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A versatile and numerically inexpensive method is presented allowing the accurate calculation of phase
diagrams for bosonic lattice models. By treating clusters within the Gutzwiller theory, a surprisingly good
description of quantum fluctuations beyond the mean-field theory is achieved approaching quantum Monte Carlo
predictions for large clusters. Applying this powerful method to the Bose-Hubbard model, we demonstrate that it
yields precise results for the superfluid to Mott-insulator transition in square, honeycomb, and cubic lattices. Due
to the exact treatment within a cluster, the method can be effortlessly adapted to more complicated Hamiltonians
in the fast progressing field of optical lattice experiments. This includes state- and site-dependent superlattices,
large confined atomic systems, and disordered potentials, as well as various types of extended Hubbard models.
Furthermore, the approach allows an excellent treatment of systems with arbitrary filling factors. We discuss the
perspectives that allow for the computation of large, spatially varying lattices, low-lying excitations, and time

evolution.
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The recent progress in the realization of optical lattices
for ultracold atoms offers an ideal testing ground for theo-
retical models and computational methods. Compared with
their solid-state counterpart, the foremost advantage of the
atomic systems is the outstanding controllability of interaction
strength and lattice parameters. In particular, optical lattices
allow us to study Hubbard models for bosonic particles, where
an important milestone was the observation of the superfluid
(SF) to Mott insulator (MI) transition [1,2]. These new
experimental possibilities have stimulated the development
of theoretical methods for bosonic systems ranging from
density-matrix renormalization group (DMRG) techniques
and quantum Monte Carlo (QMC) methods to mean-field
theories.

In mean-field theories, a single lattice site is decoupled from
the surrounding lattice, where the fluctuations are described
by a mean-field parameter. This strong simplification allows
nonetheless the qualitative description of strongly correlated
phases such as the Mott insulator [2—4]. The decoupling is
also achieved in the Gutzwiller method [5-9] where the wave
function is expanded in local Fock states with individual
coefficients. Both limits in the phase diagram—the Mott state
and the superfluid state—can be described (approximately) by
aproduct of local Gutzwiller states. In fact, it can be shown that
perturbative mean-field theories and the Gutzwiller theory pre-
dict equivalent SF-MI transition points [6,10]. The Gutzwiller
method is very versatile and can be applied to various types of
optical lattice systems ranging from homogeneous lattices to
large spatially varying lattices systems. It allows both to treat
stationary states (e.g., Refs. [6,7,9,11]) as well as to perform
time evolution (e.g., Refs. [9,12—15]). However, relying on the
mean-field decoupling, the Gutzwiller theory has restrictions
similar to other mean-field methods, and the phase boundaries
can only be calculated quantitatively.

Early, it was suggested by Bethe [16], Peierls [17], and
Weiss [18] that the mean-field method may be extended by
coupling a cluster of sites (a supercell) with the mean field
rather than a single lattice site. Usually, such a cluster is
formed by a central site and its nearest neighbors. These cluster
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mean-field methods were mainly used for the description of
electrons in solids [19-21] and spin models [22-26] but also in
the context of dynamical mean-field theories [27]. Recently,
a multisite mean-field method for the Bose-Hubbard model
was proposed in Refs. [28-31] based on neglecting quadratic
terms in the fluctuations. However, due to the restriction to
relatively small clusters, quantum fluctuations could not be
sufficiently included, leading to inaccurate predictions of the
phase boundary in the SF-MI phase diagram. Furthermore,
bosonic cluster mean-field theory has been applied to dipolar
hard-core bosons in Refs. [32,33].

Here, we present a cluster mean-field method for large
clusters based on the well established Gutzwiller method
(Fig. 1). As a demonstration, this cluster Gutzwiller method
is applied to the Bose-Hubbard model in square, honeycomb,
and cubic lattices. Using periodic boundaries for the cluster,
it allows for accurate predictions of the SF-MI transition
approaching quantum Monte Carlo results for large supercells.
We show that the approach is suited for the treatment of
arbitrary filling factors and large-sized lattices. We start
by reflecting several aspects of the single-site Gutzwiller
method and a general description of the supercell method.

(@)

FIG. 1. (Color online) (a) Within the Gutzwiller theory a single
lattice site is coupled to the mean field (b +) of its nearest neighbors
(illustrated for a square lattice). The lattice sites are expanded in Fock
states |n) with n = 0,1,2, ... particles. (b) In the supercell method,
the single site is replaced by a cluster of lattice sites and is expanded

in the many-site Fock basis |N).
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Subsequently, we apply the algorithm to the Bose-Hubbard
model in several lattice geometries. Finally, details of the
method are discussed that allow for the computation of large
clusters. As an outlook, we discuss further applications such
as the treatment of large lattices with nonequivalent sites, the
determination of excited states, or time evolution.

I. THE SINGLE-SITE GUTZWILLER APPROACH

Let us start with the standard Gutzwiller method which
assumes that we can write the wave function of the system as a
product of single-site wave functions. Each site j is represented
by the Gutzwiller trial wave function |j) = )", ¢, |n) [5-9]in
the basis of local Fock states |n) with n particles [Fig. 1(a)].
Usually the coefficients ¢, are determined by imaginary
time evolution [9]. However, as detailed below also a self-
consistent diagonalization scheme can be used to determine
the coefficients. Very generally, the wave function of the
whole system can be written as |j) |1), where |{) is the wave
function of all sites except for site j. Common tight-binding
Hamiltonians can be written as

H=Hy+H+H;=H+H+) A B O

where I:I,/, and H ; act only on the respective subsystems. The
last term represents the coupling between |¢) and |j) and
can be decomposed in a sum of subsystem operator products.
As we show in the following, the initial knowledge of |¢) is
not required when using a self-consistent loop for the site j.
Assuming, however, that we know |), the Hamiltonian matrix
of the whole system in the Fock state basis {|n)} is given by

Hyn = (Y| Hy 1Y) 8y + (m| Hj In)
+ ) (WA 1Y) (m| BY n) )

where the first term is a constant energy offset. Now, the wave
function on site j can be obtained by diagonalizing H,,, using
a small Fock basis. For the Bose-Hubbard Hamiltonian
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with bosonic annihilation (b j) and creation (5;) operators on
site j, on-site interaction U, tunneling matrix element J,
and chemical potential u, we obtain for the uncoupled part
of the Hamiltonian (m| ﬁj |n) = %U nmn—1)86u, — undu,.
The coupling I:I¢ ; between |y) and | j) is given by

Ay =—J (6 (5, +5,> () | )
(" ("

where the (j’) indicates the summation over all nearest
neighbors of site j. Using the Fock coefficients ¢/, of the trial

wave function on site j’, we can obtain (l;].,) = (Y| l;]», |[Yr) =
o Cn ChiiA/n + 1. At this point it is clear that the Gutzwiller

n “n+l
method is equivalent to the mean field treatment for the

Bose-Hubbard model as a single lattice site couples only to

A

the average mean field (b ) and its conjugate. In general, the
Gutzwiller method has more internal degrees of freedom which
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becomes apparent, e.g., for occupation-dependent models [34].
Note that the expression (4) allows for the calculation of large-
sized inhomogeneous lattices by iteratively traversing through
the lattice. For a homogeneous lattice with equivalent sites and
z nearest neighbors, the off-diagonal matrix elements of the
coupling are given by (n + 1| I-AIM n) = —zJ/n+1 (B) and
its conjugate. By diagonalizing H,,,, a new expectation value

~ ~

of the superfluid order parameter (b) = (b j) for the site j can
be computed. Using a self-consistent loop, the Hamiltonian
can be solved without initial knowledge of |/).

II. THE CLUSTER GUTZWILLER APPROACH

In the following, the cluster approach is described as an
extension of the single-site Gutzwiller method. For this it is
important that the decoupling in equation (2) holds for an
arbitrary subsystem of the lattice rather than a single lattice site.
Let us therefore replace the single-site state | j) by a supercell
cluster |S) with s sites [see Fig. 1(b)]. The internal degrees
of freedom within the supercell allow for quantum fluctuation
that are not covered within the single-site mean-field approach.
The generalized trial wave function for the cluster is given in
a many-site Fock basis {|N)} = {|ng,n,n2, ...)} reflecting all
possible distributions of n; = 0,1,2, ... particles on the sites i
of the supercell. In analogy to the expressions (2) and (4), the
respective Hamiltonian matrix for the Bose-Hubbard model is
given by

Ayy = (M| Hs|N) + > (w| A% |y) (M| BS |N)

= (M| Hijy — 1 ) v;6(B) +5;(6M) IN) . (5)
jeas

where the energy offset (/| I:I,,, |Y/)8yn has been omitted.
Here, HBSH is the Bose-Hubbard Hamiltonian (3) where the
summations are restricted to sites within the supercell S. The
second term describes the coupling of all sites at the boundary
S of the cluster with the mean field (b). The prefactor v i
reflects the number of bonds to the mean field [for Fig. 1(b) the
corners of the square have v; = 2 and the other edge sites v; =

1). Note that, for more complicated Hamiltonians, (/| A% [)

is not reducible to a single mean-field parameter (b;) and
can contain other internal quantities such as (A;b;) obtained
from the coefficients Cy. In this case, the presented method
would differ from the mean-field approach in Refs. [28,29],
where fluctuations of quadratic order are neglected. In Eq. (5),
we further assume a homogeneous lattice where all boundary
sites couple to the same mean field (b) but it can be easily
expanded to super lattices or finite lattice systems. By solving
the eigenvalue problem (5) of the cluster (cf. Refs. [28,29]),
we obtain the lowest eigenvector |S) = ), Cy |N), which is
used to calculate the mean field,

(by = (S|b, 1Sy =Y _ CyCy (M|, N}, (6)
M,N

self-consistently on a target site t. We choose the target site ¢
to be the most central site of the supercell. This ensures that the
mean field minimally couples to the target site and quantum
fluctuations can be included as well as possible. Note that the
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FIG. 2. (Color online) (a) The cluster Gutzwiller method applied to the Bose-Hubbard model of a square two-dimensional (2D) lattice. The
gray lobe corresponds to the single-site Gutzwiller method and the blue lines to supercells with s =4, 9, and 16 sites (from left to right). Using
periodic boundary conditions for s = 12 and 16 sites sites (dashed green lines) improve the results significantly. The vertical lines depict the
critical ratio J/ U obtained by mean-field theory (MFT) [3,4,6] and quantum Monte Carlo (QMC). The QMC results (open circles) are taken
from Ref. [35]. The cluster calculation takes f = 7 fluctuations into account (see text), where the red error bar corresponds to f = oo (f = 8
for s > 16) and the black error bar to f = 5. (b) Results for the honeycomb (HC) lattice with three nearest neighbors for s = 4, 12, and 18
sites (blue) as well as s = 18 and 12 sites with periodic boundary conditions (dashed green). The vertical line corresponds to the process chain
approach (PCA) where the shaded area is the estimated error [36]. (c), (d) Finite-size scaling of the critical points for different cluster sizes,
where circles (diamonds) indicate results without (with) periodic boundary conditions. The scaling parameter A is zero for a single site and
one for an infinite lattice (see text). For (c) 2D and (d) HC lattices, the predicted critical points for A = 1 match with the QMC and the PCA

predictions, respectively, within the error bounds.

higher eigenvalues of the Hamiltonian (5) correspond to local
excitations of the system.

The feasibility of the cluster Gutzwiller method relies
basically on three technical aspects: (i) an adequate restriction
of the many particle basis {|N)}, (ii) an effective diagonaliza-
tion procedure, and (iii) an accurate and effective algorithm
to determine the boundaries in the phase diagram. Before
discussing the aspects (i)—(iii), we demonstrate the accuracy
of the cluster Gutzwiller approach by applying it to the
Bose-Hubbard Hamiltonian (3).

III. BOSE-HUBBARD PHASE DIAGRAMS

For two-dimensional square (2D) and honeycomb (HC)
lattices, the resulting phase diagrams for the SF-MI transition
are shown in Fig. 2. The calculation for a single site (s = 1)
corresponds to the Gutzwiller method and therefore is equiv-
alent to the mean-field theory (MFT) result with the critical
point Jyrr = (J/U)eric = 1/B + 2«/§)z for the filling factor
n = 1[3,4,6]. Here, the number of nearest neighbors is denoted
by z, where z =4 for square and z =3 for honeycomb
lattices. For the square lattice, the prediction fl\%@T = 0.0429
using mean-field theory differs substantially from the quantum
Monte Carlo method [35] and the strong coupling expansion
[38] with Jgyic/sc = 0.0597. By increasing the number of sites
s in the cluster Gutzwiller method it is possible to correct the
mean-field result substantially. While for an infinite number
of sites s the mean-field coupling at the boundary is negligible
and the exact result is obtained, in practice, the cluster size

is limited to s = 4 x4 = 16 sites. Figure 2 demonstrates that
with an increasing number of sites the results are improving.
Periodic boundary conditions along one spatial dimensional
can improve results for finite-sized lattices significantly, since
boundary effects are reduced. Already for a 3 x 3 cluster in 2D,
where the computation is very inexpensive, the phase diagram
is surprisingly accurate with J33 = 0.0559 at the tip of the
Mott lobe. Note that the absolute deviation from the numerical
exact QMC results [open circles in Fig. 2(a)] is the largest at
the tip of the Mott lobe.

For the accuracy of the cluster method, the crucial factor is
the ratio of internal bonds (within the supercell) to mean-field
bonds at the boundary. By applying a scaling of the cell size as
introduced in Ref. [33], the critical J/U for an infinite lattice
can be interpolated. Here, the scaling with the parameter A =
Bs/(Bs + Bjgs)is performed and plotted in Fig. 2(c), where By
represents the number of bonds within the cluster and Bjg the
bonds to the mean field. The scaling parameter also explains
why periodic boundary conditions (green diamonds) improve
the numerical results. The predicted value jégw = 0.0596(4)
for an infinite lattice (A = 1) matches with the QMC data
within the standard deviation.

For the honeycomb lattice [Fig. 2(b)], the reduced number
of nearest-neighbors causes an even larger error of the mean-
field theory value JHS. = 0.0572. The cluster method sub-
stantially corrects this single-site value and predicts J_égw =
0.0870(5) for an infinite lattice. This coincides with the process
chain approach in Ref. [36] resulting in J_ECCA = (0.0863 within
the estimated errors.
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FIG. 3. (Color online) (a) Results for three-dimensional cubic
lattices (3D) for supercells with s = 4, 12, 18 sites (blue lines) and
supercells with 12 and 18 sites using periodic boundaries (dashed
green lines). The blue and green lines for 18 and 12 sites, respectively,
nearly coincide. In three dimensions, periodic boundary conditions
can be applied in two directions for the 3 x 3 x 2 cluster (dotted-dashed
green line). The QMC results (open circles) are taken from Ref.
[37]. See Fig. 2 for further details. (b) The finite-size scaling for
clusters without (circles) and with periodic boundary conditions in
one (diamonds) and two directions (squares).

For the three-dimensional cubic lattice (3D), the cluster
method predicts jégw = 0.0350(2) (Fig. 3). The QMC cal-
culation gives a slightly lower value of J_&I\DAC = 0.0341 [37].
This deviation might be caused by the small edge lengths of
the clusters in three dimensions.

The method presented here allows the treatment of systems

with arbitrary filling factors n. The results for the lowest
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FIG. 4. (Color online) Mott insulator phase boundaries for filling
factors n = 1-3 obtained by the supercell approach, which allows for
the calculation of arbitrary filling factors. The results for the cubic
(3D), the square (2D), and the honeycomb lattice (HC) are plotted
for the largest cell sizes with periodic boundary condition along one
direction as a function of zJ/U. In this unit the mean-field boundary
(gray) is independent of the lattice geometry.
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three Mott lobes are shown in Fig. 4. Note that the numerical
effort does not increase with the filling factors, since only
site occupations n; =n — 2, ...,n + 2 are of interest, which
is elaborated in the next section.

IV. TREATMENT OF LARGE CLUSTERS

We now turn back to the description of the numerical
algorithm that allows us to treat large cluster sizes. The efficient
implementation allows a numerical inexpensive computation
of the phase diagram. For a given p on a present-day average
(single-core) processor, the computation of 9 sites in 2D (5
fluctuations) takes only few tenths of a second. Here, the
method also allows us to calculate the excitation spectrum.
The computation time growths drastically with the cluster size,
e.g., about 10 seconds for 16 sites (x 15 for 25 sites and x4
for 6 fluctuations).

(i) To apply the method described above, the infinite
many-particle basis set has to be restricted to a finite but
sufficient subset {|N)}. The number of states in {|N)} grows
exponentially with the particle number and therefore also with
the number of cluster sites, which limits practically the size
of the supercell. However, the complexity of the supercell
problem can be drastically reduced depending on the specific
Hamiltonian. From the single-site Gutzwiller theory for the
Bose-Hubbard model, it is known that the MI state with n
particles is unstable at its boundary only to fluctuations with
n &£ 1 particles; i.e., only zero-, one-, and two-particle Fock
states have to be taken into account for the MI with a filling
of n =1 [6]. This is, however, not completely true for the
supercell method which has internal degrees of freedom. It
turns out that local fluctuations with n; = £2 have an effect, if
rather small, whereas higher local particle number fluctuations
are extremely small and can also be neglected (see error bars in
Figs. 2 and 3). However, we can indeed restrict the total particle
number to N and N =+ 1. Moreover, at the phase boundary also
states with all sites simultaneously fluctuating are unlikely
to be occupied. In practice, more than f =), [n; —n| <5
fluctuations for smaller clusters and f < 7 for larger clusters
(s = 16) hardly change the results of the phase diagram (see
error bars in Figs. 2 and 3). In the vicinity of the boundary the
actual value of the superfluid order parameter is influenced by
these constraints but not the criticality.

(i1) For the diagonalization of the coupled supercell prob-
lem, Lanczos-based algorithms for sparse matrices can be used
to obtain the lowest eigenvector [39]. In fact, the structure of
the Hamilton matrix has to be created only once for a given
number of lattice sites. As usually consecutive points of a
phase diagram are calculated, excellent guesses for both v
and the eigenvector can be provided, speeding up the Lanczos
diagonalization immensely. Furthermore, symmetries of the
cluster can be used to build a symmetrized basis set; e.g., for
a 4x4 cluster with periodic boundaries the C, and the Cy
symmetry allow a reduction of the basis length by a factor of
8. While here we restrict ourselves to the ground state, this
optimized method is also suited to compute a large number of
excited states.

(iii) A straightforward implementation would calculate all
points in the u/U- J/U plane of the SF-MI phase diagram.
In addition, the self-consistent loop convergences only slowly
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directly at boundary due to the sudden change of the superfluid
order parameter ¢ = (b), which would require many iterations
to determine the phase boundary accurately. However, it is
much more convenient to rely only on the fact that the
algorithm converges monotonically. Starting with an initial
guess ¢y, (threshold value), a single iteration allows us to
determine whether the exact value of ¢ is smaller or greater
than ¢y,. As the value of ¢ has a jump at the boundary, a small
but finite ¢y, such as 107°, allows us therefore to determine
whether a given point is in the SF or the MI phase. Applying
a binary search algorithm with only 20 iterations for a given
value of w allows us to determine the critical value with a
relative precision of 2720 ~ 1076,

V. CONCLUSIONS

We have presented an intuitive cluster mean-field method
based on the Gutzwiller theory where the single-site Fock state
isreplaced by a supercell. Using large clusters, we demonstrate
for the Bose-Hubbard Hamiltonian that this method allows
accurate results for various lattice geometries and arbitrary
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filling factors; in particular, for 2D cubic and honeycomb
lattices. The approach can be adapted to various types of
Hamiltonians and is numerically inexpensive. An intrinsic
advantage of the method is that it can be easily applied to
very large lattices with inequivalent lattice sites [29], such
as disorder potentials or macroscopic confined systems. To
achieve this, the supercell centered at site X can be iteratively
moved through the lattice where each time the mean field

~

ox = (byx) at the target site x is updated. Another advantage is
that the method can be used to compute the local excitation
spectrum. Furthermore, it also allows us to perform correlated
time evolution. For each short time step #;,; and for each
lattice site X, the exact time evolution can be performed within
the supercell centered at site X, using the time-dependent
mean-field boundary ¢x(#;). This determines the expectation
values ¢y (t;11) for the next time step.
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