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We systematically develop a density functional description for the equilibrium properties of a two-dimensional,
harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas–Fermi–von Weizsäcker approxi-
mation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where
corrections beyond the local density approximation must be motivated with care. We also present an intuitive
derivation of the interaction energy functional associated with the dipolar interactions and provide physical
insight into why it can be represented as a local functional. Finally, a simple and highly efficient self-consistent
numerical procedure is developed to determine the equilibrium density of the system for a range of dipole
interaction strengths.
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I. INTRODUCTION

Ultracold, trapped dipolar quantum gases have received
increasing attention over the past decade owing to the inher-
ently interesting properties of the anisotropic and long-range
nature of the dipole-dipole interaction [1]. One of the important
consequences of the anisotropy is that the interactions between
the particles can be tuned from being predominantly attractive
to repulsive by simply changing the three-dimensional (3D)
trapping geometry or, for dipoles confined to the 2D x-y plane,
by adjusting the orientation of the dipoles relative to the z

axis [1,2]. Therefore, novel physics in both the equilibrium
and dynamic properties of such systems may be explored as a
function of the strength of the interaction, the geometry of the
confining potential, and the dimensionality of the system.

While the degenerate dipolar Bose gas has been well studied
experimentally and theoretically [1], realizing a degenerate
dipolar Fermi gas in the laboratory has proven to be much
more elusive. One of the reasons for this is that the path to
quantum degeneracy is impeded by the Pauli principle, which
forbids s-wave collisions between identical atoms. Thus, early
attempts to cool both magnetic and molecular dipolar Fermi
gases below degeneracy were unsuccessful [3–6]. However, in
the recent work of Lu et al. [7], this experimental hurdle was
finally overcome, resulting in the experimental realization of
a spin-polarized, degenerate dipolar Fermi gas. Specifically,
using the method of sympathetic cooling, a mixture consisting
of 161Dy and the bosonic isotope 162Dy was cooled to T/TF ∼
0.2. In addition, this group was also able to evaporatively
cool a single-component gas of 161Dy down to a temperature
of T/TF ∼ 0.7. This latter result is presumed to arise from
the rethermalization provided by the strong dipolar scattering
between the 161Dy atoms which have a large magnetic moment
(μ ∼ 10μB ).

The ability to fabricate such systems in the laboratory now
opens the door for the investigation of both the equilibrium and
dynamical properties of dipolar Fermi gases and will enable
contact to be made with the large body of theoretical work

already in the literature [1]. Moreover, it is now reasonable
to expect that quasi-2D degenerate dipolar Fermi gases will
also be realized experimentally, thereby allowing for studies
into the stability, pairing, and superfluidity of low-dimensional
dipolar systems, which to date have only been investigated
theoretically [2,8,9].

With a view towards ultimately calculating the collective
mode frequencies, we develop in this paper a density-
functional theory (DFT) for the equilibrium properties of
a degenerate, harmonically trapped, spin-polarized dipolar
Fermi gas. Our theoretical framework is based on the Thomas–
Fermi–von Weizsäcker (TFvW) approximation, which was
previously formulated in the context of degenerate electron
gases [10]. The mathematical framework of the TFvW
theory is very simple, numerically easy to implement, and
computationally inexpensive. The TFvW theory has also been
shown to provide an exceedingly accurate description of
equilibrium properties, as well as collective excitations (i.e.,
magnetoplasmons), of electronic systems in a variety of 2D
and 3D confinement geometries [10–16]. Our purpose here is
to take advantage of this approach, which is largely unknown in
the cold-atom community, and apply it to the dipolar Fermi gas.
We only address the equilibrium properties in this paper and
leave the presentation of the more involved mode calculation to
a future presentation. Moreover, in anticipation of forthcoming
experiments, along with the goal of making contact with the
recent theoretical work of Fang and Englert [17], we focus
on the 2D geometry, although the extension of the theory to
3D is straightforward. The 2D geometry also allows for the
development of exact analytical results, which we exploit to
test the efficacy of the TFvW approximation.

The organization of our paper is as follows. In Sec. II,
we construct the approximate kinetic energy functional for
the trapped 2D system and show that it is necessary to go
beyond the local-density approximation (LDA) in order to
provide a more accurate determination of the ground-state
energy, along with physically reasonable density profiles, for
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the system. In Sec. III, we present an intuitive approach
for the development of the interaction energy functional, in
addition to providing physical insight into why the functional
may be represented solely in terms of the local density.
Section IV presents the details of the numerical procedure
for implementing the TFvW, in addition to representative
illustrations of the spatial density profile of the dipolar gas
as the dipole-dipole interaction strength is changed. Finally, in
Sec. V, we present our conclusions and closing remarks.

II. KINETIC ENERGY FUNCTIONAL

In the Kohn-Sham (KS) DFT [18], the noninteracting
kinetic energy is treated exactly by solving N single-particle
Schrödinger-like equations, yielding the KS orbitals, from
which the kinetic energy may be constructed. However, the
KS DFT is not quite in keeping with the spirit of the
Hohenberg-Kohn theorems, [19] which provide a mathemat-
ical justification for the solution to the many-body problem
solely in terms of the density of the system (i.e., an orbital
free formulation). Indeed, in its purest form, DFT has no
need for the calculation of orbitals of any kind. However, an
orbital free DFT requires the specification of a noninteracting
kinetic energy density functional which is not known exactly.
The purpose of this section is to provide an approximate, but
accurate, kinetic energy density functional to be used in a DFT
description of the ground-state properties of a 2D harmonically
trapped dipolar Fermi gas.

The first level of approximation for the explicit construction
of the kinetic energy density functional is the local-density
approximation [20]. In this approach, the exact kinetic energy
density for a homogeneous system is determined, after which
the same expression is assumed to be true locally for the
inhomogeneous system. The LDA is generally valid for
systems that are only weakly inhomogeneous, but may be
remarkably accurate even for strongly inhomogeneous systems
[21,22]. In the case of a uniform 2D system, the noninteracting
kinetic energy for a spin-polarized 2D Fermi gas is found to
be

Ehom
K =

∑
k

nk
h̄2k2

2m
= A

πh̄2

m
n̄2

2D. (1)

Here nk = θ (kF − k) is the zero-temperature Fermi occu-
pation number, kF is the 2D Fermi wave vector given by
k2
F = 4πn̄2D , n̄2D is the uniform number density, and A is the

area of the system. Invoking the LDA, the 2D kinetic energy
functional for an inhomogeneous system takes the form

EK [n] =
∫

dr
πh̄2

m
n(r)2. (2)

If to this we add the energy EP [n] of the particles interacting
with an external potential vext(r), we obtain the Thomas-Fermi
(TF) energy functional,

ETF[n] =
∫

dr
πh̄2

m
n(r)2 +

∫
dr vext(r)n(r). (3)

A variational minimization of this equation with respect to the
density leads to the Euler-Lagrange equation

δETF[n]

δn(r)
− μTF = 0, (4)

where the Lagrange multiplier μTF (TF chemical potential)
serves to fix the total number of particles. Using Eq. (3), Eq. (4)
leads to the the TF spatial density, given explicitly as

nTF(r) = m

2πh̄2 [μTF − vext(r)] . (5)

The density is seen to vanish on the surface defined by vext(r) =
μTF and is taken to be zero for all positions where vext(r) >

μTF. This unphysical behavior of the density is, of course, a
consequence of the local nature of the TF energy functional
and is also present in other spatial dimensions [23].

One may try to remove the unphysical behavior of the
TF density by improving upon the quality of the kinetic
energy functional. One possibility is introducing gradient
corrections which take into account inhomogeneities of the
density. Corrections of this kind can be developed in several
ways [12,19,23–31]. For example, one can consider a weakly
inhomogeneous system in which the density deviates only
slightly from some uniform value [19]. However, if this method
is used in 2D, it is found that all gradient corrections vanish
[27,32]. The implication of this is that one cannot formally
justify the inclusion of gradient corrections in 2D on the basis
of a systematic expansion about the homogenous limit. Other
methods, such as the semiclassical Wigner-Kirkwood (WK)
expansion [12,23], do yield gradient corrections in 2D which,
however, make no contribution to the total kinetic energy
for physically smooth densities [33]. These observations, of
course, do not mean that the LDA is exact in 2D since the TF
approximation certainly does not generate the exact density
of an inhomogeneous system. It is thus clear that nonlocal
corrections to the kinetic energy functional are necessary, and
it is plausible that they may still take the form of gradient
corrections [31], similar to what are found in 1D and 3D
inhomogeneous systems [27].

To demonstrate the need for nonlocal corrections in 2D
explicitly, it is useful to consider a 2D gas of noninteracting
particles trapped within the harmonic confining potential
vext(r) = mω0r

2/2. It was shown by Brack and van Zyl [21]
that the exact spatial density is given by

nex(r) = 1

π

M∑
n=0

(−1)n(M − n + 1)Ln(2r2)e−r2
, (6)

where Ln(x) is a Laguerre polynomial [34] and all lengths
are expressed in units of the harmonic oscillator length aho =√

h̄/mω0. The integer, M , counts the number of filled oscillator
shells; i.e., the Fermi energy is given by EF = h̄ω0(M + 1).
Integrating Eq. (6) over all space leads to the total number of
particles in the system as a function of the shell index

N (M) = 1
2 (M + 1)(M + 2). (7)

The exact total energy of this system is found to be

Eex = h̄ω0

3
N

√
1 + 8N. (8)
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By virtue of the equipartition of the kinetic and potential
energies in a harmonic trap, the exact kinetic energy is given
by

EK
ex = h̄ω0

6
N

√
1 + 8N

= 1

2
h̄ω0

[
2
√

2

3
N3/2 + 1

12
√

2
N1/2 + O(N−1/2)

]
, (9)

where in going to the last line in Eq. (9) we have made use of
the large-N behavior of the exact kinetic energy.

The remarkable result found in Ref. [21] is that the LDA
kinetic energy functional, Eq. (2), integrates to the exact kinetic
energy when the exact density is used as input. As mentioned
above, this should not be misconstrued to mean that Eq. (2) is,
in fact, the exact kinetic energy functional for the harmonically
trapped system, i.e., that no corrections beyond the LDA
are required. The exact spatial density nex is emphatically
not the density which variationally minimizes the TF energy
functional. This density is given by Eq. (5) and may be written
as

nTF(r) = 1

4πa4
ho

(
R2

TF − r2), (10)

where RTF =
√

2μTF/mω2
0 is the TF radius and μTF =√

2Nh̄ω0. When Eq. (10) is used in Eq. (2), the kinetic energy
evaluates to

EK [nTF] =
√

2

3
h̄ω0N

3/2, (11)

which is the leading term in the large-N expansion of EK
ex.

Thus, while Eq. (2) gives the quantum mechanical kinetic
energy with the exact density as input, if the true variational
density, Eq. (10), is used instead, the resulting kinetic energy
is always lower than the exact kinetic energy. The upshot of
all of this is that the TF energy functional, Eq. (3), will always
produce a kinetic energy that is lower than the true value. This
implies that the kinetic energy part of the TF functional has to
be augmented by some correction in order to account for the
second term in Eq. (9) [35].

We take the nonlocal correction to have the familiar von
Weiszäcker (vW) form [23,36]

EvW[n] = λvW(N )
h̄2

8m

∫
dr

|∇n(r)|2
n(r)

, (12)

where λvW(N ) is a parameter which in general can depend
on the particle number, N . This functional has the following
desirable properties: (i) It depends on the gradient of the spatial
density and thus vanishes in the limit of a uniform system; (ii) it
is positive definite, thus increasing the kinetic energy relative
to the TF approximation; (iii) it scales in the same way as
EK [n] so that equipartition of kinetic and potential energy
is preserved. The total energy functional for a noninteracting
system in the TFvW approximation then reads [henceforth we
suppress the N -dependence of λvW(N )]

E[n] =
∫

dr
[
πh̄2

m
n(r)2 + λvW

h̄2

8m

|∇n(r)|2
n(r)

+ vext(r)n(r)

]
.

(13)

The variational minimization of this energy functional is
conveniently achieved by introducing the so-called von
Weiszäcker wave function ψ(r) ≡ √

n(r). The Euler-Lagrange
equation then takes the form of a nonlinear Schrödinger
equation,

−λvW
h̄2

2m
∇2ψ(r) + veff(r)ψ(r) = μψ(r), (14)

where the effective potential is given by

veff(r) = 2πh̄2

m
ψ(r)2 + vext(r). (15)

Since veff(r) itself depends on ψ(r), the solution of Eq. (14)
must be determined self-consistently. The ground-state solu-
tion ψ0(r) with the normalization∫

dr|ψ0(r)|2 = N, (16)

determines the self-consistent ground-state density n0(r) =
ψ0(r)2 and the chemical potential μ. We now establish that
the vW correction can account for the exact energy of the
harmonically confined system with a parameter λvW which is
weakly N -dependent.

For a given number of particles N and a given value of λvW,
we determine n0(r) by solving the closed set of equations, viz.,
Eqs. (14) and (15), using the numerical method discussed in
Sec. IV. This density is then used to evaluate E[n0] and the
result is compared to Eex. The parameter λvW is then adjusted
and the procedure is repeated until we achieve the equality

E[n0] = Eex. (17)

The net result of this procedure leads to the values of λvW

plotted as a function of N in Fig. 1. The N -dependence is
indeed weak and suggests that λvW � 0.02–0.04 for N in the
range 102–106. These values of λvW are considerably smaller
than the value (∼0.25) found to be appropriate in 3D [37].
The inset to Fig. 1 illustrates the extrapolation to N → ∞ and
demonstrates that λvW has a nonzero limiting value.

To see in more detail how the vW energy accounts for the
higher order terms in Eq. (9), it is convenient to expand E[n0]

FIG. 1. The von Weiszäcker parameter λvW vs the number of
particles N . The points are the calculated values and the smooth
curve is the fit λvW = λ∞

vW + a/Nb with λ∞
vW = 0.0184, a = 0.0577,

and b = 0.1572. The inset illustrates the extrapolation N → ∞.
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in terms of the difference �n ≡ n0 − nTF. We have

E[n0] = ETF[n0] + EvW[n0]

= ETF[nTF] + 1

2
mω2

0

∫
r�RTF

dr
(
r2 − R2

TF

)
�n(r)

+ πh̄2

m

∫
dr[�n(r)]2 + EvW[n0]. (18)

Equating (18) to the large-N expansion of Eq. (8) and using
ETF[nTF] = (2

√
2/3)h̄ω0N

3/2, we obtain

1

12
√

2
h̄ω0N

1/2 � EvW[n0] + 1

2
mω2

0

∫
r�RTF

dr
(
r2 − R2

TF

)
n0(r)

+ πh̄2

m

∫
dr[n0(r) − nTF(r)]2. (19)

Each of the integrals on the right-hand side, including the one
defining EvW[n0], have integrands that peak near r ∼ RTF.
Thus, the N1/2 term in Eq. (9), which is a correction to the
TF kinetic energy, can be interpreted as an edge correction.
Since the last two terms on the right-hand side of Eq. (19)
are small in comparison to EvW[n0], an approximate relation
determining λvW would be

EvW[n0] = λvW
h̄2

8m

∫
dr

|∇n0|2
n0

� 1

12
√

2
h̄ω0N

1/2. (20)

In applying this relation we again note that n0 in Eq. (20) is
an implicit function of λvW. Thus, the procedure described
earlier is followed and λvW is adjusted until EvW[n0] is equal
to the right-hand-side of Eq. (20). This yields values of λvW

which are about 10% larger than those obtained directly
from Eq. (17).

To the extent that λvW is weakly N -dependent, Eq. (20)
indicates that the integral

∫
dr|∇n0|2/n0 also scales roughly as

N1/2. This N -dependence is also exhibited by the integral with
n0 replaced with nex, which is an indication that these densities
are rather similar. In Fig. 2 we plot the self-consistent (solid
line) and TFvW (dashed line) densities for different particle
numbers. Even for the relatively small value of N = 231, these
densities are in very good agreement and in fact are very close
to nTF, except at the edge of the cloud. The differences between

FIG. 2. The exact (nex, solid line) and self-consistent (n0, dashed
line) densities as a function of the radial distance r for different
numbers of particles N . Even for small particle numbers, the exact
and TFvW densities are in very good agreement.

FIG. 3. The quantity |∇ψ |2 = 1
4 |∇n|2/n contributing to the von

Weiszäcker kinetic energy density in Eq. (12), evaluated using the
exact (solid line) and self-consistent (dashed line) spatial densities
as a function of the radial distance r for different numbers of
particles N .

n0 and nex are more clearly revealed by plotting 1
4 |∇n|2/n =

|∇ψ |2 in Fig. 3. The integrals of the curves shown in Fig. 3
typically differ by about 15%. We note that the curves for the
exact density (solid lines) exhibit prominent oscillations which
are associated with the orbital shell structure. The fact that the
TFvW curves (dashed lines) do not exhibit this shell structure
is entirely expected in view of the semiclassical nature of
the TFvW approximation [23]. However, we observe that the
TFvW curves provide a smooth average of the shell oscillations
(a well-known feature of semiclassical theories [23]) up to
the edge of the cloud. At the edge, the TFvW approximation
overestimates the exact value. In principle, this discrepancy
can be reduced by including higher order gradient corrections
to the kinetic energy functional, but for our purposes, this
refinement is not necessary.

We summarize this section by noting that our analysis has
shown that the corrections to the 2D LDA kinetic energy
functional can indeed be represented in the gradient vW form,
in spite of the fact that gradient expansion methods fail to
produce any such terms in 2D. By comparing the results
of the TFvW energy functional to the exact results for a
harmonically confined noninteracting 2D gas, we are able to
determine the vW parameter λvW and show that it is weakly
N -dependent. We cannot claim that these values of λvW are
generally applicable for problems in 2D but we would expect
them to be appropriate for densities which are similar to those
of the harmonically confined system. In particular, we expect
the vW functional to be applicable for a harmonically confined
system in which interactions are also included, as discussed in
the following section.

III. DIPOLAR INTERACTIONS: HARTREE-FOCK
APPROXIMATION

Having developed the approximate kinetic energy func-
tional in the previous section, we are now in a position
to construct the energy functional which accounts for the
dipolar interactions in a 2D spin-polarized Fermi gas. The
approach we adopt is essentially the one used for the analogous
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problem with Coulomb interactions in 2D degenerate elec-
tronic systems. However, as we shall see, dipolar interactions
lead to a fundamentally different energy functional. At the
level of the Hartree-Fock (HF) approximation [20], the energy
of the spin-polarized Fermi gas is EHF = EK + Edd , where
EK = ∑

k nkh̄
2k2/2m is the noninteracting kinetic energy and

the dipole interaction energy is

Edd = 1

2

∑
kk′

nknk′ [〈kk′|Vdd |kk′〉 − 〈kk′|Vdd |k′k〉]. (21)

The first matrix element in Eq. (21) is the direct term and the
second is the exchange term. For the singular dipolar interac-
tion of interest (i.e., with the spins polarized perpendicular to
the plane),

Vdd (r) = μ0μ
2

4πr3
, (22)

each of these matrix elements are separately infinite. However,
the sum of the two terms is finite as a result of the Pauli
exclusion principle. This is seen most readily by writing the
interaction energy as

Edd = A

2

∫
d2rVdd (r)n̄2

2DgHF(r), (23)

where the HF radial distribution function is defined as

n̄2
2DgHF(r) = n̄2

2D −
∣∣∣∣∣ 1

A

∑
k

e−ik·r
∣∣∣∣∣
2

. (24)

Evaluating Eq. (24), we find

gHF(r) = 1 −
(

2J1(kF r)

kF r

)2

, (25)

where J1(x) is the cylindrical Bessel function of order one [34].
The function gHF(r) − 1 has a range of approximately k−1

F and
defines the “exchange hole” commonly used in electron-gas
theory. For small r , gHF(r) ∼ 1

4 (kF r)2, and as a result, the
integral in Eq. (23) is well behaved. We find

Edd = 1

4
Aμ0μ

2n̄2
2DkF

∫ ∞

0
dt

1

t2

[
1 −

(
2J1(t)

t2

)2 ]

= A
64

45
√

π
μ0μ

2n̄
5/2
2D . (26)

Equation (26) has also been derived in the paper by Bruun
and Taylor [2], and the final form is given by Fang and
Englert [17]. In particular, Eq. (26) suggests that one can
define an interaction energy functional within a LDA having
the following form:

ELDA
dd [n] =

∫
d2r

2

5
Cdd [n(r)]5/2, (27)

with Cdd ≡ (32/9
√

π )μ0μ
2. In contrast to the Coulomb

problem, this local functional presumably accounts for the
total interaction energy. To see if this is indeed reasonable,
one must investigate in more detail the effect of density
inhomogeneities.

Before doing so, we first provide an alternative derivation of
Eq. (26), which assumes that Vdd (r) has a well-defined Fourier
transform (FT). This is achieved by defining a regularized

dipole interaction V
reg
dd (r) which does not have the r = 0

singularity of Vdd (r). As we shall see, a regularized interaction
facilitates the corresponding analysis for an inhomogeneous
system. Accepting for the moment that such an interaction is
available, Eq. (21) becomes

E
reg
dd = A

2

∫
d2k

(2π )2

∫
d2k′

(2π )2
θ (kF − k)θ (kF − k′)

× [
Ṽ

reg
dd (0) − Ṽ

reg
dd (k − k′)

]
, (28)

where Ṽ
reg
dd (k) is the 2D FT of V

reg
dd (r). With the change of

variable k′ = k − q, Eq. (28) can be written as

E
reg
dd = A

2

∫
d2q

(2π )4

[
Ṽ

reg
dd (0) − Ṽ

reg
dd (q)

]
×

∫
d2k θ (kF − k)θ (kF − |k + q|). (29)

The second integral is just the area of overlap in momentum
space of two circles of radius kF whose centers are separated
by q. This area is given by

A(q,kF ) = 2k2
F

[
cos−1

(
q

2kF

)
− q

2kF

√
1 −

(
q

2kF

)2]
× θ (2kF − q). (30)

Substituting this result into Eq. (29), we find

E
reg
dd = Ak4

F

2π3

∫ 1

0
dx x[cos−1 x − x

√
1 − x2]

× [
Ṽ

reg
dd (0) − Ṽ

reg
dd (2kF x)

]
. (31)

We now show that this expression reduces to Eq. (26) using an
appropriate limiting procedure.

To this end, we now specify the regularized dipole inter-
action. This is done by considering the interaction between
two physical electric dipoles [38], each of which has a charge
distribution of the form

ρ(r) = 2p · r
π3/2σ 5

e−r2/σ 2
. (32)

The electrostatic interaction between two dipoles p1 and p2

separated by r is

U (r) = 1

ε0

∫
d3k

(2π )3
eik·r (p1 · k)(p2 · k)e−k2σ 2/2

k2

= − (p1 · ∇)(p2 · ∇)

4πε0

[
1

r
erf

(
r√
2σ

)]
, (33)

where erf(x) is the error function. For r � σ , this interaction
reduces to that of two point dipoles, varying as r−3. However,
for r  σ , the interaction saturates at a constant value as a
result of the overlap of the dipole charge distributions.

Equation (33) can now be used to define a regularized
magnetic dipole interaction for the spin-polarized Fermi gas by
choosing p1 = p2 = pẑ, putting r = (x,y,0) in Eq. (33), and
replacing p2/ε0 with μ0μ

2. The regularized magnetic dipole
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interaction then reads

V
reg
dd (x,y) = μ0μ

2
∫

d3k

(2π )3
ei(kxx+kyy) k

2
z

k2
e−k2σ 2/2

= μ0μ
2

4π

[
1

r3
erf

(
r√
2σ

)
−

√
2

π

1

σr2
e−r2/2σ 2

]
.

(34)

Equation (34) approaches Eq. (22) for r � σ and saturates at
μ0μ

2/3(2π )3/2σ 3 for r → 0. The 2D FT of V
reg
dd (x,y) is

Ṽ
reg
dd (q) = μ0μ

2e−q2σ 2/2
∫

dkz

2π

k2
z

k2
z + q2

e−k2
z σ

2/2

= μ0μ
2

√
2πσ

[
e−q2σ 2/2 −

√
π

2
qσerfc

(
qσ√

2

)]
.

(35)

For σkF  1, we see that

Ṽ
reg
dd (0) − Ṽ

reg
dd (2kF x) � μ0μ

2kF x (36)

to leading order in σkF . Inserting this result into Eq. (31) we
obtain

lim
σ→0

E
reg
dd = A

2μ0μ
2k5

F

45π3
, (37)

which is identical to Eq. (26). We thus see that the dipolar
interaction energy can be obtained by taking the σ → 0 limit in
a calculation using an appropriately defined regularized dipole
interaction. Of course the definition of the regularized potential
is not unique, but the form we have chosen has particularly
convenient properties. The essential reason for being able to
use this approach is that the final result is insensitive to the
cutoff σ when it becomes much smaller than the range k−1

F

of the exchange hole. This calculation can be viewed as the
momentum-space version of the real space approach leading
to Eq. (23).

We next proceed to a calculation of Edd for an arbitrary
inhomogeneous system making use of the regularized dipole
interaction defined above. As we shall see, our real-space
formulation leads to a final result that is identical to that
obtained by Fang and Englert [17] using a Wigner function rep-
resentation. However, our complementary derivation provides
some additional insight into the interaction energy functional
of the dipolar Fermi gas.

The generalization of Eq. (23) to an inhomogeneous spin-
polarized system is

Edd = 1

2

∫
d2r

∫
d2r ′[ρ(r,r)ρ(r′,r′) − ρ(r,r′)ρ(r′,r)]

×Vdd (r − r′), (38)

where we have introduced the single-particle density matrix
defined as

ρ(r,r′) =
∑
i,occ

φ∗
i (r)φi(r′). (39)

Here, the φi(r) are a set of single-particle states that correspond
to a physical situation in which the density n(r) = ρ(r,r)
is localized in space. The density matrix has the symmetry
property ρ(r,r′) = ρ(r′,r). The expression for Edd in Eq. (38)
is well-defined even for the singular dipole interaction;

however, it is more difficult to exhibit the explicit cancellation
between the direct and exchange terms for an inhomogeneous
system. To achieve this cancellation we make use of the
regularized interaction in Eq. (34) which allows us to evaluate
the the direct and exchange terms separately. The desired result
is then obtained by taking the σ → 0 limit at the end of the
calculation. As we show, the singular parts of the direct and
exchange terms do, in fact, cancel exactly.

The direct term is calculated most conveniently in momen-
tum space. We have

E
(d)
dd = 1

2

∫
d2q

(2π )2
Ṽ

reg
dd (q)|ñ(q)|2. (40)

To evaluate the exchange term, we introduce the center-of-
mass variable R = (r + r′)/2 and the relative variable s =
r − r′. The exchange term can then be written as

E
(x)
dd = −1

2

∫
d2sV

reg
dd (s)

∫
d2R[ρ̄(R,s)]2, (41)

where

ρ̄(R,s) ≡ ρ
(
R + 1

2 s,R − 1
2 s

)
. (42)

The symmetry property of ρ(r,r′) implies that ρ̄(R,−s) =
ρ̄(R,s). We now define the function

f (s) =
∫

d2R[ρ̄(R,s)]2, (43)

which satisfies f (−s) = f (s), and write

E
(x)
dd = −1

2

∫
d2s V

reg
dd (s)f (s)

= −1

2

∫
d2sV

reg
dd (s)[f (s) − f (0)] − 1

2

∫
d2sV

reg
dd (s)f (0).

(44)

From Eq. (43) we have

f (0) =
∫

d2R[n(R)]2 =
∫

d2q

(2π )2
|ñ(q)|2, (45)

where the last equality follows from Parseval’s theorem, and
we have noted that n(R) ≡ ρ̄(R,0) = ρ(R,R). Combining
Eqs. (40) and (44), we obtain

Edd = 1

2

∫
d2q

(2π )2

[
Ṽ

reg
dd (q) − Ṽ

reg
dd (0)

]|ñ(q)|2

− 1

2

∫
d2s V

reg
dd (s)[f (s) − f (0)]. (46)

It should be emphasized that this result is valid for any potential
V

reg
dd (r) which has a well-defined FT in the q → 0 limit. In case

the potential does not have a well-defined q → 0 FT, one must
revert to the expressions in Eqs. (40) and (41).

Making use of Eq. (35) and taking the σ → 0 limit, we
obtain

Edd = −μ0μ
2

4

∫
d2q

(2π )2
q |ñ(q)|2

+ μ0μ
2

8π

∫
d2s

1

s3
[f (0) − f (s)]

≡ E
(2)
dd + E

(1)
dd . (47)
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It can be shown that Eq. (47) is identical to the result obtained
by Fang and Englert [17] and for this reason we have adopted
their notation for the two terms. The term E

(2)
dd appears explic-

itly in their paper but their E
(1)
dd is given in a different form,

being expressed in terms of the Wigner distribution function.
The E

(1)
dd term involves the quantity

f (0) − f (s) =
∫

d2R{[ρ̄(R,0]2 − [ρ̄(R,s]2}

≡
∫

d2R[n(R)]2g(s,R). (48)

Here we have defined the radial distribution function for the
inhomogeneous system as

g(s,R) = 1 − [ρ̄(R,s)]2

[ρ̄(R,0)]2
. (49)

An approximation to E
(1)
dd can be generated by making a local

approximation for g(s,R), namely,

g(s,R) � gHF(s; n(R)), (50)

where the radial distribution function of the uniform gas is
evaluated for a density equal to n(R). With this replacement,
we have

E
(1)
dd � ELDA

dd , (51)

as defined in Eq. (27). The total interaction includes the
manifestly nonlocal E

(2)
dd term.

We can check the validity of the LDA by evaluating Eq. (47)
for a model inhomogeneous system. Specifically, we once
again appeal to the ideal 2D Fermi gas confined by an isotropic
harmonic trapping potential. This model is especially useful
since the density matrix can be obtained in closed form for
an arbitrary number of filled shells. Scaling all lengths by the
harmonic oscillator length, aho, the one-particle density matrix
for M + 1 filled shells is given by [22]

ρ̄(R,s) = 1

π

M∑
n=0

(−1)nLn(2R2)e−R2
L1

M−n(s2/2)e−s2/4,

(52)

where Lα
n(x) is the associated Laguerre polynomial [34]. We

observe that for this particular model system, ρ̄(R,s) depends

only on the magnitudes of the vectors R and s, which is also
true of all quantities derived from it. Putting s = 0 in Eq. (52)
yields the density n(R) given by Eq. (6). (For convenience we
drop the “ex” subscript in the following.) The FT of n(R) is
readily found to be given by

n(q) = L2
M (q2/2)e−q2/4. (53)

We may also provide an explicit expression for the function
f (s), namely,

f (s) ≡
∫

d2R|ρ̄(R,s)|2

= 1

2π

M∑
n=0

[
L1

n(s2/2)
]2

e−s2/2. (54)

Since all of the functions required for the evaluation of
Eq. (47) depend only on the magnitude of the coordinates,
the angular integrations can be performed immediately,
leading to

Edd = − μ0μ
2

8πa3
ho

∫ ∞

0
dqq2 |ñ(q)|2

+ μ0μ
2

4a3
ho

∫ ∞

0

ds

s2
[f (0) − f (s)]

= − μ0μ
2

8πa3
ho

∫ ∞

0
dqq2 |ñ(q)|2 − μ0μ

2

4a3
ho

∫ ∞

0

ds

s

df (s)

ds
.

(55)

Using Eq. (54) along with Eq. (53), we obtain

E
(1)
dd = μ0μ

2

8πa3
ho

M∑
n=0

[∫ ∞

0
ds2L2

n−1(s2/2)L1
n(s2/2)e−s2/2

+
∫ ∞

0
ds

[
L1

n(s2/2)
]2

e−s2/2

]
. (56)

E
(2)
dd = − μ0μ

2

8πa3
ho

∫ ∞

0
dqq2

[
L2

M (q2/2)
]2

e−q2/2. (57)

The function L2
−1(x), arising from the n = 0 term in the

summation of Eq. (56), should be interpreted as zero. All of the
integrals in Eqs. (56) and (57) can be evaluated analytically,
using the following general result [22]:

Imn(α,β,γ ) =
∫ ∞

0
dxxαe−xLβ

m(x)Lγ
n (x)

= �(1 + α)�(n + γ + 1)�(β − α + m)

�(m + 1)�(n + 1)�(1 + γ )�(β − α)
3F2 (1 + α − β, − n,1 + α; 1 + γ,1 + α − β − m; 1) , (58)

where 3F2(a,b,c; d,e; z) is the generalized hypergeometric function [34]. A direct application of Eq. (58) gives

E
(1)
dd = μ0μ

2

4πa3
ho

1√
2

M∑
n=0

(n + 1)�(n + 3/2)

�(n + 1)

{
4

3
n 3F2

(
−3

2
,
1

2
, − n; 2,−1

2
−n; 1

)
+ 3F2

(
−1

2
,
1

2
, −n; 2,−1

2
−n; 1

)}
, (59)

E
(2)
dd = − μ0μ

2

4πa3
ho

1

2
√

2

�
(
M + 3

2

)
(M + 1)(M + 2)

�(M + 1)
3F2

(
1

2
,
3

2
,−M; 2,

1

2
− M; 1

)
. (60)
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TABLE I. Comparison of the dipolar interaction energies with the
LDA. The last column corresponds to the relative percentage error
between the exact total energy, Eexact

dd = E
(1)
dd + E

(2)
dd , and ELDA

dd . The
unit of energy is μ0μ

2/a3
ho.

N E
(1)
dd ELDA

dd E
(2)
dd �E/E%

55 54.4003 54.5724 −6.8321 15
105 168.6535 168.9366 −15.3065 10
231 670.199 670.718 −40.9666 7
1326 14 266.3 14 268.3 −363.681 3
5151 153 345.6 153 349.4 −1983.06 1

While these final expressions are not particularly illuminating,
they do provide summations which are easily dealt with
numerically. On the other hand, the integrands in Eqs. (56)
and (57) become highly oscillatory when the index n is large
and the evaluation of the integrals can be problematic without
the use of specialized numerical integration techniques.

In Table I we give values of E
(1)
dd , E

(2)
dd , and ELDA

dd for a
range of particle numbers, N . We see that E

(1)
dd � ELDA

dd to a
very good approximation even for relatively small numbers
of particles. To quantify this further we show in Fig. 4 a
comparison of gHF(s; n(R)) and g(s,R) for M = 20 (N = 231)
for R ranging from the center of the cloud to its edge. We see
that the local approximation in Eq. (50) is very good; the local
Fermi wave vector kF (R) captures very nicely the extent of the
exchange hole in the exact radial distribution function. These
observations explain why E

(1)
dd is so close to ELDA

dd . Although
these results have been obtained for the specific model of a
harmonically confined gas, we would expect similar behavior
whenever the model density varies on a length scale which is
large compared to the extent of the local exchange hole.

Table I also shows that the nonlocal contribution diminishes
rapidly with respect to the local contribution with increasing N .
Indeed, it is straightforward to show that the N � 1 behaviors
of the two contributions are E

(1)
dd ∼ N7/4 and |E(2)

dd | ∼ N5/4.
Therefore, we find that |E(2)

dd /E
(1)
dd | ∼ 1/

√
N in the large-N

limit. As a result, the total interaction energy is very well
approximated by ELDA

dd for large N , as illustrated in Table I.

FIG. 4. Comparison of the exact radial distribution function (solid
line) with the local approximation (dashed line). The values of R

indicated are in units of the TF radius RTF . The number of particles
is N = 231 (M = 20).

This local energy functional for the total interaction energy
can thus be trusted in applications, such as those typically
encountered in traps, where the density of the system is a
smooth and slowly varying function of position.

We wish to emphasize that the locality of the interaction
energy functional is a property of the dipolar interaction
and is not generally valid. To illustrate this we can compare
these results with those obtained for an interparticle Coulomb
interaction, e2/4πε0r . There is no need to regularize the
potential in this case and the direct and exchange terms can
be evaluated directly from Eq. (38). For consistency we again
consider a spin-polarized situation. The direct contribution is

E(d)
ee = e2

8πε0

∫
d2q

(2π )2

2π

q
|n(q)|2, (61)

where 2π/q is the 2D FT of r−1. The exchange term reads

E(x)
ee = − e2

8πε0

∫
d2s

s
f (s). (62)

Using Eqs. (53) and (54) for the isotropic 2D harmonic trap,
we find

E(d)
ee = e2

4πε0aho

1

3
√

2

�
(
M + 5

2

)
�(M + 3)

�(M + 1)2

× 3F2

(
−3

2
,
1

2
,−M; 3,−3

2
− M; 1

)
, (63)

and

E(x)
ee = − e2

4πε0aho

1√
2

M∑
n=0

�
(
n + 3

2

)
(n + 1)

�(n + 1)

× 3F2

(
−1

2
,
1

2
,−n; 2,−1

2
− n; 1

)
. (64)

The sum of these energies can be thought of as an approxi-
mation to the interaction energy of a 2D parabolic quantum
dot. The 2D (spin-polarized) Dirac exchange functional in the
LDA is given by

E(x),LDA
ee [n] = − e2

4πε0aho

8

3
√

π

∫
d2r[n(r)]3/2. (65)

We compare the various energies in Table II. We see that
the LDA is again a very good approximation to the exchange
energy. The direct Coulomb energy is, of course, inherently
nonlocal and is seen to give the dominant interaction energy
contribution for large N , in contrast to the situation for the

TABLE II. Comparison of the Coulomb interaction energy with
the exchange energy calculated exactly and in the LDA. The last
column gives the relative percentage error between the exact exchange
energy, Eq. (64), and the exchange energy obtained from the Dirac
functional, Eq. (65). The energies are in units of e2/4πε0aho.

N E(x)
ee E(x),LDA

ee E(d)
ee �E/E%

55 −85.8544 −85.4033 683.615 0.5
105 −192.347 −191.746 2119.36 0.3
231 −514.802 −513.958 8421.97 0.2
1326 −4570.15 −4568.39 179 276.2 0.04
5151 −24 919.8 −24 911.7 1.926 99 × 106 0.03
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dipolar interaction where the local contribution dominates.
In fact, it can readily be shown that |E(x)

ee /E(d)
ee | ∼ 1/

√
N for

N � 1.
To summarize, we have shown that even for modest

values of the particle number, N , the total interaction energy
for the harmonically trapped, 2D dipolar Fermi gas can be
approximately represented by a local energy functional. We
must emphasize again that the locality of the density functional
for the dipolar gas is a result of the short-range ∼1/r3

behavior of the dipole-dipole interaction, in contrast to e.g.,
the Coulomb interaction, in which case the total interaction
energy cannot be reduced to a purely local form.

We now have all of the necessary components to construct
the TFvW energy functional for a 2D, harmonically trapped
interacting dipolar Fermi gas, viz.,

E[n] =
∫

dr
[

1

2
CKn(r)2 + λvW

h̄2

8m

|∇n(r)|2
n(r)

+ 2

5
Cdd [n(r)]5/2 + vext(r)n(r)

]
, (66)

where CK = 2πh̄2/m. Once again, introducing the vW wave
function and performing the variational minimization of
Eq. (66) with respect to the density gives

−λvW
h̄2

2m
∇2ψ(r) + veff(r)ψ(r) = μψ(r), (67)

where now veff(r) also contains an interaction term, viz.,

veff(r) = CKψ(r)2 + Cddψ(r)3 + vext(r). (68)

Along with the normalization condition, Eq. (16), Eq. (67)
provides a complete description for the ground-state spatial
density of the system.

IV. SELF-CONSISTENT EQUILIBRIUM SOLUTIONS

The numerical self-consistent solution of Eq. (67) was
achieved by means of imaginary time propagation (ITP) [39].
In this method, the time-dependent Schrödinger equation

∂ψ(r,τ )

∂τ
= −H (τ )

h̄
ψ(r,τ ), (69)

is evolved in imaginary time, t → −iτ , starting from some
arbitrary initial state ψ(r,0). The Hamiltonian governing the
evolution is

H (τ ) = −λvW
h̄2∇2

2m
+ veff(r,τ ) ≡ T + V (τ ), (70)

where the time dependence arises from the dependence of veff

on the evolving density n(r,τ ) = ψ(r,τ )2. The evolution is
carried out in a stepwise fashion according to

ψ(r,τ + �τ ) = e−H (τ )�τ/h̄ψ(r,τ ). (71)

The repeated application of the evolution operator yields a
wave function ψ(r,τ ) which eventually converges to the self-
consistent ground state ψ0(r) as τ → ∞.

The evolution in Eq. (71) is achieved by using the split-
operator approximation [39,40]

e−H (τ )�τ/h̄ � e−V (τ )�τ/2h̄e−T �τ/h̄e−V (τ )�τ/2h̄, (72)

together with fast Fourier transforms (FFTs) [41] to convert
between coordinate and momentum spaces. If a Cartesian grid
is used in the x and y directions for our 2D geometry, 2D FFTs
are required. However, a more efficient algorithm is available
if the system possesses circular symmetry. The kinetic energy
operator in this case takes the form

T = −λvW
h̄2

2m

d2

dr2
+ λvW

h̄2

2m

1

r

d

dr
≡ T1 + T2. (73)

With this decomposition, the evolution operator becomes

e−H (τ )�τ/h̄ � e−V (τ )�τ/2h̄e−T2�τ/2h̄e−T1�τ/h̄e−T2�τ/2h̄

× e−V (τ )�τ/2h̄, (74)

where the T1 step is again treated by means of FFTs, but now
with respect to the 1D radial variable r in the range [−R,R].
The kinetic step T2, on the other hand, is treated in coordinate
space using a Crank-Nicholson method [41], which requires
the solution of a tridiagonal system, viz.,

−φ(ri+1) + αiφ(ri) + φ(ri−1) = φ̄(ri+1) + αiφ̄(ri) − φ̄(ri−1),

(75)

where αi = 4ri

λvW

�r
�τ

, and φ̄(ri) is the wave function prior to
the application of the T2 evolution operators. The solution
to Eq. (75) is uniquely determined by Dirichlet boundary
conditions at the ends of the ri mesh, where the wave function
is required to vanish. At the end of each time step we update
H with the new n(r,τ ) which is properly normalized to N . The
convergence criterion for achieving self-consistency is taken
to be

∑
i |ψ(ri,τn) − ψ(ri,τn−1)| < ε, where typically ε �

10−6. Once self-consistency has been achieved, the chemical
potential is given by μ = 〈ψ0|H |ψ0〉 and the ground-state
energy is obtained from Eq. (66). This numerical procedure
can also be adapted with minor modifications to spherically
symmetric 3D systems.

In Fig. 5 we present the TFvW self-consistent ground-state
density profile for N = 100 for various strengths of the
dipole-dipole interaction. With increasing interaction strength,
the radius of the atomic cloud increases and the central density
decreases, which is expected given the repulsive nature of the

FIG. 5. Density distributions for N = 100. The curves with
increasing radial extent correspond to Cdd/CK = 0, 0.2, 0.5, 1.0,
2.0, 5.0, 10.0. The inset shows the effective potential in units of
h̄ω0/2, as a function of r in units of aho, in the noninteracting limit,
Cdd/CK = 0.
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FIG. 6. Density distributions for N = 1000. The curves with
increasing radial extent correspond to Cdd/CK = 0, 0.2, 0.5, 1.0, 2.0,
5.0, 10.0. The inset shows the effective potential in units of h̄ω0/2,
as a function of r in units of aho, in the case of strong interactions,
Cdd/CK = 10.0.

dipole-dipole interaction for the spin-polarized case. As found
for the Cdd = 0 case considered earlier, the vW gradient term
has the effect of giving a density that decays smoothly in
the classically forbidden region defined by veff(r) > μ. We
recall that if the vW term is absent, the spatial density has an
unphysical sharp cutoff at a radius R defined by veff(R) = μ′,
where μ′ is the chemical potential in this approximation.
For Cdd/CK � 1, R ∝ N3/10. In Fig. 6, we show the spatial
density for N = 1000. It is apparent that the effect of the
vW term becomes less significant as the number of particles
is increased. This trend increases with increasing N and the
density approaches the distribution found in the local density
approximation. In the insets to Figs. 5 and 6 we have also
included representative plots of the effective potential for the
case Cdd/CK = 0 in Fig. 5 and Cdd/CK = 10 in Fig. 6. The
potential is essentially flat up to the edge of the cloud where it
falls below the chemical potential and then rises quadratically.
The main point to be taken from these curves is that the shape
of the effective potential is not very sensitive to the introduction
of interactions. Finally, we note that our equilibrium density
profiles are very similar to those found in Ref. [17] without
the vW correction. The latter densities would be virtually
indistinguishable from those plotted in Figs. 5 and 6 except
in the classically forbidden region where the vW gradient
correction leads to densities which decay smoothly to zero.

V. CONCLUSIONS

We have presented a mathematically simple and com-
putationally efficient DFT formulation of the equilibrium
properties of a 2D trapped dipolar Fermi gas based on the
TFvW approximation. One of the key elements of this work is
the development of a kinetic energy functional appropriate for
an inhomogeneous 2D system. Specifically, we have shown
that the addition of a vW-like gradient correction to the TF
kinetic energy functional is needed in order to accurately
determine the ground-state energy, as well as to provide a
physically reasonable density distribution at the edge of the
cloud. While conventional gradient expansions in 2D fail to
yield gradient corrections to the TF kinetic energy functional,
our detailed analysis has provided a compelling argument for
the inclusion of a vW-like gradient correction. We have also
provided an alternative derivation of the interaction energy
functional first obtained by Fang and Englert [17]. We find
in particular that the exchange hole is a useful concept in
formulating the local density approximation and furthermore
explains the underlying reasons behind the local nature of the
total interaction functional.

We have also presented a highly efficient self-consistent
numerical scheme for determining the equilibrium spatial
density distributions within the TFvW formalism. Our calcu-
lations illustrate how the strength of the (repulsive) dipole-
dipole interaction affects the size of the cloud and its
spatial distribution. Although the vW gradient correction does
not modify substantially the density in the interior of the
cloud, it does yield a density which decays smoothly into
the classically forbidden region at the edge. This feature
is particularly important in performing calculations of the
collective mode frequencies using TFvW hydrodynamics
[10,16], and will be addressed in a future presentation. In
addition, it will be of interest to investigate the affect of the
anisotropy of the dipole-dipole interaction in a confined 2D
system by considering the situation in which the spins are
canted at some angle with respect to the 2D plane. Finally,
although we have focused on the 2D geometry, we wish to
emphasize that the extension of the TFvW theory to 3D is
straightforward.
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