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Staggered-ladder quasienergy spectra for generic quasimomentum
and quantum-dynamical manifestations
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A non-Poisson regular quasienergy spectrum is found for the generalized kicked particle under quantum-
resonance conditions at generic quasimomentum, a quantity most relevant in atom-optics experimental
realizations of kicked-rotor systems. The regular spectrum has the structure of a staggered ladder, i.e., it is
the superposition of a finite number of ladder subspectra all having the same spacing, which is independent
of the nonintegrability of the system. This spectral structure is shown to have distinct quantum-dynamical
manifestations: a suppression of quantum resonances and a dynamical localization characterized by unique
features such as traveling-wave components in the time evolution. These phenomena are found to be robust under
small variations of the quasimomentum and should therefore be experimentally observable using Bose-Einstein
condensates with sufficiently small quasimomentum width.
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The nature of the energy and quasienergy spectra of
quantum systems whose classical limit is nonintegrable has
been the subject of an enormous number of studies during
the last four decades. Classically integrable systems generally
feature “regular” energy spectra [1] with a Poisson level-
spacing distribution [2]. For completely chaotic systems, this
distribution is of Wigner type [3]. The distribution for systems
with a mixed phase space is, under some assumptions, a
weighted superposition of Poisson and Wigner distributions as-
sociated with the regular and chaotic phase-space regions [4].

For time-periodic quantum systems, the energy is replaced
by the quasienergy (QE), giving the eigenvalues of the
one-period evolution (Floquet) operator. Paradigmatic and
realistic models are the kicked-rotor systems [5–22] exhibiting
a variety of phenomena, the most well-known one being
dynamical localization [5], i.e., a quantum suppression of the
classical chaotic diffusion for irrational values of a scaled
Planck constant h̄s. This phenomenon can be attributed to
an Anderson-like localization of QE eigenstates in angular-
momentum space [6]. This localization was numerically found
to imply a Poisson QE level-spacing distribution [9]. Other
distributions were found for rational values of h̄s [10,11]. The
QE levels for rational h̄s actually correspond to bands [12],
giving a continuous QE spectrum. This leads to another well-
known phenomenon, quantum resonance [5,8,12], a quadratic
growth in time of the mean kinetic energy.

During the last two decades, kicked-rotor systems have been
experimentally realized using atom-optics techniques with
cold atoms or Bose-Einstein condensates (BECs) [16–22].
This allowed one to observe in the laboratory several quantum-
chaos phenomena, including dynamical localization and quan-
tum resonance [16], and to verify theoretical predictions. In the
experiments, the kicked rotor and variants of it were actually
realized as kicked-particle systems, since atoms move on lines
and not on circles like rotors. These realizations are based on
the fact that a kicked particle reduces to a generalized kicked
rotor at any fixed value of the conserved quasimomentum β

of the system [14] (see also below). The usual kicked rotor,
whose QE spectral statistics has been studied as mentioned
above, corresponds to the particular case of β = 0. However,

several important phenomena arise for arbitrary β and have
been experimentally realized [18–21]. Quantum resonance
strictly occurs for rational values of both h̄s and β [14,15]
but it has experimentally observable effects also for rational
h̄s and general β near the strict rational value if BECs with
sufficiently small quasimomentum width are used [18,19].

In this paper, we show that QE spectra for rational
h̄s and generic β exhibit a non-Poisson regularity having
several quantum-dynamical manifestations which should be
experimentally observable. This unusual regularity turns out
to significantly affect the QE spectra for generic β relative to
those for β = 0. We consider the generalized quantum kicked
particle, described by the Hamiltonian

Ĥ = p̂2

2
+ kV (x̂)

∞∑

s=−∞
δ(t − s), (1)

where x̂ and p̂ are scaled dimensionless position and momen-
tum operators ([x̂,p̂] = ih̄, with h̄ denoting a scaled Planck
constant), k is a dimensionless nonintegrability parameter,
and V (x̂) is a general 2π -periodic potential. We show that
the QE spectrum of (1) for rational h̄s = h̄/(2π ) and generic
β has a staggered-ladder structure, i.e., it is the superposition
of a finite number of ladder subspectra all having the same
spacing, which is independent of the nonintegrability kV (x̂).
For irrational β, each subspectrum is a dense ladder of levels
covering all the QE range. For strict quantum resonance,
i.e., rational β, each subspectrum is a finite ladder of bands
and essentially no ladder regularity occurs for β = 0 (see
Fig. 1). Staggered-ladder spectra were first discovered for the
Fokker-Planck equation [23] and consist of two ladders. In
our case, the number of QE ladders can be arbitrary. We show
that this QE spectral structure has distinct quantum-dynamical
manifestations: a suppression of quantum resonances and a
dynamical localization basically different from the known
one for irrational h̄s and β = 0 [5,6] in several features,
such as traveling-wave components in the time evolution.
These phenomena are shown to be robust under small
variations of β and should therefore be experimentally ob-
servable using BECs with sufficiently small quasimomentum
width.
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FIG. 1. (Color online) Dimensionless QE spectra ω of (1) as
functions of the scaled Planck constant h̄s = h̄/(2π ) for k/h̄ = 0.1,
V (x) = cos(x), and (a) β = 0 (usual kicked rotor); (b) β = 0.2,
featuring spectral ladders with dominant spacing �ω = 2π/5. These
ladders are indicated by the left and right solid (red) segments. In both
cases, h̄s takes all rational values in [0,1) with denominators �25.

We first summarize relevant known facts [14] about the
system (1). The one-period evolution operator for (1) is

Û = exp[−ip̂2/(2h̄)] exp[−ikV (x̂)/h̄]. (2)

The QE states �ω(x), with the QE ω ranging in the interval
0 � ω < 2π , are the eigenstates of (2):

Û�ω(x) = exp(−iω)�ω(x). (3)

The 2π periodicity of (2) in x̂ implies that �ω(x) can be chosen
to have the Bloch form:

�ω(x) = exp(iβx)ψβ,ω(x), (4)

where β is the quasimomentum (0 � β < 1), whose meaning
is briefly explained below, and ψβ,ω(x) is 2π periodic in x.
After inserting (4) into Eq. (3), one easily finds [14] that
ψβ,ω(x) is an eigenstate of

Ûβ = exp[−i(p̂ + βh̄)2/(2h̄)] exp[−ikV (x̂)/h̄] (5)

with eigenvalue exp(−iω). Due to the 2π periodicity of
ψβ,ω(x), one can interpret p̂ in Eq. (5) as an angular-
momentum operator with eigenvalues nh̄ (n integer). Then,
Ûβ is the evolution operator of a “β kicked rotor” with angle
θ = x and β is conserved during the evolution. To illustrate this
conservation and the physical meaning of β, assume an initial
momentum state φ(x) = exp(ipx/h̄). This can be written in the
form (4) as exp(iβx) exp(inx), where β and n are, respectively,
the fractional and integer parts of p/h̄. Then, after s kicks,
this state will evolve to a state having still the form (4) with
the same β: φ(x; s) = exp(iβx)ϕβ(x; s), where ϕβ(x; s) is 2π

periodic in x. The usual kicked rotor corresponds to β = 0.

We now introduce the operators T̂j = exp(2πij x̂/h̄) for all
integers j . From [x̂,p̂] = ih̄ or x̂ = ih̄d/dp, we see that T̂j

is just a translation exp(−2πjd/dp) in momentum by −2πj .
This implies that

T̂j e
−ip̂2/(2h̄) = e−ip̂2/(2h̄)e−2iπ2j 2/h̄e2πijp̂/h̄T̂j . (6)

In turn, since p̂ = −ih̄d/dx, exp(2πijp̂/h̄) in Eq. (6) is a
translation exp(2πjd/dx) in x by 2πj . Like T̂j , this translation
obviously commutes with V (x̂). Then, by applying T̂j to both
sides of (3), using (2), (4), (6), and the notation h̄s = h̄/(2π ),
we easily find that the state

T̂j�ω(x) = exp[i(β + j/h̄s)x]ψβ,ω(x) (7)

is an eigenstate of Û with QE

ωj = ω + 2πjβ + πj 2/h̄s mod(2π ). (8)

In addition, the state (7) can be written as a Bloch state
exp(iβjx)ψ (j )

βj ,ω
(x) having quasimomentum

βj = β + j/h̄s mod(1) (9)

and a 2π -periodic part (eigenstate of the βj kicked rotor)

ψ
(j )
βj ,ω

(x) = exp(injx)ψβ,ω(x), (10)

where nj is the integer part of β + j/h̄s.
For rational h̄s = l/q (l and q are coprime integers) and

j = rl (r arbitrary integer), Eqs. (8)–(10) reduce to

ωrl = ω + 2πrl(β + q/2) mod(2π ), βrl = β, (11)

ψ
(rl)
β,ω(x) = exp(irqx)ψβ,ω(x). (12)

Equation (11) means that the levels ωrl form a QE ladder
subspectrum of the β kicked rotor, with spacing independent
of the nonintegrability. For irrational β, the ladder (11) densely
covers the entire QE range. We show in what follows that ω

in Eq. (11) can take only q independent values, so that the
full QE spectrum of the β kicked rotor is the superposition
of q ladders (11). We start from the case of rational β. In
this case, we see that a ladder (11) consists of g levels with
spacing �ω = 2π/g, where g is the smallest integer such that
gl(β + q/2) is integer [see, e.g., Fig. 1(b) for β = 1/5]. For
β = 0, there are either no ladders (g = 1 for q even) or trivial
ladders with spacing �ω = π (g = 2 for q odd), so that almost
no ladder regularity occurs [see Fig. 1(a)].

Next, it is easy to check that the momentum translation
T̂gl = exp(igqx̂) commutes with the β-kicked-rotor evolution
operator (5). Then, using standard methods [8,12,24], one
can find simultaneous eigenstates of exp(igqx̂) and Ûβ with
respective eigenvalues exp(igqα) and exp[−iωb(α,β)]. Here
0 � α < 2π/(gq) and b = 1, . . . ,gq is an index labeling gq

QE bands ωb(α,β), each spanned by α. These gq bands give
the full QE spectrum of Ûβ . Since any QE ω must belong
to a ladder subspectrum (11) of g levels, it follows that the
QE spectrum is the superposition of q ladders of g bands
each; such a ladder is given by Eq. (11) with ω being one
of q bands ωc(α,β), c = 1, . . . ,q. As gq → ∞, the width of
each band should decrease and vanish as for the usual kicked
rotor (β = 0, g = 1 or 2) [12]. This holds exactly for q = 1
and general potential V (x̂) [15]. We have extensively checked
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FIG. 2. (Color online) Scaled mean kinetic energy S〈p̂2/2〉 (S
is a scaling factor) vs kick number for a zero-momentum initial
state, k = 5, V (x) = cos(x), h̄s = 1/2, and, in order of descending
curves: β = 0, S = 4 × 10−4; β = 1/2, S = 4 × 10−3; β = 1/3,
S = 0.01; β = 2 − √

3, S = 1 (dynamical localization). The inset
shows S〈p̂2/2〉 after 30 kicks vs �β = β − β0 in the first three cases
above: β0 = 0, S = 0.05; β0 = 1/2, S = 0.5; β0 = 1/3, S = 0.75 (in
order of descending curves).

numerically that it holds also for q > 1. The q finite band
ladders will then reduce to q dense ladders of levels in the
limit g → ∞ of irrational β.

Let us now consider quantum-dynamical manifestations of
this staggered-ladder QE spectrum. A band continuous spec-
trum leads to quantum resonance [12,14,15,18], a quadratic
growth in time of the mean kinetic energy of the β kicked
rotor. Due to the decrease and vanishing of the bandwidth as
g → ∞, the l/q quantum resonance for rational β �= 0 should
be generally suppressed relative to β = 0 and replaced by
dynamical localization for irrational β. This can be clearly
seen in Fig. 2. The inset of this figure shows that the
quantum-resonance suppression is visible for experimentally
realistic values [18] of quasimomentum uncertainty �β and
number of kicks.

The dynamical localization for irrational β is basically
different from the usual one for irrational h̄s [5,6] in several
aspects. First, all the QE eigenstates (12) are obtained by
applying the momentum translations exp(irqx) [with nh̄ →
(n − rq)h̄] to just q independent eigenstates corresponding
to the q independent values of ω giving the ladders (11). This
implies, e.g., that two initial momentum states differing by r ′qh̄

(r ′ integer) will evolve to states whose localized momentum
probability distributions coincide up to a momentum shift of
r ′qh̄. This is illustrated in Fig. 3 for q = 3 and r ′ = 5, assuming
a realistic quasimomentum width �β for BECs.

Second, the expectation value of any physical observable
for irrational β will evolve in time with a frequency (Fourier)
spectrum ν given by the differences of all q ladders (11):
ν = ωc − ωc′ + 2πrl(β + q/2) mod(2π ); here ωc and ωc′ are
any two of the q independent levels ω defining the ladders
(11) and r is an arbitrary integer. This gives a staggered-ladder
frequency spectrum which is symmetric around the central
ladder for c = c′: ν = 2πrl(β + q/2) mod(2π ). Clearly, this
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FIG. 3. (Color online) Dynamically localized momentum prob-
ability distributions, averaged over a quasimomentum width of
�β = 0.06, evolved after 20 kicks from the two momentum states
with p = 0 and p = −15h̄ for k = 5, V (x) = cos(x), h̄s = 1/3, and
β = 2 − √

3. Clearly, the distributions coincide up to a momentum
shift of 15h̄. The inset shows the localized momentum probability
distributions of the q = 3 independent QE eigenstates in this case.

ladder is completely independent of the nonintegrability, as
illustrated in Fig. 4.

Third, consider the most general wave packet associated
with a ladder subspectrum (11). This is an arbitrary linear
combination of the eigenstates (12):

φβ(x) = ψβ,ω(x)χ (x), (13)
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FIG. 4. (Color online) Fourier transform F (ν) of the mean kinetic
energy 〈p̂2/2〉 vs kick number for a zero-momentum initial state,
V (x) = cos(x), h̄s = 1/2, β = 2 − √

3, and (a) k = 5; (b) k = 8. The
arrows indicate the central ladder of frequencies ν = 2πrβ mod(2π ),
r = ±1, . . . , ± 4, clearly independent of the nonintegrability k.
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FIG. 5. (Color online) (a) Time (s) evolution of |φβ (x; s)|2, aver-
aged over a quasimomentum width of �β = 0.06, for k = 10, V (x) =
cos(x), h̄s = 1, β = 2 − √

3, initial state [1 + exp(−x)]/
√

4π , and
s = 0 (solid line), s = 1 (blue dashed line), s = 2 (red dot-dashed
line), and s = 3 (magenta dotted line). (b) Similar to (a) but with
the following changes: k = 0.1, h̄s = 1/2 (q = 2), and initial state
[1 + exp(−2x)]/

√
4π . In both cases, especially in case (a) for

q = 1, we see that a traveling-wave evolution occurs to a good
approximation.

where

χ (x) =
∞∑

r=−∞
cr exp(irqx), (14)

and cr are arbitrary coefficients. Using Eq. (11) and the fact
that (12) is an eigenstate of Ûβ with eigenvalue exp(−iωrl),
we find that after s kicks the wave packet (13) with (14) will
evolve to

φβ(x; s) = Û s
βφβ(x) = e−iωsψβ,ω(x)χ (x − β ′h̄s), (15)

where β ′ = β + q/2 mod(1). Thus, the evolving wave
packet (15) contains a traveling-wave component χ (x − β ′h̄s)

moving without change of shape at constant velocity β ′h̄.
We now show that this component is clearly exhibited by
|φβ(x; s)|2, without being masked by ψβ,ω(x) in Eq. (15), in
at least two cases. The first case is that of the main quantum
resonances h̄s = l (q = 1). Since the eigenvalues of p̂/h̄ in
Eq. (5) are integers, it is easy to see that Ûβ can be expressed
in this case as

Ûβ = exp(−iπlβ2) exp(−iβ ′p̂) exp[−ikV (x̂)/h̄]. (16)

The second exponential in Eq. (16) is just a translation in x by
−β ′h̄. We then get the exact result

φβ(x; s) = Û s
βφβ(x) = exp[−iηβ(x; s)]φβ(x − β ′h̄s), (17)

where ηβ(x; s) = πlsβ2 + k
∑s

m=1 V (x − β ′h̄m)/h̄. Thus,
one always has the exact traveling-wave behavior |φβ (x; s)|2 =
|φβ(x − β ′h̄s)|2 for general initial wave packet φβ(x) = χ (x),
given by Eq. (14) with q = 1.

The second case is that of arbitrary q for sufficiently small
nonintegrability k. In this case, the dynamical-localization
length for irrational β will be small and the QE eigenstate
ψβ,ω(x) in Eqs. (13) and (15) will be close to a pure angular-
momentum state exp(inx). Then, starting from the state
φβ(x) = exp(inx)χ (x), for any integer n and arbitrary χ (x) in
Eq. (14), |φβ(x; s)|2 should exhibit approximately a traveling-
wave evolution. Figure 5 shows that this evolution indeed holds
to a good approximation in the two cases considered even
when a realistic quasimomentum width of BECs is assumed.
The simple initial states used in Fig. 5 are superpositions of
two momentum states and can be experimentally realized as
described in works [17,19].

In summary, we have shown that steggered-ladder QE
spectra are exhibited by the paradigm (1) of classically
nonintegrable systems under the experimentally realizable
conditions of quantum resonance for generic quasimomentum
β; the case of β = 0 (usual kicked rotor) turns out to be
non-generic. This non-Poisson regular QE structure implies in-
teresting quantum-dynamical phenomena which persist when
averaged over realistic quasimomentum widths �β of BECs
and should therefore be experimentally observable.
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B. Gremaud, D. Delande, P. Szriftgiser, and J. C. Garreau, ibid.
101, 255702 (2008); G. Lemarié, H. Lignier, D. Delande, P.
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