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Spin model in the effective staggered magnetic field in optical lattices
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Ultracold atoms with two hyperfine internal states in optical lattices are proposed to demonstrate a two-
dimensional spin-1/2 model under a transverse effective staggered magnetic field. The transverse magnetic field
is produced by a Raman process and can be modulated by the intensities of the additional light fields. This optical
lattice protocol can investigate magnetic quantum phenomena induced by the effective staggered magnetic field
in a wider parameter range with controllable interaction between the spins of the nearest-neighbor atoms.

DOI: 10.1103/PhysRevA.87.043625 PACS number(s): 03.75.Mn, 67.85.Hj, 42.50.Ct, 75.10.Jm

I. INTRODUCTION

The theoretical and experimental work [1–4] on the
superfluid–Mott-insulator phase transition opens the new way
to simulate complex many-body physics in an ultracold atom
system under controllable conditions. In certain limits, spin
models [5–10] can be obtained with two-state bosonic or
fermionic atoms in an optical lattice. A great deal of research
has been done to simulate this pseudospin behavior in optical
lattices, such as magnetically ordered states [11–13], bosons
and fermions in Kagomé optical lattices [14,15], antiferro-
magnetic spin chains [16,17], superexchange in superlattices
[18,19], and so on.

The phenomena induced by magnetic fields have been
considerably studied theoretically and experimentally for a
long time in condensed-matter physics. Recently, there is
increasing interest in the effects of the staggered magnetic
field motivated by the experimental work on a number of
materials. An effective staggered g tensor and a staggered
Dzyaloshinskii-Moriya interaction give rise to the effective
staggered magnetic field [20–25]. Generally, the magnitude
of the staggered field depends on the relative direction and
magnitude of the applied uniform magnetic field on the
sample. In the quasi-one-dimensional case, for the spin-1/2
system, the magnetic phenomena under the staggered magnetic
field have been explored [20,26–29]. The staggered magnetic
field induces an excitation energy gap in the spin systems,
which has been observed in crystal materials [21–23]. In the
two-dimensional case, considering the interchain interaction
[30–32], there are different physical phenomena [33–36]
from the one-dimensional (1D) chain case. Quantum phase
transition occurs due to the competition between the interchain
coupling and the staggered magnetic field. The power-law
dependence of the excitation energy gap is different also.

In this work we shall study a controllable spin-1/2 model
in a tunable transverse effective staggered magnetic field
for the two-dimensional (2D) system with two component
ultracold atoms trapped in optical lattices. We consider a
protocol that the additional σ−-polarized light fields along
the z direction are applied to the ultracold atoms of two
hyperfine internal states (denoting the effective spin states)
trapped in xy plane by a standing-wave configuration formed
by π -polarized laser beams. The frequency of the additional
lights is two-photon resonant with x-direction trapping lights

and is two-photon large detuned with the other trapping lights.
Under the two-photon resonance condition, the additional
lights and the x-direction trapping lights drive the Raman
transition and induce an effective coupling between the two
hyperfine internal states. The distribution of the effective
coupling varies periodically along the x direction with the
period equal to the wavelength of the x-direction trapping
lights. The coupling is positive and negative staggered for
the atoms trapped in different optical potential wells, which
produces the transverse effective staggered magnetic field for
the spin system.

This protocol allows us to explore the fundamental physics
of the spin model in a wider range of parameter with the con-
trollable spin coupling intensity and the adjusting transverse
staggered magnetic field. The spin model can be realized using
this protocol which is difficult for the experimental realization
in condensed-matter physics.

The paper is organized as follows. In Sec. II we describe the
optical lattice setup and obtain the effective staggered coupling
between the two internal states of the trapped ultracold atoms.
In Sec. III, we give out the Hamiltonian of the spin model
under the transverse staggered field for the ultracold atomic
system and demonstrate the advantages of the model with the
independent and easily controlled parameters. In Sec. IV, we
summarize the work.

II. SETUP AND MODEL

In this section, we demonstrate the scheme in details that the
ultracold atoms of two hyperfine internal states are trapped in
xy plane with the additional light fields along the z direction.
We write out the Hamiltonian of the system and obtain the
effective spatially periodic coupling between the two hyperfine
internal states which induces the effective staggered transverse
magnetic field.

As shown in Fig. 1(a) the standing-wave configuration is
formed by counterpropagating π -polarized laser beams along
x, y, and z directions with the frequencies ω1, ω2, and ω2, and
the wave-vector values k1, k2, and k2. The polarizations of the
propagating fields along x, y, and z directions are orthogonal to
each other. The intensity of the standing wave along the z direc-
tion is large enough so that there is no hopping in this direction
and the atoms are confined in the xy plane. The spatial light
fields are E+

π (x,t) = Ex(x)e−iω1t + Ey(y)e−iω2t + Ez(z)e−iω2t
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FIG. 1. (Color online) (a) 2D optical lattices with two-component
ultracold atoms. The atoms are confined in the xy plane by the
π -polarized standing wave along z direction with frequency ω2. The
standing wave along x and y directions are formed by the π -polarized
fields with different frequencies ω1 and ω2. The additional σ−-
polarized fields are applied to the system counterpropagating along
z direction with frequency ω3. (b) Energy-level scheme of atoms
interacting with π -polarized trapping fields (the solid blue arrows
with x-direction fields; the dotted green arrows with y- and z-direction
fields) and interacting with σ−-polarized additionally applied fields
(the dashed red arrows). The frequencies ω3, ω1 of the additional
fields and the trapped fields along x direction satisfy the condition of
two-photon resonance ωc = ω3 − ω1.

with Ex(x) = Ex(eik1x + e−ik1x), Ey(y) = Ey(eik2y + e−ik2y),
and Ez(z) = Ez(eik2z + e−ik2z). An ensemble of ultracold
atoms with two hyperfine internal states |b〉 and |c〉 is
trapped in the xy plane standing-wave configuration. The
additionally counterpropagating σ−-polarized lasers are ap-
plied on the systems along the z direction. The light field
is E+

σ (z,t) = Eσ (z)e−iω3t and Eσ (z) = E0(eik3z + e−ik3z) with
the frequency ω3 and the wave-vector value k3. The frequencies
of the additional lights and x-direction trapping lights satisfy
the two-photon resonance condition ωc = ω3 − ω1 with ωc the
energy spacing of the internal states |c〉 to |b〉. The frequency of
the trapping lasers along y and z directions is two-photon large
detuned, i.e., |�| � 0 with � = ω3 − ω2 − ωc. An effective
coupling between the two internal states |b〉 and |c〉 can be
induced by the additional lights and the x-direction trapping
lights under the two-photon resonance condition.

We consider the case of bosonic atoms of the hyperfine
internal states |b〉 and |c〉 with the magnetic quantum numbers
mf = −1 and mf = −2, respectively, in details. This is
the same as the condition of fermionic atoms with the

two appropriate hyperfine internal states. The energy-level
configuration of the bosonic atom is shown in Fig. 1(b). By the
selection rules, the transition from the state |b〉 to the excited
state |a〉 and the transition from state |c〉 to the excited state |u〉
are driven by the additionally applied σ−-polarized lights. The
π -polarized trapping lights couple the ground state |b〉 to the
excited states |e〉 and couple the state |c〉 to the excited states
|a〉 with the position-dependent Rabi frequencies, respectively.
Under the case of two-photon resonance ωc = ω3 − ω1, an
effective coupling between the internal states |b〉 and |c〉 can
be induced by the Raman process of the additional fields
and x-direction trapping fields. Due to the large two-photon
detuning �, no effective coupling forms from the additional
lights and the y- and z-direction trapping lights. The effects of
the trapping lasers along y and z directions on the atom are the
periodical potentials with the period of λ2/2 (λ2 is the optical
wavelength). The Hamiltonian in terms of interaction of an
atom with the additional fields and the x-direction trapping
fields reads

H =
∑

μ=u,a,e,c

ωμσμμ

+
∑

μν=ac,eb

[�μν(x)e−iω1t σμν + H.c.]

+
∑

μν=ab,uc

[�μν(z)e−iω3t σμν + H.c.], (1)

where ωμ are the atomic energy-level spacings with respect
to the internal states |μ〉 to the ground state |b〉, respec-
tively, σμν = |μ〉〈ν|. The position-dependent Rabi frequencies
�μν(x) = −dμν · Ex(x) (with dμν = e〈μ|r|ν〉, μν = ac, eb)
are the couplings of x-direction trapping lights to the atom
between the internal states μ and ν. The Rabi frequencies
�μν(z) = −dμν · Eσ (z) (with dμν = e〈μ|r|ν〉, μν = ab, uc)
correspond the σ−-polarized lights coupling the internal
states μ and ν. For the system the Raman process by
the x-direction trapping lights and additional lights will
induce the effective coupling between the states |b〉 and |c〉.
The atoms in the internal states |b〉 and |c〉 are subjected to
the spatially periodical potentials induced by the π -polarized
standing-wave fields.

Using Fröhlich’s transformation [37], in the large detuning
case, the effective Hamiltonian Heff can be written as

Heff = Vπb(x)σbb + Vπc(x)σcc + [�eff(x)σbc + H.c.], (2)

where Vπb(x) ≈ Vπc(x) is the trapping potential of the atoms
in states |b〉 and |c〉 by π -polarized trapping lights along the
x direction, which is independent on the internal states of
the atoms. The trapping potentials are Vπb(x) = Vbx cos2(k1x)
with Vbx = |deb · Ex |2/�xeb and Vπc(x) = Vcx cos2(k1x) with
Vcx = |dac · Ex |2/�xac, which are periodically varied with
the period λ1/2 (λ1 being the wavelength of the x-direction
trapping lights). The detuning is �xμν = ω1 − (ωμ − ων)
(μν = eb,ac). Here we ignore the potentials Vσc(z) =
|�uc(z)|2/�uc and Vσb(z) = |�ab(z)|2/�ab with �μν = ω3 −
(ωμ − ων) (μν = ab,uc) for the internal states |b〉 and |c〉
induced by the σ−-polarized optical fields, which are much
less than the trapping potential along the z direction due to
the weak additional fields. The effective coupling intensity
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between the internal states |b〉 and |c〉 is

�eff(x) = �0 cos(k1x), (3)

where �0 =2[(dac · Ex)(dab · E0)∗/�xac+ (dac · Ex)(dab · E0)∗/
�ab] with z = 0 is adopted.

In the case of red detuning the effective coupling �eff(x)
is positive and negative staggered for the atoms trapped in
different optical potential wells and varies with the spatial
period λ1 along the x direction.

III. MAGNETIC PHENOMENA

In this section, we write out the spin model for the ultracold
atom system under the effective transverse staggered magnetic
field which is produced by the effective couple �eff(x) of the
two internal states |b〉 and |c〉. We demonstrate the advantages
of this model to study the magnetic phenomena induced by the
staggered field.

The atoms are confined in xy plane with enough in-
tense standing-wave fields along z direction and there is
no hopping in this direction. Considering the 2D case, the
trapping potentials for the atom in internal states |b〉 and |c〉
are Vb(x) = Vbx cos2(k1x) + Vby cos2(k2y) with Vbm = |deb ·
Em|2/�meb and Vc(x) = Vcx cos2(k1x) + Vcy cos2(k2y) with
Vcm = |dac · Em|2/�mac (m = x,y). The detuning is �yμν =
ω2 − (ωμ − ων) (with μν = eb,ac). Here the coordinates x =
{x,y}. Considering N atoms trapped, from the representation
(2) the second quantized Hamiltonian reads

H =
∑

μ=b,c

∫
dx 	̂†

μ(x)

[
− 1

2m
∇2 + V (x)

]
	̂μ(x)

+ 1

2

∑
μν = cc,

bb,bc

4πaμν

m

∫
dx 	̂†

μ(x)	̂†
ν (x)	̂ν(x)	̂μ(x)

+
[∫

dx �eff(x)	̂†
b(x)	̂c(x) + H.c.

]
, (4)

where V (x) is the trapping potential. For π -polarization trap-
ping lights there is V (x) = Vb(x) ≈ Vc(x). The Schrödinger
field operators 	̂μ(ν)(x) describe atoms with the internal states
|μ〉 (|ν〉); aμν are the corresponding scattering lengths between
the atoms with the internal states |μ〉 and |ν〉.

Using the single band and tight-binding approximation, we
can write the Hamiltonian in the Wannier presentations [2] as
follows:

H = −
∑
i,j

(t1c
†
i,j ci+1,j + t1b

†
i,j bi+1,j

+ t2c
†
i,j ci,j+1 + t2b

†
i,j bi,j+1)

+1

2

∑
i,j ;μ=b,c

Uμμni,jμ(ni,jμ − 1) + Ubc

∑
i,j

ni,jbni,jc

+
∑
i,j

(−1)i(�b
†
i,j ci,j + H.c.), (5)

where i and j denote the indexes of the atom site along
x and y -directions, ci,j , bi,j are annihilation operators
for the atom of internal states |c〉 and |b〉 localized on
site (i,j ), and ni,jb = b

†
i,j bi,j , ni,jc = c

†
i,j ci,j , t1, and t2 are

the tunneling between adjacent sites for particles along x

direction and y direction. Uμμ is the on-site interaction
between the two atoms of the same internal states |μ〉; Ubc

is on-site interaction between the different internal states
|b〉 and |c〉. The definitions of these parameters are given
Uμν = 4πaμν/m

∫
d2x|w(x)|4 (with μν = bb,cc,bc), t1 =∫

d2x w∗(x − xi,j )[−1/(2m)∇2 + V (x)]w(x − xi+1,j ), and
t2 = ∫

d2x w∗(x − xi,j )[−1/(2m)∇2 + V (x)]w∗(x − xi,j+1).
In the red detuned case, the induced tunneling between

the states |b〉 and |c〉 at nearest-neighbor site is omitted. The
coupling � is

� = eiφ

∫
d2x w∗(x)|�eff(x)|w(x), (6)

where w(x) = w(x)w(y) are localized Wannier functions and
φ is the phase of �eff(x). Here we consider the case φ = 0.

Quantum spin systems can be simulated by the ultracold
atoms in optical lattices. Considering the case 〈ni↑〉 + 〈ni↓〉 

1, corresponding to one atom per site, in the Mott-insulator
phase and the regime in which t,� � Ubb,Ucc,Ubc, from
Eq. (5) the effective Hamiltonian describing the spin can be
derived as [10]

H = −J1⊥
∑
i,j

(
Sx

i,j Sx
i+1,j + Sy

i,j Sy

i+1,j

) − J1z

∑
i,j

Sz
i,j Sz

i+1,j

− J2⊥
∑
i,j

(
Sx

i,j Sx
i,j+1 + Sy

i,j Sy

i,j+1

) − J2z

∑
i,j

Sz
i,j Sz

i,j+1

+
∑
i,j

(−1)ihxSx
i,j+

∑
i,j

hzSz
i,j , (7)

where the spin operators are Sz
i,j = 1/2(ni,jc − ni,jb), Sx

i,j =
1/2(c†i,j bi,j + b

†
i,j ci,j ), and S

y

i,j = −i/2(c†i,j bi,j − b
†
i,j ci,j ).

The parameters are

Jγ⊥ = ±4t2
γ

Ubc

, (8)

Jγz = 2

(
2t2

γ

Ubb

+ 2t2
γ

Ucc

− 2t2
γ

Ubc

)
, (9)

hx = 2�, hz =
∑

γ

8t2
γ /Ucc − 8t2

γ /Ubb, (10)

where γ = 1,2. The ± signs in the expression of Jγ⊥
correspond to the cases of bosonic and fermionic atoms,
respectively. This Hamiltonian describes the spin coupling
in a transverse staggered magnetic field and a z-direction
homogeneous magnetic field. We shall use this model to
investigate the effects induced by the staggered magnetic field
in an ultracold atom system.

Now we demonstrate the advantages of this model. In
Hamiltonian (7) all the parameters can be adjusted [6,10,38,39]
in a wider parameter range than those in the crystal materials in
condensed-matter physics. The transverse staggered magnetic
field is independent of the z-direction uniform magnetic
field, while in the crystal materials these two fields are
both proportional to the uniform magnetic field applied
to the sample. The value of hz can be modulated by an
additionally applied magnetic field and the values of hx can
be controlled by adjusting the intensity of the additional
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light fields. The magnitude of spin coupling intensity Jγ⊥
and Jγz is controlled [6] by modulating the intensities of
trapping light fields and by adjusting the scattering lengths
with the Feshbach resonance. Thus this protocol can explore
fundamental physical phenomena in a new physical regime
which is difficult to reach in condensed-matter physics and
simulate the new spin models in the staggered magnetic field
which have been only theoretically studied. The system can
also reduce to a 1D spin chain along x direction with y direction
confined by the strong enough standing-wave fields.

We consider a specific example. For the 2D fermionic
atoms, the couplings satisfy Jγ⊥ = Jγz = Jγ since Ubb,

Ucc � Ubc. The spin model (7) reduces to the Hamiltonian
(4) of Ref. [36] by selecting the magnetic field hz = 0.
This model has been theoretically studied with a continuous-
time Monte Carlo method; however, there is not yet an
appropriate material to investigate it. According to the results,
for the antiferromagnetic interchain interaction case, i.e.,
the y-direction spin coupling J2 being negative (J2 < 0),
the competition between the interchain coupling and the
staggered magnetic field results in quantum phase transition.
For a finite transverse staggered magnetic field, there are
two different phases; a symmetric phase and a spontaneous
symmetry-breaking (SSB) phase. The symmetric phase is that
the spins point in the directions of the transverse staggered
magnetic field and the SSB phase means the ordered phase
with spontaneous symmetry-breaking in the plane normal to
the staggered magnetic field. A phase-transition diagram was
given. We show it in Fig. 2 with the parameters in this ultracold
atoms system. A transverse staggered magnetic field lowers
symmetries and induces an excitation energy gap. Here the
dependent law of excitation energy gap is different from the
1D case for which the gap is � ∝ h

2/3
x . For the competition

case, i.e., the interchain coupling J2 being antiferromagnetic,
the gap opens at a finite value hc of hx and the dependence
law is shown in Ref. [36] for the region hx − hc<J2/2. Here
we show it in Fig. 3 by the energy-gap variation with the
effective coupling. Using this model, these phenomena can be
investigated in ultracold atom systems of two internal states
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FIG. 2. (Color online) Phase-transition diagram for competition
case, i.e., the interchain coupling is antiferromagnetic. Here we set
the coupling constant J1 as the energy unit. SSB denotes spontaneous
symmetric breaking in the plane normal to the staggered field.
Symmetric phase denotes that the spins are oriented in the staggered
field directions.
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effective coupling � for the competition case for different t2

2 /t2
1
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trapped in optical lattices. The ratio J2/J1 = t2
2 /t2

1 can be
easily controlled by adjusting the intensities of the trapping
fields along y and x directions.

Although spin models under the staggered magnetic field
have been considerably studied in condensed-matter physics,
the great advantage of the scheme for the ultracold atom
system is that one can investigate the physical phenomena
with the variation of the coupled strength between the spins
and with the variation of the independent transverse staggered
and longitudinal uniform magnetic fields, which allows one to
study the model in a wider parameter range experimentally.

IV. CONCLUSIONS

In summary, we propose a scheme to simulate the 2D
Heisenberg spin model in a transverse effective staggered
magnetic field with two component ultracold atomic system
trapped in optical lattices. The staggered magnetic field is
induced by the Raman process by controlling frequencies
and polarizations of the x direction trapped lights and the
additionally applied light fields. All the parameters including
the coupling intensity and the effective magnetic fields are
adjustable with the state-of-the-art experimental techniques.
The model also can be reduced to the 1D spin chain by enough
intense trapping fields in y direction. This scheme can provide
a clean and controllable environment to explore the fundamen-
tal magnetic phenomena induced by the effective transverse
staggered magnetic field in a new physical parameter regime.
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