the
coupled equations:

k1,n� = n1π + arctan

[
U

k1,n − k2,n

]
+ arctan

[
U

k1,n + k2,n

]
,

k2,n� = n2π − arctan

[
U

k1,n − k2,n

]
+ arctan

[
U

k1,n + k2,n

]
.

(18)

For U = 0, the equations decouple and we immediately
recover the single-particle result in which the two positive
integers n1,2 are simply the quantum numbers of a single
particle in a box of size �. In the general case U �= 0, the ki,n can
be regarded as the momenta of two bosons with corresponding
two-particle energy

εn = k2
1,n + k2

2,n. (19)

As in the single-particle case, the quantities ki,n and εn pertain
to the left well (if not stated otherwise).

Since we are dealing with ultracold atoms, we are predomi-
nantly interested in the initial state being the ground state [i.e.,
n1 = n2 = 1 in Eq. (18)]. In the remainder of this section, we
recall its properties as a function of the interaction strength U .
We characterize the ground state by the momenta ki,1 and the
diagonal part of the associated single-particle reduced density
matrix9

ρred(x,x ′,t) =
∫

dy ψ∗(x,y,t)ψ (x ′,y,t). (20)

The latter quantity determines all single-particle quantities
such as, for example, the number of bosons in a specific region
of configuration space [compare Eq. (26)].

In Fig. 4(a), we plot the momenta k1,1 and k2,1 of the ground
state, in units of the inverse width 1/�, versus the interparticle
interaction strength U . For U = 0, the bosons are independent
of each other, and both momenta take the single-particle
value ki,1� = π . Accordingly, the two-particle ground-state
wave function at U = 0 is a product of single-particle wave
functions,

ψ
(U=0)
k1,1k2,1

(x,y) = χ1(x)χ1(y) ∝ sin
(
k

(sp)
1 x

)
sin

(
k

(sp)
1 y

)
, (21)

with a two-particle ground-state energy ε1(U = 0) = 2ε
(sp)
1

given by twice the single-particle ground-state energy (5).
Since both bosons occupy the same single-particle state,
also the diagonal of the corresponding reduced single-particle
density matrix [Fig. 4(c)] is perfectly sinusoidal.

As U increases, the particles repel each other and the two-
particle energy grows, until it saturates at the energy of the first

9In this section, ψ(x,y,t) = ψk1,1k2,1 (x,y), while we consider time-
dependent wave functions further on.
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k
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k
1,1
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0 0.2 0.4 0.6 0.8 1U
0
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0.06

ε n

(b)

0 10 20 30 40 50x
0

0.02

0.04

ρ(
x,

x)

U=0
U=0.2
U=1.0

(c)

FIG. 4. (Color online) Various observables of two interacting bosons in a single-well potential of width � = 51: (a) The ground-state
momenta k1,1 (black) and k2,1 (red) [see (18)], in units of the inverse width 1/� of the well, versus the interparticle interaction strength U . The
dashed horizontal lines denote the asymptotic values k� = π and 2π , respectively. (b) Lowest two-particle energy levels versus U , obtained
from the exact numerical diagonalization of Eq. (1). (c) Diagonal part ρred(x,x) of the reduced single-particle density matrix (20) of the
respective two-particle ground state, versus position x, for various values of U . The repulsive interaction reduces the probability of finding a
boson at the center of the trap, at x = �/2.
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excited state ψ
(U=0)
k1,2k2,2

(x,y): This is evident from Fig. 4(b) where
we plot the parametric evolution of the lowest-lying energy
levels εn, obtained from the exact diagonalization of Eq. (1),
with r = 0 = b and l = 51.10 In the reduced single-particle
density matrix, this repulsion between the bosons is manifest
in a reduced probability to detect a boson at the center of the
box, i.e., at x = �/2 [see Fig. 4(c)].

This observation can immediately be understood in terms
of the wave vectors: One finds that the (larger) momentum k1,1

grows with U , and asymptotically reaches k1,1� = 2π , while
k2,1 first slightly decreases and asymptotically approaches
k1,1� = π [39]. The indistinguishability of the particles aside,
one may imagine that for U → ∞ one boson is in the
single-particle ground state |χ�

1 〉, while the other one is in
the single-particle first excited state |χ�

2 〉, a situation also
referred to as the fermionization or Tonks-Girardeau limit [57]
of a repulsively interacting Bose gas. In this limit, the wave
function exactly vanishes on the diagonal where the (contact)
interaction arises and is given by

ψ
(U=∞)
k1,1k2,1

(x,y) ∝ 1√
2

[
sin

(
k

(sp)
2 y) sin(k(sp)

1 x
)

− sin
(
k

(sp)
2 x) sin(k(sp)

1 y
)]

(22)

for y � x, while its energy ε1(U = ∞) = ε
(sp)
1 + ε

(sp)
2 is

the sum of the single-particle ground- and first-excited-state
energies. Of course, ψk1,1k2,1 (x,y) always retains its bosonic
symmetry with respect to exchange of x and y. Thus, the
ground-state wave function of the (interacting) bosonic and of
the corresponding (interaction-free) fermionic system coincide
in modulus, but have opposite signs for x > y.

B. Physical observables

In our analysis of tunneling decay, we initially prepare the
ground state |ψ(t = 0)〉 = |ψk1,1k2,1〉, Eq. (17), of two bosons in
the isolated left well (V0 = ∞) at a given interaction strength
U , and monitor the ensuing dynamics after the potential
barrier is instantaneously set to V0 = 0.1. To distinguish
uncorrelated single-particle tunneling from correlated two-
particle tunneling, we define—according to Fig. 1(b)—the
following observables: The probability P1(|ψ(t)〉) that both
particles are in the left well [i.e., in region (1)], the probability
P2(|ψ(t)〉) that one boson is in each of the wells [i.e., in region
(2)],11 and the probability P3(|ψ(t)〉) that both bosons are
located in the right well [i.e., in region (3)],

P1(|ψ(t)〉) =
∫

I
dx

∫
I
dy |ψ(x,y,t)|2, (23)

P2(|ψ(t)〉) = 2
∫

I
dx

∫
III

dy |ψ(x,y,t)|2, (24)

P3(|ψ(t)〉) =
∫

III
dx

∫
III

dy |ψ(x,y,t)|2. (25)

10These numerical results perfectly agree with the analytical re-
sult (18).
11As is apparent from Fig. 1(b), region (2) consists of two subregions.

Justified by the bosonic symmetry of the wave function ψ(x,y,t), we
integrate solely over one of them; hence in Eq. (24), the factor of 2
appears.

For example, uncorrelated tunneling of the two bosons would
manifest in a transition (1) → (2) → (3), i.e., first P2 would
rise and then P3, while correlated pair tunneling would corre-
spond to a direct transition (1) → (3), i.e., P2 would remain
zero during the time evolution. Due to the normalization of
ψ(x,y,t), the Pi sum up to unity.

These truly two-particle quantities are complemented by
the experimentally easily measurable [37] number of bosons
in the left well,

N�(t) =
∫ �

0
dx ρred(x,x,t) = P1(t) + 1

2
P2(t), (26)

which is normalized to a maximal value of one 1 (i.e.,
N� = 1 corresponds to two bosons in the left well) and
where ρred(x,x,t) is the diagonal part of the reduced density
matrix (20). With this normalization, N�(t) is the two-particle
counterpart of the single-particle quantity P�(t) [see Eq. (9)].
Further measures based on the reduced single-particle density
matrix are introduced in Sec. VI B.

V. DECAY OF TWO INTERACTING PARTICLES I:
SPECTRAL PROPERTIES

We now turn to the main object of our present study, the
tunneling decay of two interacting bosons. We in particular
wish to clarify which continuum states actually support the
decay, and under what conditions correlated tunneling of a
boson pair is observed, rather than independent tunneling of
the particles. Taking the symmetric double well as starting
point, we gradually increase the width r of the right well
and monitor the transition from tunneling oscillations to the
regime of particle loss (r � �), much as in the single-particle
case studied in Sec. III. In what follows, we will first analyze
characteristic spectral properties and then, in Sec. VI, turn to
the ensuing dynamics for vanishing and repulsive interaction
strengths U .

A. Participation ratio

In complete analogy with Sec. III, we analyze the partici-
pation ratio PR (and its weighted versions PRi) of the initial
state. The definitions (8) of the PR and (10) of the PRi directly
carry over to the two-particle case. The only difference is
that, in Eq. (10), the index is not i = r,l but i = 1,2,3, since
the configuration space is no longer partitioned into left and
right, but consists of the three distinct regions (1), (2), and
(3) [see Fig. 1(b)]. Accordingly, we replace in Eq. (10) the
probabilities Pr,� with P1,2,3 [see Eqs. (23)–(25)], and the
{cn} now represent the expansion coefficients of the initial
state |ψ(0)〉 in the two-particle energy eigenbasis {|En〉} of
the double-well potential, obtained from diagonalization of
Hamiltonian (1). As argued in our discussion of Eq. (10), the
PRi yield the number of eigenstates that mediate the time
evolution, weighted with their overlap with the respective
regions (1), (2), or (3).

It will prove beneficial to identify the components of
the eigenfunctions |En〉 in terms of the eigenstates of the
uncoupled double well (V0 = ∞). To ease the discussion we
label the latter as

|ai,bj 〉. (27)
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FIG. 5. (Color online) Two-particle case: The participation ratio
PR [magenta, see Eq. (8)] of the initially left-localized state
|ψ(0)〉 (17), as well as its weighted versions (see the beginning of
Sec. V A for definition) PR1 (black), PR2 (red), and PR3 (blue), for
different widths r of the right well, U = 0.2, l = 51, b = 2, and
V0 = 0.1. The dashed cyan curve represents a fit with a second-order
polynomial y = ax2 + bx + c; see the discussion of Eq. (C3). Note
that the width r is sampled at larger intervals for r > 1000. The
inset shows a magnification for r < 150. At these small values of
r , one can clearly distinguish peaks of different widths in the PR,
which we refer to as resonances. Since broad resonances also appear
in PR2, we associate these with single-particle tunneling. Narrow
resonances dominate the PR3 and are thus identified with two-
particle tunneling; see text. As the width r increases, the resonances
overlap, which renders exclusive one- or two-particle tunneling
unlikely.

In this notation, a (b) bosons occupy the ith (j th) eigenstate
of the isolated left (right) well, at given interaction strength
U . The initial state, for example, corresponds to |ψ(t = 0)〉 =
|21,0〉, where the component |21〉 is given by the two-particle
ground state (17). It is important to realize that in a (un)coupled
double-well potential, only states of the types |2i ,0〉 and
|0,2i〉—where both bosons are in one well—depend on the
interaction U , while the energy of a state |1i ,1j 〉 is insensitive
to the short-ranged contact interaction. Hence, the energy of
the latter is simply the sum of the single-particle energies
ε

(sp)
i + ε

(sp)
j ,12 and each of the components |1i〉 (|1j 〉) corre-

sponds to the single-particle wave function |χ�
i 〉 (|χr

j 〉) (see
Sec. III A).

All four participation ratios PR and PRi are plotted in
Fig. 5 versus the width r of the right well, for the initially
left-localized state |ψ(0)〉 (see Sec. IV) and an exemplary
interaction strength U = 0.2.13

To familiarize ourselves with the quantities at hand, we
first consider intermediate widths r < 150 of the right well
(see inset), where one can resolve single resonances in the

12Here, ε
(sp)
j is given by Eq. (5), but with � replaced by r .

13As long as the interaction is repulsive U > 0, one merely observes
quantitative differences in the PR, concerning, e.g., the position and
height of its peaks. For the special case of noninteracting particles
(U = 0), the PR shows equally spaced resonances of similar width
as in the single-particle case, but now the three states |21,0〉, |0,2i〉,
and |1i ,1j 〉 participate.

PR. As in the single-particle case, they indicate that the initial
state |ψ(0)〉 is in resonance with an eigenstate of the uncou-
pled system. Accordingly, we expect pronounced tunneling
only for the resonant configurations (see the discussion in
Sec. III B).

Yet the appearance of markedly distinct resonance widths
is striking: Broad resonances occur in the PR at r ≈
65,95,130, . . . and are accompanied by broad maxima of
PR2. In turn, the narrow resonances in PR, found at r ≈
51,75,90,98,113, . . ., go along with marked peaks in PR3. The
weighted participation ratios unequivocally show that broad
resonances result from the initial state |ψ(0)〉 being resonant
with a state of type |11,1i〉 [region (2)] while narrow resonances
indicate that the resonance condition with a state of type |0,2i〉
[region (3)] is met.

The emergence of different widths constitutes a major
observation and a fundamental difference with respect to the
single-particle case (compare Fig. 2), in which a sequence of
equally spaced resonances of monotonically increasing width
was observed (see also Footnote 6). There, we had to consider
only resonances between eigenstates of the isolated left and
right wells. In the notation of (27) this amounts to resonances
between |11,0〉 and |0,1i〉 states. In the two-particle case,
not only the resonances between |21,0〉 and |0,2i〉 but also
those between |21,0〉 and |1i ,1j 〉 states have to be taken into
account.

Given that, the origin of the different widths is explained by
a simple argument: The resonance width reflects the coupling
strength between the participating states. Tunneling of a single
particle is a first-order process of large coupling strength (and
broad resonances), while the (two-particle) pairwise tunneling
observed for repulsive interactions represents a second-order
single-particle process of substantially smaller coupling and—
correspondingly—narrow resonances.14 More precisely, we
have found that the two states |21,0〉 and |0,2i〉 are primarily
coupled via off-resonant states of the type |11,1i〉. This is
corroborated by the observation that, for configurations for
which the PR displays narrow resonances, PR2 also assumes
values on the order of 1, i.e., states of the type |11,1i〉 are also
involved in the time evolution. In other words, the observed
pairwise tunneling does not correspond to a direct tunneling
process from region (1) to region (3), but rather involves an
intermediate visit to region (2), although the corresponding
probability P2(t) is small for all times.15 A similar situation
is found in the so-called chaos-assisted tunneling [58], where
tunneling between regular parts of the underlying phase space
is mediated by quantum states which populate the chaotic part
of phase space.

That is, we can tell by the width of the resonance
whether single-particle or pairwise tunneling prevails, and we
confirmed this prediction by the direct time evolution of the
initial state, for various configurations. The reader is warned

14This is consistent with the observation that the pairwise tunneling
(in the symmetric double well) displays much larger oscillation
periods (determined by the coupling strength between the wells) than
the corresponding single-particle tunneling processes [59].
15For the symmetric double well, we shall report on this in detail

elsewhere.

043626-8



TUNNELING DECAY OF TWO INTERACTING BOSONS . . . PHYSICAL REVIEW A 87, 043626 (2013)

though that, in order to observe the (second-order) pairwise
tunneling, states of the type |1i ,1j 〉 should be far off-resonant
with the initial state. Otherwise, the dynamics is dominated
by the (first-order) single-particle tunneling which, due to the
larger coupling, is a faster process.

For large widths r > 150, the overlap between consecutive
resonances grows and the peaks smear out. Among the
weighted quantities, PR3 exhibits the strongest increase and
quickly approaches PR, while PR1 drops—much as in the
single-particle case. PR2 increases on average and, most
importantly, does not drop below a level of 1. This is a
first indication that pure two-particle loss is unlikely to be
observed in the dynamical evolution, since the contributing
eigenstates have nonvanishing overlap with all three regions of
configuration space. That is, |ψ(0)〉 generally is in resonance
with |0,2i〉- and |11,1i〉-type states. A priori, this does not
exclude simultaneous one- and two-particle tunneling. Given
our above conjecture that single-particle coupling is much
stronger than two-particle coupling, the former is likely
to dominate the tunneling process. In the next section we
elaborate on this point, and further develop our spectral picture
of the decay of interacting bosons.

B. Density of states

Let us now attempt to quantify the density of those states
(DOS) in the quasicontinuum which respectively support
single- and two-particle tunneling. This is essential if we want
to convert the participation ratio into a decay rate as in Eq. (13),
derived above in Sec. III B for the single-particle case. At
the same time, the DOS is of fundamental interest since it
represents a key ingredient in the physics of decaying systems;
see, e.g., Ref. [51]. To this end, we elaborate on the projections
Pi(|En〉) of the eigenstates [obtained by inserting the |En〉 in
Eqs. (23)–(25)] on the three regions of configuration space
as defined by Fig. 1(b). For the exemplary case of U = 0.2
(used before) and a broad right well r = 3000 (� = 51), the
corresponding quantities Pi(|En〉) are plotted versus the total
energy En, in Fig. 6(a).

Up to a threshold energy of E = 0.0033, we find that
P3(|En〉) = 1. As the probabilities Pi(|En〉) sum up to unity, the
corresponding eigenstates are entirely localized in region (3),
i.e., they are of type |0,2i〉. Above this energy, P2(|En〉) > 0
indicates eigenstates |1i ,1j 〉 that (partially) populate region (2)
where one boson is in each well. To zeroth order16 (and in good
agreement with the numerical results), this threshold energy is
given by the single-particle ground-state energy in the left well
ε

(sp)
1 = 3.79 × 10−3 as given by (5). By the same argument, the

first peaks in P1(|En〉)—corresponding to eigenstates partially
localized in region (1), i.e., with both bosons in the left
well—are observed only at about the energy of the two-particle
ground state in the isolated left well ε1 = 0.0139 [see the
lowest curve in Fig. 4(b)].

16In this estimation of the lowest total energy of a |1i ,1j 〉 state, we
neglected the tunneling coupling and the ground-state single-particle
energy of the right well, which—due to the large width—is very small
compared to ε

(sp)
1 ; cf. Eq. (5).
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FIG. 6. (Color online) Top: Spatial projections Pi(|En〉) [see
Eqs. (23)–(25)] of the eigenstates |En〉 of the asymmetric double well
versus the corresponding energies En, for r = 3000 and otherwise the
same parameters as in Fig. 5. Up to approximately the single-particle
ground-state energy of the left well, ε

(sp)
1 = 0.0038 (vertical dashed

line), all particles are predominantly localized in the right well
[region (3)], since P3(|En〉) = 1. Above this energy, P2(|En〉) > 0
indicates eigenstates which (partially) populate region (2), with one
boson in each well. The first peaks in P1(|En〉)—corresponding to
eigenstates with a doubly occupied left well—appear at about the
energy of the two-particle ground state in the isolated left well,
ε1 = 0.0139 [see Fig. 4(b)]. Middle: The integrated single- (red)
and two-particle (blue) densities of states, for the same parameters
as in (a). Please note the two y-axis scales. Solid lines represent
the numerical results (29) and (30), while symbols correspond to
the theoretical predictions (C1) and (C3). We note that, for our
specific choice of parameters, the peak in P1 of (a) (given by the
two-particle energy ε1) accidentally coincides with the kink in n(sp)

which results from the first excited single-particle state with energy
ε

(sp)
2 = 0.0152. Bottom: Only a fraction of the expansion coefficients

|cn|2 of the initial state in the double well’s two-particle eigenstates
[see Eq. (6) and Footnote 1] take nonzero values in the relevant
energy window around E = ε1 = 0.0135. The dashed line represents
a Lorentzian curve of width γ = 5.9 × 10−4 (31). See text for details
on the extraction of γ .

We cast this information into a density of states ρ(E) of
the environment, i.e., of the right well. Later we will rather
consider the integrated DOS

n(E) =
∫ E

E0

dE ρ(E), (28)

which is less fluctuating. Specifically, we are interested
in the single-particle quasicontinuum—where only one bo-
son escaped from the left well—and in the two-particle
quasicontinuum—where both particles are located in the broad
right well.

The theoretical expressions for the single- ρ
sp

th (E) and two-
particle ρ

tp

th (E) densities of states are derived in Appendix C,
based on a noninteracting environment. This is, of course,
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a conceptually fundamental assumption to be tested in the
following. It seems plausible, however, to assume that the ex-
tremely short-ranged, repulsive interaction in Hamiltonian (1)
plays, if at all, a secondary role for the energy of the spatially
extended continuum states.

In Fig. 6(b), we compare the theoretical predictions (C1)
and (C3) to the numerical results n

sp
num(E) and n

tp
num(E). The

latter are obtained from the integration of the corresponding
curves in Fig. 6(a), explicitly

nsp
num(E) =

∑
m

[P2(|Em〉)θ (E − Em)], (29)

ntp
num(E) =

∑
m

[P3(|Em〉)θ (E − Em)]. (30)

For the single-particle quasicontinuum, the agreement between
theoretical (C1) and numerical results (29) is very good.
The predicted energy gap and consecutive kinks are clearly
observed, merely their position is slightly shifted to smaller
energies with respect to the theoretical values given by Eq. (5).
This shift results from the (tunnel) coupling between the wells
which is neglected in the derivation of (C1).17

For the two-particle quasicontinuum, we find almost perfect
agreement between n

tp
num(E) and n

tp

th(E), although the latter
was derived for noninteracting particles. For very large values
of the interaction U = 1—when the ground state is close to be-
ing fermionized—we observe that the integrated DOS n

tp
num is

shifted to smaller values with respect to n
tp

th(E) and thus a gap at
E = 0 opens. This shift originates from the interactions in the
right well [see Sec. IV and Fig. 4(b)] and vanishes for r → ∞.
More importantly, the slope ρtp(E) = dntp/dE, remains the
same, i.e., the two-particle density of states in the quasicontin-
uum is unaffected by U . Furthermore, the gap decreases with
increasing width r . This consolidates our initial assumption
that a contact interaction is of minor importance in the DOS
of a very broad well which, ideally, stretches out to infinity.

According to our strategy which proved successful in the
single-particle case of Sec. III C, the DOS together with the
participation ratios PR and PRi should yield the dynamical
decay rate γ of, say, the particle number N�(t). Inspection
of the wave function’s expansion coefficients |cn|2 in the
two-particle eigenstates of the double well [see Eq. (6)] in
Fig. 6(c) unravels a fundamental difference with respect to the
single-particle case. In contrast to the latter case (see the inset
of Fig. 2), only a fraction of the cn take a finite value, within the
relevant energy window around the two-particle ground-state
energy E = ε1 = 0.0139. As a result of the vanishing |cn|2
the two-particle DOS (C3) overestimates the number of
effectively contributing states. This prevents proceeding
as in the single-particle case through Eqs. (11) and (12):
To identify γ with the quotient of the participation ratio
and (in this case overestimated) DOS would underestimate
the decay rate γ . Nonetheless, we extract a resonance
width

γ = 5.9 × 10−4 (31)

17The observed shift diminishes as we decrease the coupling
between left well and quasicontinuum, e.g., by increasing the barrier
height V0.

from the central 50% 18 of the expansion coefficient’s
distribution |cn|2 [see Fig. 6(c)], and comment on its role in
the dynamical evolution in the next section.

What, at first sight, appears to be a further complication,
de facto much elucidates the intricate tunneling mechanism:
We have found that the vast majority of vanishing components
within the resonance width originate from quasicontinuum
states that do have the appropriate two-particle energy of the
right well, εn ≈ ε

(sp)
i + ε

(sp)
j

19 but their constitutent single-

particle energies ε
(sp)
j do not match the momenta ki,j that enter

the energy ε1 (19) of the initial state |ψ(0)〉. This demonstrates
that—unlike in the single-particle case—it is not enough
to consider the total energy εn of the initial (two-particle)
state alone, as the greater part of the energetically matching
two-particle states of the right well actually do not couple to
the initial state, due to the mismatch between the underlying
single momenta. Put differently, tunneling decay in the two-
particle case is not about resonances between the total two-
particle energies but, rather requires the individual matching
of the two momenta ki,1 in the left well to the momenta in the
quasicontinuum.

In that sense, we are dealing with a case of single-particle
tunneling, for which the interparticle correlations play a minor
role. At the same time, this matching principle—which we
schematically illustrate in Fig. 7—is of genuine two-body
nature as it crucially relies on the individual properties (like,
e.g., increased energy) of the two-particle wave vectors. To
properly interpret the illustration, we note that the assumption
of uncorrelated single-particle tunneling implies that the initial
|21,0〉 state is not directly converted into two-particle quasi-
continuum states, but via intermediate states of type |11,1i〉.

Let us summarize the main message of the spectral analysis:
For moderate values of the width r , isolated resonances
exist in the PR, and pairwise two-particle tunneling from
the initially prepared ground state |ψ(0)〉 can be expected for
appropriate choices of the system parameters r , �, and U . In
the quasicontinuum case of r → ∞ and repulsive interactions,
resonances strongly overlap; compare Fig. 5. Although only
a fraction of the two-particle continuum states was found to
actually support the particle decay, the growing PR2 and PR3

indicate that—irrespective of r—the initial state couples to
both the single- and the two-particle continuum.20

We therefore develop the intuition that states which are
transformed into each other by one single-particle process are
considerably more strongly coupled than those which require
a second-order process. In total, we thus expect (second-order)

18Specifically, we evaluated γ from the condition
∫ x0+γ /2

x0−γ /2 |cn|2dEn =
0.5. Here, the center (i.e., the median) of the distribution, x0, is
determined by

∫ x0
−∞ |cn|2dEn = 0.5.

19If we ignore the influence of the repulsive interaction in the
environment as above, the true two-particle energy εn can be replaced
by a sum of two single-particle energies of the right well ε

(sp)
j , given

by Eq. (5), but with � replaced by r .
20We remark that this is in perfect agreement with Fig. 6(b) which

shows that, at the energy ε1 = 0.0139 of the initial two-particle
ground state in the left well, |0,2i〉- and |11,1i〉-type states are
available in the continuum, i.e., both are in resonance with |ψ(0)〉.
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(a) single-particle case (b) two-particle case matching

nonmatching

FIG. 7. (Color online) Sketch of tunneling decay in the single- and two-particle cases. Left: A single particle is prepared in the ground
state of the left well (energy is marked by the bold black line). For finite barrier height, the ground state couples to all eigenstates of the
right well within the resonance width (red curve) and the magnitude of the coupling elements is indicated by the bold red lines. Middle: Two
interacting particles are prepared in the two-particle ground state (red) of the isolated left well at energy ε1 = (k1,1)2 + (k2,1)2 (19). The energies
(ki,1)2 corresponding to the momenta ki,1 (18) are marked in black. For finite barrier height, and assuming mainly uncorrelated tunneling of
the particles, the two-particle ground state does not couple to all two-particle eigenstates of the right well within the resonance. Instead, the
overlap (indicated by the bold red lines) is appreciable only for those states which are composed of single-particle eigenstates of the right well
with single-particle momentum components which match those ki,1 of the initial state. Right: The top panel illustrates a “matching” eigenstate
(black) of the right well, i.e., a large overlap, with corresponding (single-particle) energies of the right well marked in blue. The bottom panel
illustrates a “nonmatching” eigenstate of the right well, where the corresponding single-particle energies (blue) are highly off-resonant with
respect to the energies (ki,1)2 of the left well (black).

pairwise loss to be less generic than uncorrelated first-order
tunneling to the quasicontinuum.

VI. PARTICLE LOSS OF TWO INTERACTING BOSONS II:
DYNAMICS

Up to this point we have not discussed the time evolution
of two-particle loss, a topic which has only recently gained
momentum. First experiments range from atom loss off large
Bose-Einstein condensates, induced by electron scattering
[60] or photoionization [15], to the tunneling-induced loss
in highly controlled few-fermion systems [37]. Only a handful
of theoretical works treat the full-fledged microscopic decay
problem considered here, and they rely on the propagation
of the time-dependent Schrödinger equation either by direct
integration [39], by combining a matrix-product state approach
with Bose-Hubbard-like chains [40], or via multiconfigura-
tional Hartree-Fock methods [41,42].

In this section, we complement the results of our spectral
analysis by the associated time evolution which we obtain by
the spectral decomposition (7) of the initial state (17) [but
now for the two-particle quantities, resulting from the exact
diagonalization of (1)], and comment on existing results as
we proceed. We use the same initial state as in the spectral
analysis (see Sec. IV B), and the same width r = 3000 of the
right well, which we also considered in our analysis of the
single-particle dynamics in Sec. III.

A. Decay of the particle number N�(t) and the two-particle
probabilities Pi (t)

We start the discussion with an experimentally easily
measurable quantity: the normalized number of bosons N�(t)
in the left potential well (26). This quantity is plotted in
Fig. 8(a), on a semilogarithmic scale, for various values of
the interparticle interaction strength U . For U = 0, N�(t)
decays exponentially with the decay rate of the single-particle
ground state γ

(sp)
1 (15) (indicated by the dotted line). This is

not surprising since, in the interaction-free case, the system

should effectively reduce to a single-particle problem.21 As
U increases, however, pronounced deviations from a (straight-
line) exponential behavior arise, especially for times t < 5000.
The second striking feature is that all curves asymptotically
assume the same slope.

Insight is provided by the two-particle probabilities
Pi=1,2,3(t) = Pi(|ψ(t)〉) which—by virtue of the defini-
tion (26)—determine N�(t). For the sake of visual clarity,
we present the results for the exemplary value of U = 0.2 in
Fig. 8(b). Initially, the probability P1(t) of finding both bosons
in the left well drops. At the same time, the probability P2(t)
that one particle is located in the left and one in the right well
increases. Only after that does the probability of finding both
bosons in the right well, P3(t), rise. The key observation [39]
is that P2(t) becomes considerably large, independently of the
interaction strength U . We conclude that, to a large extent, the
bosons do not leave the trap as a pair—corresponding to a direct
transition between regions (1) and (3)—but sequentially leave
the trap, i.e., through regions (1) → (2) → (3). This confirms
our prediction based on the spectral analysis of the preceding
section which we further substantiate in the following: Namely,
for U � 0, the predominant loss mechanism is uncorrelated,
i.e., independent, tunneling of the bosons [39,41,42] albeit the
presence of interactions.

With the help of the Pi(t), we can now readily explain the
short- and long-time behavior of the particle number N�(t). The
former will be essentially determined by the probability P1(t)
which (in agreement with [39]) is found to decay exponentially
for all values of U . We remind the reader that the initial state
of the two bosons ψk1,1k2,1 (x,y) is characterized by the two
wave vectors k1,1 and k2,1. Encouraged by the result of our
spectral analysis and the behavior of the Pi(t), we assume
an independent-particle picture as in [39], and associate a
separate decay constant γki,1 with each wave vector. That is,

21Effects that arise from the indistinguishability of (non- and
infinitely strongly interacting) particles are discussed, e.g., in [61–64].
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FIG. 8. (Color online) Particle loss of two interacting bosons in an asymmetric double-well potential, in which the broad right well emulates
the continuum. The time evolution is obtained from diagonalization of (1) with l = 51, b = 2, and r = 3000, and the particles are initially
prepared in the ground state of the isolated left well (see Sec. IV) Left: The normalized particle number N�(t) (26) in the left well, versus time
t , for various values of the interparticle interaction strength U . For vanishing interaction, an exponential decay is observed. As the interaction
increases, pronounced deviations from the interaction-free exponential behavior arise. To guide the eye, the dash-dotted (dashed) line indicates
an exponential decay with a rate corresponding to the single-particle ground (single-particle ground plus first excited) state [see Eqs. (15), (16),
and (33)]. Right: For the exemplary interaction strength U = 0.2, we plot the probabilities Pi(t) = Pi(|ψ(t)〉) to find the particle in the three
regions (1)–(3) of configuration space corresponding to two, one, and zero bosons populating the left well, respectively [see Eqs. (23)–(25) and
Fig. 1(b)]: The strong initial increase of P2(t) compared to P3(t) indicates that the particles predominantly tunnel in the sequence (1)→(2)→(3).
That is, they tunnel sequentially and not as a correlated boson pair.

the probability P1(t) of finding both particles in the left well
is given by the product

P1(t) = e−γ U t = e−γk1,1 t e−γk2,1 t , (32)

where the ki,1 depend on U via Eq. (18).
Let us first consider the trivial case U = 0. Here, both

particles are in the single-particle ground state |χ�
1 〉, and the

decay is determined by the corresponding single-particle rate
given by (15), i.e., γk1,1 = γk2,1 = γ

(sp)
1 . For intermediate values

0 < U < ∞, the U dependence of the rates can be inferred
from Fig. 4(a): The momentum k2,1 is largely independent of
U and given by the single-particle ground-state momentum;
hence we have γk2,1 ≈ γ

(sp)
1 . In contrast, the momentum

k1,1—and thus the associated energy k2
1,1—grows with U ,

leading to an increase of γk1,1 (since the effective barrier
height experienced by the particle is decreased). This growth
continues until, at large values of U , the system is fermionized
and γk1,1 takes the value of the decay rate γ

(sp)
2 associated with

the single-particle first excited state (16). In total, the decay of
P1(t) therefore increases with U and takes the limiting cases

P1(t) =
{

e−2γ
(sp)
1 t , U = 0,

e−[γ (sp)
1 +γ

(sp)
2 ]t , U = ∞.

(33)

One thus finds that, for short times t , the (for nonvanishing
U larger) rate γk1,1 dominates the time evolution of N�(t), and

defines an upper limit (γ (sp)
1 + γ

(sp)
2 ) for the initial decay rate

[indicated by the dashed line in Fig. 4(a)].
Concerning the long-time evolution, we assume that, after

the first boson left the trap, the remaining one populates the
single-particle ground state.22 Hence, this second boson decays

22This assumption is substantiated further on, in Sec. VI B, in the
analysis of the reduced density matrix in energy space.

with the single-particle decay rate γ
(sp)
1 . Put differently, the loss

out of region (2) is governed by γ
(sp)
1 , i.e.,

P2(t � 1) ∝ e−γ
(sp)
1 t . (34)

In agreement with our numerical simulations, the U -
independent, smaller decay rate γ

(sp)
1 ≈ γk2,1 (dash-dotted line)

governs the asymptotic behavior of Nl(t � 1) for all values of
U � 0.

From the preceding discussion, we cannot but conclude that
the assumption of uncorrelated tunneling very well reproduces
the observed decay of the particle number inside the left well.

We point out that our results on N�(t) and P1(t) excellently
agree with those of Ref. [39], in which a δ-like potential
barrier was considered. In contrast, Refs. [41,42,65] do not
mention such nonexponential decay of the particle number
N�(t). Neglecting the different trap geometry, the parameters
used in the main part of [42] roughly correspond to interatomic
interactions of the order of U ≈ 0.05; inspection of Fig. 4(a)
reveals that, for U ≈ 0.05, the difference in the wave vectors
ki,1 is comparatively small. Thus also the rates γk1,1 and γk2,1

barely differ, making it difficult to observe nonexponential
decay. In the associated Supporting Information of [42],
the time evolution for two bosons and a sevenfold-larger
interaction strength is reported in Fig. S2. A careful reanalysis
of the data (semilogarithmic plot) reveals that the decay indeed
consists of two exponentials, as discussed above, leaving no
inconsistencies.

We note in passing that we determined the decay rate of
P1(t) by an exponential fit to be

γ U=0.2 = 6.8 × 10−4, (35)

which is in good agreement with the spectrally extracted
width (31) of the Lorentzian curve in Fig. 6(c). As we
explain in Appendix D, this indicates that for our setup,
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FIG. 9. (Color online) Reduced single-particle quantities of the two-boson decay. Left: Integrated diagonal d(x,t) (36) of the reduced
single-particle density matrix ρred(x,x,t) versus position x, for different evolution times t and interparticle interaction strengths U , for
otherwise the same parameters as in Fig. 8. For vanishing interactions, the particles leave the left well independently and with the same
probability. Hence, one observes a continuous increase of d(x,t). In contrast, for U = 0.2, the bosons tunnel to the right well at different
rates and different asymptotic momenta. This leads to a spatial separation in the quasicontinuum, manifest in the plateau around the interval
x ∈ [1500,2400] (for t = 15 000). Right: The diagonal ρred(E,E,t) (37) of the reduced single-particle density matrix in energy representation
versus the energy E, for the same parameters and color code as in (a) and (b). In the interaction-free case U = 0, one observes a dominant
Lorentzian-shaped peak at ε(sp)

1 (dashed vertical line) which comprises about 98% of the total probability and a smaller peak at ε(sp)
2 (dash-dotted

vertical line). The reduced probability density ρred(E,E,t) does not change in time, and hence all curves fall on top of each other. For repulsive
interactions, the initial distribution is qualitatively similar to the case U = 0. During intermediate times t < 6000, the interaction energy is
transformed into kinetic energy and the distribution ρred(E,E,t) changes. As a result of this conversion process, two peaks emerge, located at
the energies associated with the two wave vectors k2

2,1 ≈ ε
(sp)
1 and k2

1,1 ≈ ε1 − ε
(sp)
1 (dash-double-dotted vertical line) which constitute the initial

state. Each of the peaks in the asymptotic distribution comprises 50% of the probability, which corroborates the picture of two asymptotically
independent particles.

the probability P1(t) corresponds to the survival probability
Psurv = |〈ψ(0)|ψ(t)〉|2.

B. Reduced density matrix in coordinate and energy space

We now wrap up the discussion of the decay dynamics
with two complementary reduced single-particle observables.
These are potentially more easily accessible in experiment
than, e.g., the two-particle probabilities Pi(t). On the other
hand, they add to the understanding of the time-resolved
tunneling process. We start with the integrated diagonal d(x,t)
of the reduced density matrix ρred(x,x), i.e.,

d(x,t) =
∫ x

0
dx ′ ρred(x ′,x ′,t), (36)

which denotes the probability of finding—at a given time
t—a boson in the interval [0,x] of configuration space.
Consequently, as long as d(x,t) increases with x (for fixed
t), there is a nonvanishing probability that a boson resides at
the position x. As will become clear in the next paragraph,
when seen as a function of time, d(x,t) visualizes how the
bosons leave the left well. We finally note that d(�,t) = N�(t),
as the left well stretches from x = 0 to x = �.

In the left panels of Fig. 9, we plot d(x,t) versus the position
x, for various times t and two representative values of U .
To familiarize ourselves with the quantity at hand, we first
consider the interaction-free case U = 0, shown in Fig. 9(b).
For example, d(51,15 000) ≈ 0.2, that is, at time t = 15 000,
about 80% of the particles have tunneled through the potential
barrier located at x = 51. More importantly, d(x > 51,t)
shows a monotonic increase in x for all (fixed) times. Since for
U = 0, the two bosons are in the same single-particle (ground)
state [see Eq. (21)] and do not interact with each other, this

constitutes our reference case of two bosons leaving the left
well with the same probability.

Contrast this with repulsively interacting bosons [U = 0.2,
Fig 9(b)]: As time evolves, a plateau at d(x,t) ≈ 1/2 emerges;
see, for example, the magenta curve (t = 15 000) around x ∈
[1500,2400]. According to the definition of d(x,t), this implies
that the probability of finding a particle within this plateau is
about zero. Put differently, with probability one-half one finds
a boson between x = 0 and x = 1500 and equally likely a
boson can be detected between x = 2400 and x = 3000. This
behavior nicely fits our picture developed above, in which
the bosons independently leave the trap but (for U > 0) with
different loss rates γki,1 . For even larger times, this plateau is
stretched and the two particles are further separated, indicating
that they travel at different speeds.

To corroborate this statement and to complement the
discussion on the particles’ spatial distribution, we finally
discuss the fingerprint of the particle loss in energy domain—
let aside the advantage that the energy (i.e., the momentum) of
a single particle may be easier to measure than its position. For
this purpose, we consider the reduced single-particle density
matrix in energy representation:

ρred(E,E′,t) = T (E,x)ρred(x,y,t)T †(E′,y), (37)

T being the unitary basis transformation from configuration
space to the energy domain.

In what follows, the reader is warned that the reduced
quantities are associated with measurements on a single
particle. While even a single boson carries some information
on the total system (due to symmetrization), the reduced
quantities do not reflect correlations between the particles,
e.g., the probability that both particles have the same energy,
cannot be deduced from ρred. Here, we focus on the diagonal
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elements ρred(E,E,t), i.e., the probability density of finding
one particle with energy E. In the right panels of Fig. 9 we
present ρred(E,E,t) versus E, for the same parameters as in
Figs. 9(a) and 9(b).

Paralleling the discussion for d(x,t), we take the
interaction-free case [Fig. 9(c)] as our starting point. Initially,
the two bosons populate the left well and the two-particle initial
state |ψ(0)〉 is characterized by the two momenta k1,1 and k2,1.
For U = 0, the latter are identical and furthermore coincide
with the momentum k

(sp)
1 of the single-particle ground state

[see Fig. 4(a)]. Intuitively, one would thus expect to observe a
peak in ρred(E,E,0) at the corresponding energy ε

(sp)
1 (dashed

vertical line). Indeed, we identify one dominating, Lorentzian-
shaped peak (comprising about 98% of the probability23),
located slightly below ε

(sp)
1 . As we already remarked in Sec. III,

this energy shift results from the coupling of the left well to
the quasicontinuum and increases with the energy of the initial
state [see also Footnote 17]. The remaining probability is con-
tained in the second, inferior peak, situated close to ε

(sp)
2 (dash-

dotted vertical line). We remark that this peak would as well
appear in a truly single-particle calculation and results from
a finite overlap of the initial state |ψ(0)〉 and quasicontinuum
states that also involve excited single-particle states of the left
well. These minor corrections aside, intuition does not fail us.
More importantly than the position of the peaks, ρred(E,E,t)
does not change its shape as time evolves: All curves exactly
fall on top of one another. Accordingly, both bosons follow
the same energy distribution at all times, that is, they move
with the single-particle ground-state momentum through the
quasicontinuum, as expected for the noninteracting case.

How do repulsive interactions alter this picture [U = 0.2,
Fig. 9(d)]? In contrast to the case U = 0, the initial momenta
k1,1 and k2,1 no longer coincide with the single-particle
momenta k

(sp)
i (i.e., with the ε

(sp)
i ) and one is tempted to

expect a direct manifestation thereof in the initial distribution
ρred(E,E,0). Yet the difference in ρred(E,E,0) compared to
the case U = 0 seems marginal: For t = 0, we still observe
two peaks at the same positions as before, save that the main
peak centered around ε

(sp)
1 now comprises only about 90% of

the probability.24 The reason why the ki,j do not emerge is that,
at t = 0, only single-particle eigenstates of the left well can
be populated on the reduced single-particle level. Only after
the particles tunnel to the right well are quasicontinuously
distributed states available, and every energy component
can contribute to the (reduced single-particle) dynamics.
In accordance with the warning issued after Eq. (37),
ρred(E,E,0) rather reflects the interaction-induced finite
contribution of |χ�

2 〉 to the initial state |ψ(0)〉 than the (truly
two-particle) momenta ki,1.

23The probability comprised by each peak is calculated via inte-
gration of ρred(E,E). As integration boundaries, we take the middle
between the centers of neighboring peaks.
24The largest part of the remaining probability is contained in the

second peak [which is increased with respect to Fig. 9(c)] while
higher than first excited single-particle eigenstates contribute with
considerably less weight.

The influence of the interaction becomes fully apparent as
time evolves: The peak at ε

(sp)
1 declines25 while the one at

ε
(sp)
2 entirely vanishes, and a new one centered around the

energy E = 9.7 × 10−3 emerges. The change in the shape of
ρred(E,E,t) clearly indicates that energy is being redistributed
among the particles. In the independent-decay picture, the
particle that remains in the left well populates the single-
particle ground state, i.e., it has energy ε

(sp)
1 ≈ (k2,1)2. Due to

energy conservation, the boson that tunneled out of the left well
should carry the energy ε1 − ε

(sp)
1 ≈ (k1,1)2. Indeed, we can

associate the emerging peak with the latter energy, while the
first peak still corresponds to the ground-state energy ε

(sp)
1 , in

good agreement with the result of [42]. Our interpretation that
the two peaks represent the two bosons is corroborated by the
fact that (for times t > 6000) each peak comprises half of the
probability. We furthermore found that the energy widths of the
two (asymptotically) Lorentzian peaks in ρred(E,E,t) approx-
imately equal the two decay constants γ U and γ

(sp)
1 associated

with the decay of the two particles. All three observations
concerning the position, integrated area, and width of the
peaks in ρred(E,E,t) further substantiate the picture of uncor-
related, independent decay of the bosons. Hence, ρred(E,E,t)
represents an experimentally easily measurable quantity which
bears substantial information on the tunneling decay.

Let us now take a closer look at the energy conversion
which takes place during the tunneling process. Initially, both
bosons populate the left well, and interact with each other.
Once they tunnel to the right well, their interaction energy is
converted into kinetic energy. This process lasts until t ≈ 6000,
when the second peak grows and takes a Gaussian shape [see
the red curve in Fig. 9(d)]. For larger times (t � 6000), one
may imagine that the boson with the larger decay rate has
completely tunneled to the right well and is moving at a larger
momentum ≈k1,1. This is also approximately the time when
the plateau in d(x,t) appears [see Fig. 9(b)]. Then the bosons
cease to interact, and the peak takes its asymptotic Lorentzian
shape. As a result, the interaction part of the total energy (1)
effectively vanishes at these large times and we find

〈ψ(t)|Hsp ⊗ 1̂ + 1̂ ⊗ Hsp|ψ(t)〉 = 2 tr(Hsp ρred) = ε1. (38)

That is, the total energy ε1, determined by the initial state,
is given by twice the average single-particle energy, which is
certainly not the case for smaller times, when the particles still
interact.

As a last remark, we have numerically confirmed that, for
r → ∞, the repulsive interactions between the bosons in the
right well have almost no effect on the loss dynamics.26 Hence,
it is well justified to ignore them, which is in perfect agreement
with our results from Sec. V B, where both the single-particle
and the two-particle densities of states of the quasicontinuum
proved almost independent of U . While we stress that this
result was derived only for δ-like interactions, the possibility
of neglecting interactions in the environment greatly simplifies

25This decline is less pronounced on the logarithmic scale, but can
be inferred from the increasing second peak.
26We set U = 0 in the right well, and found almost no difference

with respect to the curves of Fig. 8.
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perturbative approaches to the loss dynamics, such as a master
equation ansatz.

Summarizing this section, we have found that repulsive
interactions strongly modify the loss dynamics and lead to
a multiexponential decay of the boson number. Notwith-
standing, the dominant decay mechanism is found to be
uncorrelated tunneling of single particles. That is, in none of
the studied examples was significant correlated two-particle
loss observed. Recalling the spectral analysis of the previous
section, both single- and two-particle tunneling were found
to be energetically possible. Yet the simple physical picture
developed in Sec. V turns out to be correct: single-particle
tunneling—as a first-order process—wins over the slower
two-particle process of second order and thus constitutes the
dominant tunneling mechanism.

VII. SUMMARY AND DISCUSSION

In the present work we studied the tunneling of two
ultracold bosons, initially prepared in the left site of a
one-dimensional double-well potential, as the width of the
right well was gradually increased in subsequent realizations
of the trap geometry. Seen from the left well, a broad
right well mimics an unconfined configuration space (i.e.,
an environment) with a dense quasicontinuum of states to
which the particles escape. Through the numerically exact
diagonalization of the full two-body Hamiltonian, we could
identify those quasicontinuum states which actually support
this decay and expose the role played by the repulsive
interactions. We could also conclude that the many-body decay
process is governed by independent tunneling of the bosons
rather than by tunneling of a boson pair. We briefly review the
main points.

As a starting point and frame of reference, we first
investigated the single-boson case. In the participation ratio
PR of the initial state, we found a simple spectral tool to
predict particle dynamics: Its maxima with respect to the
width r of the right well, termed resonances, reliably indicate
those trap geometries for which substantial tunneling occurs.
Still isolated at comparable widths of the two wells, the
resonances increasingly overlap as the quasicontinuum r →
∞ is approached. This was identified as a spectral signature of
the transition from tunneling oscillations to tunneling decay.
The rate of the corresponding exponential particle loss was
extracted from the asymptotic growth of the PR and found to
be in good agreement with the associated time evolution as
well as with analytical results.

In the main part of this work, we then analyzed the case
of two bosons, initially prepared in the two-body ground state
of the isolated left well. As a first major difference compared
to the single-particle case, the participation ratio PR exhibits
resonances of two different widths. We introduced the concept
of configuration-space-sensitive participation ratios PRi and
unequivocally identified narrow resonances with second-order
pairwise tunneling, and broad resonances with uncorrelated
first-order tunneling.

In the quasicontinuum limit of a broad right well, the
resonances of each kind were found to overlap, which implies
that a priori both single-particle and two-particle states of
the continuum are available for the loss dynamics. This

statement was corroborated by the excellent agreement of our
analytically and numerically evaluated single- and two-particle
density of states, which furthermore proved to be independent
of the interparticle interaction U .

As a second major difference with respect to the single-
particle decay, we showed that not all energetically allowed
quasicontinuum states contribute to the tunneling, but only a
small fraction thereof. It was found that this fraction is deter-
mined by the condition that the single-particle energies, which
underlie the quasicontinuum, match the energies associated
with the two-particle momenta ki,1 of the initial state.

We complemented our spectral analysis with the study of
the associated time evolution. In agreement with previous
works [39], we found that depending on U , the initial decay
of the boson number in the left well N�(t) fundamentally
deviates from the (interaction-free) exponential behavior,
while the asymptotic decay of two bosons was found to be
exponential and interaction independent. The results were
explained in terms of the interaction-dependent two-particle
wave vectors ki,1. We furthermore showed that the essential
characteristics of the two-particle loss process can be extracted
from measurements of reduced single-particle quantities and
elaborated on the conversion from potential to kinetic energy
during the tunneling process.

In combining the results of the static (spectral) and dynamic
analyses, we developed a simple and clear picture of the
tunneling decay: The repulsive interactions first and foremost
modify the energy of the bosons which eventually determines
their tunneling rate and final momenta. That is, although
the initial state is of truly two-body nature, the tunneling
decay is well reproduced by associating the two-particle wave
vectors ki,1 with independent particles. Furthermore, through
appropriate choice of the system parameters, (second-order)
tunneling of a boson pair may be enforced for moderate
asymmetries of the trap where the resonances are still isolated.
The particle loss, however, is dominated by single-particle
tunneling which (as a first-order process) wins over the slower
two-particle process of pair tunneling.

Experimentally, quantum systems of few ultracold
particles have recently been realized for arbitrary values of
the interparticle interactions [11] and the loss process of the
first particle has already been monitored [37]. Although even
box-shaped potentials seem experimentally feasible [8–10],
our observations should not qualitatively depend on
the specific form of the trapping geometry. Hence, an
experimental investigation of the few-body decay is realizable
with state-of-the-art technologies. Besides the decay, the
isolated resonances in the participation ratio for comparable
widths of the two wells demonstrate an experimentally
feasible way to address—in a controlled way—two- and
single-particle tunneling by changing the geometry of the
trap, rather than tuning additional magnetic fields.

In closing, let us outline future directions of this research
area. First, the fraction of pair tunneling in the loss dynamics—
as low as it may be—should be determined in a future
study together with a prescription to experimentally detect it.
Second, due to their inherent symmetry, bosonic systems ex-
hibit particle bunching [66], even for massive, noninteracting
bosons [67,68]. One may thus very well ask to what extent
the interaction-induced fermionization process observed in
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the present setup modifies the bunching behavior. Intimately
related is the dependence of the dynamics on initially prepared
states different from the ground state of the left well, e.g.,
excited states or noneigenstates [40,69]. Third, we here
considered a δ-like interaction which represents the simplest
two-body interaction. What will happen when more complex
(e.g., long-range, Coulomb) interactions come into play? First
results exist for the so-called escape dynamics [70] (a precursor
of tunneling decay in which the confining potential is suddenly
switched off and particles escape to free space). A recent study
[71] indicates that charged ultracold bosons in continuous
potentials may exhibit quantum chaotic behavior (much like
that observed in quantum lattice models; see, e.g., [32]), which
may also alter the decay process [72]. Similarly, the study of
attractively bound boson pairs [73] would be of both experi-
mental and theoretical interest. For example, will the tunneling
break the bonding or will the particles tunnel as a pair?

We finally point out a long-term objective of eminent
computational relevance. While the decay of a small number
of bosons can still be treated exactly [42] or within a Bose-
Hubbard-type modeling [40], the microscopic dynamics of
larger boson numbers is beyond numerical reach. The observed
(predominantly) uncorrelated single-particle tunneling decay
might advance the development of perturbative approaches,
such as a master equation. Without resorting to heuristically
introduced approximations, one should base the master equa-
tion ansatz on the energy-dependent loss rates described above
and compare the outcome to existing results.
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APPENDIX A: TWO-BODY HAMILTONIAN

The most general two-boson Hamiltonian reads:

H =
∫

dx �†(x)Hsp� (x)

+
∫

dx

∫
dy �†(x)�†(y)W (x,y)� (x)� (y), (A1)

where �(†)(x) are bosonic field operators which annihilate
(create) a boson at position x and Hsp is the single-particle
Hamiltonian defined in Eq. (2). The second term accounts
for the interaction W (x,y) between the two particles with
coordinates x and y, respectively. We construct the two-
particle Hamiltonian by expanding the bosonic field operators
in (A1) in terms of the eigenfunctions E

(sp)
j (x) = 〈x|E(sp)

j 〉 of
the single-particle Hamiltonian Hsp, i.e.,

� (x) =
∑

j

ajE
(sp)
j (x). (A2)

This yields

Htp =
∑

j

E
(sp)
j a

†
j aj +

∑
i,j,l,m

gijlma
†
i a

†
j alam, (A3)

where E
(sp)
j are the single-particle eigenenergies and gijlm is

the matrix element that accounts for the contact interaction
W (x,y) = Uδ(x − y) [see the discussion after (3) in the main
text] between the particles, i.e.,

gijlm = U

∫
dx

(
E

(sp)
i (x)E(sp)

j (x)
)∗

E
(sp)
l (x)E(sp)

m (x). (A4)

In our numerical treatment, we retain the lowest ncut single-
particle eigenfunctions leading to a two-particle Hilbert space
of dimension (ncut)(ncut + 1)/2 which is spanned by the basis
{S(|E(sp)

m 〉 ⊗ |E(sp)
n 〉)}. Here {|E(sp)

m 〉} is the single-particle
energy eigenbasis, S is the symmetrization operator, and
n � m = 1, . . . ,ncut. In this approach, convergence is reached
when the results do not change upon further increase of ncut.
Typically, several hundred single-particle states are taken into
account, which enables us to study a broad range of repulsive
interactions U . We note that this treatment goes far beyond
the single-band approximation often assumed in the context of
ultracold atoms, e.g., within the Bose-Hubbard approach [74].

APPENDIX B: ANALYTICAL TREATMENT
OF SINGLE-PARTICLE LOSS

For an infinitely broad right well (r → ∞), we can readily
formulate the single-particle loss as a scattering problem. In
each of the three intervals I, II, and III of configuration space
[see Fig. 1(a)], we make a (textbooklike) plane-wave ansatz
for the single-particle wave function:

ψ(x) =
⎧⎨
⎩

A exp(−ikx) + B exp(ikx), x ∈ I,
C exp(−κx) + D exp(κx), x ∈ II,
F exp(−ikx) + G exp(ikx), x ∈ III,

(B1)

with κ2 = V0 − k2. The postulated continuity of ψ(x) and
its first derivative at the borders of the intervals yields four
equations for the six coefficients A to F . We are seeking purely
outgoing solutions and thus fix the amplitude F (k) = 0. The
latter equation has solutions k̃

(sp)
n that lie in the complex plane,

leading to complex energies Ẽ
(sp)
n = (k̃(sp)

n )2 whose imaginary
part corresponds to the decay rate of the nth eigenstate |χ�

n〉 of
the isolated left well.

APPENDIX C: TWO- AND SINGLE-PARTICLE
DENSITIES OF STATES

In this appendix, we derive theoretical expressions for the
single- and two-particle densities of states in the quasicon-
tinuum, which correspond to one and two particles having
escaped from the left well, respectively. The comparison to
our numerical data is found in Sec. V B; see the discussion of
Fig. 6.

We assume that the single-particle quasicontinuum is
formed by product states |χ�

n〉 ⊗ |χr
m〉 of the single-particle

eigenstates of the left and right wells. This assumption neglects
the tunneling coupling and is thus strictly valid only for
uncoupled wells. The interaction between bosons in the left
and right wells, on the other hand, can be safely ignored since
we are dealing with a contact potential in Hamiltonian (1).
According to Eq. (12), the |χr

m〉 determine the integrated
single-particle DOS of the right well. Since we would like to
obtain the integrated DOS as a function of the two-particle
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energy E, we have to additionally take into account the
energy of the states |χ�

n〉. By summing over all combinations
{n,m} with total energy below a fixed value E, we obtain the
integrated DOS of the single-particle quasicontinuum,

n
sp

th (E) = r

π

∑
m

[√
E − ε

(sp)
m θ

(
E − ε(sp)

m

)]
, (C1)

where the ε
(sp)
m are the eigenenergies of the isolated left well

[see prior to Eq. (6)] and θ (·) is the Heaviside step function.
We note that the latter implies an energy gap of size ε

(sp)
1 and

potentially also discontinuities (kinks) at consecutive energies
ε

(sp)
n .

For the two-particle continuum, an analytical expression
is more involved, as the two-particle eigenenergies result
from (19) and the coupled equations (18). Instead, let us
assume for the moment that the contact interaction plays a
secondary role as far as the energy is concerned, since the
right well consists of the spatially extended quasicontinuum
states. We shall discuss the validity of this assumption in the
main text. Then, for two noninteracting bosons, the associated
two-particle density of states is given by [75,76]

ρ
tp

th (E) = 1

2

[
[ρ(sp) � ρ(sp)](E) + 1

2
ρ(sp)

(
E

2

)]
, (C2)

where � indicates the convolution and ρ(sp) is the single-
particle density of the right well; see the definition (12) with
� replaced by r . After a short calculation, we obtain the
integrated two-particle density of states in the quasicontinuum,

n
tp

th(E) = 1

2

(
r2

4π
E + r

2π

√
2E

)
. (C3)

Two remarks on this result are in order: First, Eq. (C2)
predicts a second-order polynomial increase of ρ

tp

th (E) with
r . Recalling the behavior of PR in the quasicontinuum limit
of the single-particle case [see around Eq. (13)], we deduce
that the PR in the two-particle problem should grow with
the same functional dependence on r . This is confirmed
by the fit with a second-order polynomial in Fig. 5. Thus,
values of r � 1000 should be well in the quasicontinuum,
i.e., suitable to study particle loss. Second, we note in passing
that in the limit of an infinitely large well r → ∞, one finds
n

tp

th(E) ∝ E. Not surprisingly, the resulting constant DOS for
two (noninteracting) particles in a one-dimensional system is
exactly the DOS of one particle in two dimensions.

APPENDIX D: WEAK-COUPLING REGIME AND
SURVIVAL PROBABILITY

We here discuss the link between the probability of
finding all particles in the left well and the so-called survival
probability

Psurv(t) = |〈ψ(0)|ψ(t)〉|2, (D1)

which denotes the probability of finding the system at a
given time t in the initial state |ψ(0)〉. The former probability

corresponds to P1(t) in the two-particle case and to P�(t) in
the single-particle case.

We begin with the single-particle case for which, according
to Eq. (6), the initial state (i.e., an eigenstate |χ�

i 〉 of the isolated
left well) can be expanded as∣∣χ�

i

〉 = |ψ(0)〉 =
∑

n

cn

∣∣E(sp)
n

〉
, (D2)

where {|E(sp)
n 〉} are the eigenstates of the total system, i.e., of

the single-particle Hamiltonian Hsp (2).
Next, we remark that our setup fulfills the so-called weak

coupling condition between the left well (system) and the right
well (environment): That is, for the low energies considered
here, the projection of every eigenstate |E(sp)

n 〉 onto the left
well is either almost zero or approximately proportional to an
eigenstate |χ�

j 〉 of the isolated left well. The latter implies that

the level spacing �n = ε
(sp)
n+1 − ε

(sp)
n of consecutive eigenstates

of the isolated left well is much larger than the width of the
corresponding Lorentzian distribution of the coefficients |cn|2.
Otherwise, the Lorentzian distributions of adjacent low-lying
levels would significantly overlap. In that case, the projection
of an eigenstate |E(sp)

n 〉 (with energy in the latter overlapping
interval) onto the left well could yield superpositions of |χ�

j 〉.
We formulate the weak-coupling condition for those eigen-

states |E(sp)
n 〉 for which cn �= 0 as

E(sp)
n (x) ≈ bn

∣∣χ�
i (x)

〉
for x ∈ [0,�] , (D3)

bn being the proportionality factor. From (D3) and (D2) it
follows that bn approximately equals the expansion coefficient
cn,

cn ≈ bn. (D4)

We highlight two major implications of the latter relation: On
the one hand, we find for each eigenstate |E(sp)

n 〉 of the total
system with cn �= 0:

P�

(∣∣E(sp)
n

〉) =
∫ �

0
dx

∣∣E(sp)
n (x)

∣∣2 = |bn|2 ≈ |cn|2. (D5)

If (as in our case) the coefficients |cn|2 are Lorentzian dis-
tributed, so is the probability P�(|E(sp)

n 〉) (for each nonvanish-
ing component); see Footnote 7.

On the other hand, we can show that P�(t) and Psurv(t)
approximately coincide:

P�(t) =
∫ �

0
dx |ψ(t)|2

=
∑
n,m

c∗
ncm

∫ �

0
dx E(sp)∗

n (x)E(sp)
m (x)ei(E(sp)

n −E
(sp)
m )t

(D3)≈
∑
n,m

c∗
ncmb∗

nbmei(E(sp)
n −E

(sp)
m )t

∫ �

0
dx χ�

i (x)χ�
i (x)

(D5)≈
∑
n,m

|cn|2|cm|2ei(E(sp)
n −E

(sp)
m )t

=
∣∣∣∣∣
∑

n

|cn|2e−iE
(sp)
n t

∣∣∣∣∣
2

= Psurv(t), (D6)
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where we used that the {cn} and {bn} are real numbers,
due to the real-valued Hsp in configuration space (for a
finite configuration-space basis, a real symmetric Hamiltonian
matrix). The last line of (D6) directly implies that (see, e.g.,
[77])

Psurv(t) = ∣∣FT
[|cn|2δ

(
E(sp) − E(sp)

n

)]∣∣2
, (D7)

i.e., the survival probability is the (absolute value squared of
the) Fourier transform (FT ) of the so-called local density of

states ρloc(E) = |cn|2δ(E(sp) − E
(sp)
n ). A Lorentzian distribu-

tion of the coefficients |cn|2 (see the inset of Fig. 2) thus implies
an exponential decay of Psurv(t) and—in the weak-coupling
approximation—an exponential decay of P�(t).

For two bosons, the identical calculation is performed by
replacing ε

(sp)
n → εn, E

(sp)
n → En, χ�

n(x) → ψk1,1k2,1 (x), and
P�(t) → P1(t). That is, the relations (D5) and (D6) directly
carry over to the two-particle case, for which the survival
probability is (almost) identical to the probability P1(t) of
finding both bosons in the left well.
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[14] T. Gericke, P. Würtz, D. Reitz, T. Langen, and H. Ott, Nat. Phys.

4, 949 (2008).
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