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Magnetic polarons in two-component hard-core bosons
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We use a high-temperature expansion to explore spin correlations around a single hole in a two-dimensional
lattice filled with a hard-core two-component bose gas. We find that the spins around the hole develop
ferromagnetic order and quantify the degree of polarization at temperatures of the order of the hopping energy,
finding a measurably nonzero polarization. We also discuss the effect of fixing the overall magnetization of the
system for finite-sized systems.
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I. INTRODUCTION

In the mid 1960’s, Thouless and Nagaoka studied the
two-component Fermi system on a bipartite lattice with very
strong on-site repulsion [1,2]. They found that in the presence
of a single hole the ground state was a fully polarized
ferromagnet. These and further studies showed that at finite
temperatures the system is not fully polarized: near the hole
there is a ferromagnetic “bubble,” while far away the spins
are uncorrelated [3,4]. On such bipartite lattices, the statistics
are irrelevant for the single-hole problem, and the same physics
should be seen in the bosonic case as in the fermionic system.
Thus the bosonic ground state is the Nagaoka state, and at finite
temperature, ferromagnetic correlations are found near the
hole. Here we calculate these correlations in a two-component
gas of hard-core lattice bosons. We find that at experimentally
relevant temperatures these correlations are measurable using
a quantum gas microscope [5].

This is the simplest example of emergent physics in a
strongly correlated system. Variants of it are also highly
nontrivial: for example the ground state of two-component
fermions on a nonbipartite lattice with a single hole is
unknown. A qualitative picture of this ferromagnetism can be
developed by imagining a child’s puzzle where tiles slide on
a square grid. One tile is missing. By moving this “hole” one
can rearrange the tiles. Here we have a quantum mechanical
version of this puzzle. The motion of the hole from one
location to another involves summing all possible paths. If
the tiles are in a symmetric superposition of all possible
arrangements (corresponding to ferromagnetism), then these
paths will add constructively, allowing the hole to move
over large distances. This ferromagnetic arrangement thereby
minimizes the zero-point energy of the hole.

Borrowing the term from how electronic motion couples
to lattice distortions, the elementary excitation consisting of
a hole dressed by a ferromagnetic cloud is referred to as
a “polaron.” Other cold-atom polaron problems include the
behavior of a single down-spin atom in a Fermi sea of up-spins
[6–9].

Even far from the strong-coupling hard-core limit studied
here, the physics of two-component bosons is quite rich. This
physics has been explored in theoretical works [10–14], and
in cold gas experiments [15,16]. The components can be
different hyperfine states [15], or different atomic species [16].
In the most ordered state there will be two independent order

parameters, and it costs energy to twist the phase φ1,φ2, of
either condensate. Depending on the interaction parameters,
one can also find states where only some linear combination
of the two phases has a finite stiffness. For example, with
sufficiently strong attraction between the species there will
be a condensate of “pairs” but no single-particle condensate
[17]: One then has a stiffness to twisting φ1 + φ2, but not
φ1 − φ2. Even more exotic is the “countersuperfluid” phase
formed when the interspecies repulsion becomes strong:
One then has a stiffness to twisting φ1 − φ2. Under these
circumstances trying to drive a current of species 1 to the right
creates a current of species 2 to the left. Identifying the two
components as the ±z component of a pseudospin-1/2 object,
the countersuperfluid state corresponds to an x-y ferromagnet.
If the in-species interactions are not sufficiently strong, either
of these exotic states can be preempted by phase separation
or collapse [18]. In the single-hole limit, the phase stiffnesses
scale as the inverse of the system size.

Here we use a high temperature expansion to calculate the
correlations between spins bordering a single hole in a two-
component hard-core Bose system on the square lattice. Using
the techniques in [5,19–23], these correlations can be directly
measured, giving a signature of this interesting physics.

The temperature scale at which these correlations become
significant is of the order of the hopping energy t . In physical
units, this energy is on the order of t ∼ kB × (1 nK) for 87Rb
atoms trapped by λ = 820 nm lasers [24], but using lighter
atoms such as 7Li would increase the hopping energy and
corresponding temperature by a factor of 10. Similarly, using
a shorter wavelength lattice would also increase this scale.

Our study assumes hard-core interactions, where double
occupancy is forbidden. In most experiments, the strength
of on-site interactions U is fixed and the hard-core regime
is achieved by increasing the height of the potential barrier
between neighboring sites so that t � U . Corrections to the
hard-core results scale as t/U . Spielman et al. [24] report
results with t/U ∼ 0.001.

Another relevant experimental detail is most cold atom
systems are confined in harmonic traps. Local physics, such as
the correlations we study, are unaffected by such confinement,
as long as one restricts attention to regions where the polarons
are dilute.

The physics of Nagaoka ferromagnetism is relevant for a
number of other cold atom systems [25,26].
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II. ANALYSIS

We model the two-component Bose system via the single
band Bose-Hubbard Hamiltonian

Ĥ = −t
∑
〈i,j 〉

∑
σ=↑,↓

(a†
σ,iaσ,j + a

†
σ,j aσ,i), (1)

where aσ,i (a†
σ,i) is the bosonic annihilation (creation) operator

for particles of type (“spin”) σ at lattice site i, and 〈i,j 〉 are
all nearest-neighbor pairs and we limit ourselves to a two-
dimensional square lattice. The single-particle spectrum has
bandwidth of 8t . We work in the canonical ensemble, with
fixed particle number, and do not need to include a chemical
potential.

The Bose-Hubbard model is a good description of the
system as long as the band spacing Eb is large compared with
the other relevant energy scales. We require t � Eb so that the
(single-particle) bands are distinct, while T � Eb is required
so that all bosons are in the lowest band. In addition, we will
be analyzing Eq. (1) within a high temperature expansion,
requiring that the ratio T/t is not too small.

For a cold-atoms experiment described by the single-band
Hubbard model, the band spacing varies with microscopic
parameters as Eb ∼ √

V0ER , where V0 is the height of the
potential barriers between lattice sites, ER = h̄2k2/2m: k =
2π/λ being the laser wave number and m the particle mass.
The tunneling t depends exponentially on V0 and is typically
t ∼ 0.1 − 0.01ER for V0 � ER [27]. There is, therefore, a
separation of scales, allowing t ∼ T � Eb. Deeper lattices
accentuate this separation, at the cost of requiring lower
temperatures.

Strong interactions imply a hard-core constraint

a
†
σ,ia

†
τ,i = 0, (2)

which is valid when the on-site interactions are large compared
to t .

We examine the case of a single hole in an infinite system
and calculate the finite temperatures expectation values of an
observable operator X̂ by

〈X〉 = 1

Z
Tr X̂e−βĤ , Z = Tr e−βĤ , (3)

where β = (kBT )−1 is the inverse temperature; we take kB =
1. The trace is most readily calculated in a basis given by
placing the hole on the site rh, and specifying the pseudospin
σi = ↑/↓ on all remaining sites i 	= rh. We will look at the
correlations between spins on positions which are fixed relative
to rh. For observables of that form, denoting by ξ a spin state
with the hole at the origin, we have

〈X〉 = Nsites

Z

∑
ξ

X(ξ )〈ξ |e−βĤ |ξ 〉, (4)

where the factor Nsites comes from the summation over all
Nsites possible locations of rh, and X̂|ξ 〉 = X(ξ )|ξ 〉.

To perform the calculation we use a high-temperature
expansion, e−βĤ = ∑∞

n=0
1
n! (−βĤ )n. Each power of H cor-

responds to a single “hop” of the hole, and the moments can
be calculated from the sum of all closed paths of length n

(“n paths”) starting at the origin:

〈ξ |(−βĤ )n|ξ 〉 = (βt)n
∑

p∈n paths

〈ξ |Pp(ξ )〉. (5)

Here Pp (ξ ) is the spin permutation that results from moving
the hole through the path p. Any open paths, that do not take
the hole back to the origin, do not contribute to the sum, and the
expectation value is zero if the path leads to a nonequivalent
spin configuration. This requirement also restricts the sum to
even values of n.

Although the number of closed paths grows exponentially
with n, we are able to exhaustively enumerate them for small
n � 2M , and calculate a high temperature approximant

〈X̂〉 ≈ Nsites

Z

M∑
n=0

(βt)2n

(2n)!

∑
p∈2n paths

∑
ξ

X(ξ )δ(ξ = Pp(ξ )),

Z ≈ Nsites

M∑
n=0

(βt)2n

(2n)!

∑
p∈2n paths

∑
ξ

δ(ξ = Pp(ξ )). (6)

We use M = 6.
Estimating the error of cutting off such series to be on

the order of the last term calculated, the correlation functions
for spins around the hole are accurate to about 10% down
to T/t ∼ 0.4 for M = 6. To investigate lower temperatures,
one would need to resort to more sophisticated methods of
summing the series, such as the Monte-Carlo approach of
Raghavan and Elser [28]. Lower temperatures are difficult to
achieve experimentally.

III. VACANCY-INDUCED FERROMAGNETISM

The tendency towards ferromagnetism is apparent in the
structure of Eq. (6). Ferromagnetic configurations ξ automat-
ically have P (ξ ) = ξ , regardless of the path p. A further
insight is that it is only paths with loops in them that
favor ferromagnetism. Paths p which retrace themselves have
P (ξ ) = ξ regardless of ξ .

To measure the polarization around the hole we define

Ŝ8 =
∑

i∈ n.n.n.

Ŝi
z, (7)

where Si
z is the spin operator applied to the site i and the

summation is over the eight nearest-neighbor and next-nearest-
neighbor (n.n.n.) sites of the hole. The ground state of our
system possesses a spontaneously broken symmetry. In an
infinite system with an infinitesimal magnetic field along z,
Ŝ8 will have a finite expectation value. This expectation value
vanishes as T → ∞ and approaches 4 as T → 0. If there is
no symmetry breaking field, then the spontaneous symmetry
breaking occurs in a random direction. In a typical cold-
atoms experiment, every time a new sample is created, this
symmetry-breaking direction will be different. Under those
circumstances, one can model the ensemble measurement by
taking expectation values in zero field. By symmetry, in zero
field 〈Ŝ8〉 = 0, at all T , but the temperature dependence of its
distribution will be nontrivial. As T → ∞ when all states are
equally likely we expect a binomial distribution around zero.
As T → 0, the distribution is uniform. This may be understood
in several ways; in a quantum mechanical treatment, one would

043622-2



MAGNETIC POLARONS IN TWO-COMPONENT HARD-CORE . . . PHYSICAL REVIEW A 87, 043622 (2013)

−4 −2 0 2 4
S8

0.05

0.15

0.25

4 2 0 2 4
S8

0.05

0.15

0.25

− −

(a) (b)

ˆ ˆ

FIG. 1. The probability distribution of Ŝ8, the total spin of the
bosons around the hole, as 1(a) T → ∞ and 1(b) T → 0.

attribute this to the fact that each projection m of the spin
multiplet is equally likely. Classically the z component of
a uniformly distributed random three-dimensional (3D) unit
vector is uniformly distributed. These distributions are shown
in Fig. 1.

To quantify these distributions, we examine the variance of
Ŝ8. We define

Ĉ8 = 3

14
[(Ŝ8)2 − 2],

= 3

14

⎡
⎣( ∑

i∈n.n.n.

Ŝi
z

)2

−
∑

i∈n.n.n.

(
Ŝi

z

)2

⎤
⎦ , (8)

which is normalized and offset so that 〈C8〉 goes to unity when
the hole is maximally polarized and to zero when all sites are
uncorrelated. Note that individual measurements of Ĉ8 can be
negative or greater than 1.

We have calculated for a range of temperatures 〈C8〉 and
the uncertainty 
C8 =

√
〈C8

2〉 − 〈C8〉2, and they are shown
in Fig. 2. In particular, at temperatures corresponding to T/t =
0.4 we predict 〈C8〉 = 0.05 and 
C8 = 0.62. This compares
with a T → ∞ result of 〈C8〉 = 0 and 
C8 = √

9/28 ≈ 0.57.
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FIG. 2. 〈C8〉, the measure of polarization around the hole, and
2(b) 
C8 =

√
〈C8

2〉 − 〈C8〉2, as a function of the relative temperature
T/t . Note that 
C8 goes to

√
9/28 as T → ∞.

Both the nonzero mean of this quantity and the increase
in variance are indicative of the ferromagnetic correlations
present around the hole. About 5000 measurements would
be needed to determine the mean to within 20% of the
predicted value. A given sample will contain multiple holes,
so each experimental run can contribute multiple independent
measurements.

IV. FIXED MAGNETIZATION

In a cold-atoms experiment the numbers of ↑-spin and
↓-spin atoms are fixed, requiring a slightly different ensemble.
This difference only matters when the correlation length
becomes of the same order as the system size. For the
temperatures described in Fig. 2, the correlation length is of the
order of the lattice spacing, and these subtleties are irrelevant.

By using exact diagonalization on a small system we
can, however, show that at an order of magnitude lower
temperature, one must consider these finite size effects. We
consider a system of 3 × 5 sites described by the Hamiltonian
in Eq. (1) with periodic boundary conditions, seven ↑-spins,
seven ↓-spins, and a single hole. We define a similar operator
to the one used before:

Ĉ
f

8 = 3
14

[
(Ŝ8)2 − 2 − 56C∞

2

]
, (9)

The constant C∞
2 = 〈S1

z S
2
z 〉 is the infinite temperature two-

spin correlation caused by the finite number of spins: C∞
2 =

1
4

1
2−Nsites

= − 1
52 for an equal number of ↑ and ↓ spins.

The results are shown in Fig. 3. At high temperatures,
one sees behavior indistinguishable from Fig. 2, while at
low temperatures the expectation value is suppressed. This
suppression can be attributed to the ferromagnetic order
parameter being forced to lie in the x-y plane.

V. OUTLOOK

The problem of how charge and spin degrees of freedom
interact with one another is key to a number of important con-
densed matter systems, most notably high temperature super-
conductors. More importantly, conceptually clean examples
of strongly correlated phenomena, such as the two-component
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FIG. 3. (Color online) 〈Ĉf

8 〉 for a system of 3 × 5 sites with an
equal number of ↑ and ↓ particles, as a function of temperature rela-
tive temperature (solid blue line). Results from exact diagonalization
(dashed red line) result from high-temperature expansion taken to the
same order as in Fig. 2. The two match well to about T/t ∼ 0.4.
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Bose system one, are essential to developing new paradigms
for many-body physics.

In a cold-gas experiment the quantities 〈S8〉 and 〈C8〉 can
be measured by a variant of the quantum gas microscope tech-
nique pioneered by Bakr et al. [5] and extended to spinor gases
by Fukuhara et al. [23]. An image is taken of the optical lattice,
which shows the location of all particles, and their spin projec-
tion along a fixed axis. One would locate an isolated hole in this
picture, and add up the spin projections of its neighbors to pro-
duce a single realization of S8 or C8. The experiment would be
repeated many times. A histogram similar to Fig. 1 can be pro-
duced for S8. The ensemble average can be compared with our
prediction for the quantum mechanical expectation value 〈C8〉.

While the single-hole problem studied here is already
interesting, the many-hole problem is even more rich. At zero

temperature, the system is both superfluid and ferromagnetic.
Kuklov et al. [10–12] have used Monte-Carlo methods to
explore the relative strengths of superfluid and magnetic
stiffnesses. Although no finite temperature studies have been
done, both orders will disappear as one heats the system. It
would be interesting to know if magnetism or superfluidity
vanish first, or if the two orders vanish simultaneously [29].
This question could be largely answered by studying the
interaction between two polarons.
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