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R. Walters,1 G. Cotugno,1,2,* T. H. Johnson,1 S. R. Clark,3,1,4 and D. Jaksch1,3,4

1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
2Max Planck Research Department for Structural Dynamics, University of Hamburg, CFEL, Hamburg, Germany

3Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
4Keble College, University of Oxford, Parks Road, Oxford OX1 3PG, United Kingdom

(Received 8 March 2013; published 10 April 2013)

We derive ab initio local Hubbard models for several optical-lattice potentials of current interest, including
the honeycomb and kagome lattices, verifying their accuracy on each occasion by comparing the interpolated
band structures against the originals. To achieve this, we calculate the maximally localized generalized Wannier
basis by implementing the steepest-descent algorithm of Marzari and Vanderbilt [Phys. Rev. B 56, 12847 (1997)]
directly in one and two dimensions. To avoid local minima we develop an initialization procedure that is both
robust and requires no prior knowledge of the optimal Wannier basis.
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I. INTRODUCTION

Atoms loaded into periodic optical potentials [1,2] can be
sufficiently cold to occupy only a small number of lowest-
energy Bloch bands. The interaction between two atoms
occupying the same potential well can be large so that they
form a paradigmatic testbed for studying the physics of
strongly correlated quantum lattice models. To derive accurate
microscopic models it is desirable to express the state of the
atoms in terms of a basis of highly localized single-particle
states, given by some unitary transformation of the Bloch
states forming the lowest-energy bands. The reasons for this
are twofold. First, the occupations of localized basis states
are measurable through high-resolution imaging [3]. Second,
the Hamiltonian rewritten in terms of localized basis states
is typically a Hubbard model dominated by a few local
terms. Together these two points justify the simulation of
local Hubbard models, used to describe many phenomena in
condensed matter, using cold atoms in optical lattices [1]. In
this article, we develop a procedure to systematically find a set
of highly localized basis states and thereby derive ab initio the
parameters of a Hubbard model realized using cold atoms and
an optical lattice.

Only in simple cases, e.g., a lattice potential that is
orthogonal [4] or leads to an isolated lowest Bloch band
[5], have the parameters of Hubbard models realized by
cold atoms in optical lattices been derived using a basis of
localized single-particle states. The single-particle states used
are Fourier transforms of the Bloch states, called Wannier
states [6]. For more complicated optical-lattice potentials,
Hubbard parameters have been estimated rather than derived
from first principles: on-site interaction Hubbard parameters
have been estimated by using Gaussians centered at lattice
minima as approximations to the single-particle states, and
nearest-neighbor hopping parameters found by fitting a tight-
binding form to the energy structure of the bands, without
a rigorous justification of the tight-binding assumption (see,
e.g., Refs. [2,7,8]). The approach we take here improves upon
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such calculations in two ways. We use a class of single-particle
states that generalize the Wannier states and can thus be more
localized. Also, our procedure calculates Hubbard parameters
from first principles, without approximation, and provides a
quantitative justification of neglected terms. The necessity of
such improvements has recently been noted in the literature [9].

Our procedure is an adaptation of several others already in
use in solid-state physics. Specifically, we take as our starting
point an algorithm developed by Marzari and Vanderbilt [10].
They consider a basis of generalized Wannier states; Fourier
transforms of interband mixtures of Bloch states. Choosing
some initial basis, a steepest-descent minimization algorithm is
used to iteratively generate another set of generalized Wannier
states with a smaller spatial spread. The desired end point
of these iterations is the basis corresponding to the global
minimum of the spread, the so-called maximally localized
generalized Wannier states (see Ref. [11] and references within
for a review on the topic). Once this optimal basis is found,
the parameters of the corresponding Hubbard model are easily
calculated.

The currently available software packages [12] that im-
plement the steepest-descent minimization algorithm operate
in three dimensions. For use with optical-lattice potentials,
which are often effectively one or two dimensional, we have
implemented the algorithm directly in these lower-dimensional
spaces, as well as in three dimensions. We find that for the
optical-lattice potentials considered here, our implementation
in conjunction with commonly used initialization procedures
(e.g., that described in [10]) typically fails to converge to the
global minimum of the spread and instead becomes trapped in a
local minimum; the maximally localized generalized Wannier
states are not obtained.

Therefore, our algorithmic contribution is a different ini-
tialization procedure for the Marzari and Vanderbilt steepest-
descent algorithm. Our initialization procedure has an ad-
ditional benefit in that it requires no knowledge of the
optimal Wannier states, e.g., their location or approximate
form, and therefore requires no input beyond specifying the
lattice potential. The initialization procedure is split into two
parts, one minimizing the inter- and the other the intraband
contributions to the spread of the generalized Wannier states,
respectively. The former is a method for minimizing the
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spread in the case of a single band [10]. The latter relates
to a procedure devised by Souza, Mazari, and Vanderbilt
to optimally disentangle a subset of bands from a group of
degenerate bands [13]. Our whole procedure, taking the lattice
potential as input, and outputting the maximally localized
Wannier states and Hubbard parameters, is combined into
a single MATLAB routine. We have made this code freely
available online [14].

Recently, we became aware of the article [15] in which the
authors use a different procedure to compute the maximally
localized generalized Wannier states and justify a local
Hubbard model for bosons in the two-dimensional honeycomb
potential.

The remainder of the article is organized as follows. In
Sec. II we discuss the derivation of Hubbard models for
cold atoms in optical lattices, introducing generalized Wannier
states as a basis for this derivation and outlining the problem
of finding the states with minimum combined spread. Our
approach for obtaining the maximally localized basis is then
described in Sec. III. We include an outline of Marzari and
Vanderbilt’s steepest-descent algorithm, discuss the steps of
our initialization procedure, and then summarize how we
combine these elements. In Sec. IV we derive Hubbard models
for bosons in several optical-lattice potentials, first in one
dimension and then in two, verifying the accuracy of our
calculations on each occasion. Finally, we conclude in Sec. V
before presenting computational details in the Appendixes.

II. OBJECTIVE

A. Hubbard models for atoms in optical lattices

To begin, we outline the typical approach to deriving
Hubbard models for ultracold atoms with mass μ in an
optical lattice. For simplicity we assume the atoms to be
spinless bosons; extensions to fermionic atoms, multicom-
ponent gases including Bose-Fermi mixtures with different
lattice potentials, atom-molecular interactions, and finite-
range interactions are straightforward [1].

Standing waves of laser light, tuned out of resonance, exert
a spatially periodic ac Stark shift on the ground internal state
of the bosons. For sufficiently low atom energies and densities
ρ the interactions between the atoms are well approximated by
a contact interaction of strength g. The effective Hamiltonian
is then of the form [4]

Ĥ =
∫

dr �̂†(r)ĥ�̂(r) + g

2

∫
dr �̂†(r)�̂†(r)�̂(r)�̂(r).

Here �̂ annihilates a boson of mass μ and the single-particle
Hamiltonian is ĥ = −h̄2∇2/2μ + V (r), where V (r) is the
lattice potential induced by the ac Stark shift.

We expand the field operators in terms of a complete basis of
orthonormal mode functions wn

R(r), corresponding to single-
particle states

|Rn〉 =
∫

dr wn
R(r)|r〉,

obeying the translational equivalence

wn
R(r) = wn

R′(r + R′ − R). (1)

Here R is a direct lattice vector for which V (r + R) = V (r)
is satisfied, and which indicates the lattice site where wn

R(r) is
localized, relative to some origin. The integer n is commonly
called the band number, although as we shall see shortly it will
index modes which may comprise mixtures of several bands.
An atom occupying the mode wn

R(r) is often said to be in the
nth excited state or mode of lattice site R.

The expansion thus takes the form

�̂(r) =
∑

R

∑
n

wn
R(r)b̂n

R,

where b̂n
R annihilates a boson in mode wn

R(r), such that the
Hamiltonian Ĥ may be reexpressed as

Ĥ = −
∑
mn

∑
RR′

tmn
RR′ b̂

m†
R b̂n

R′

+ 1

2

∑
mnop

∑
RR′R′′R′′′

U
mnop

RR′R′′R′′′ b̂
m†
R b̂

n†
R′ b̂

o
R′′ b̂

p

R′′′ ,

with hopping and interaction parameters

tmn
RR′ = −

∫
dr wm∗

R (r)ĥwn
R′ (r),

U
mnop

RR′R′′R′′′ = g

∫
dr wm∗

R (r)wn∗
R′ (r)wo

R′′(r)wp

R′′′ (r).

Due to Eq. (1), these parameters are invariant under a
simultaneous translation in the direct lattice vectors that label
them.

The Hamiltonian simplifies in two ways. First, for suffi-
ciently small kinetic Ekin and interaction energies Eint ≈ ρg,
we can ignore all but some number J of the bands. Second,
wn

R(r) are chosen such that they are well localized, meaning
that the tmn

RR′ and U
mnop

RR′R′′R′′′ corresponding to hopping or
interaction between distant states are negligible. This leaves
the Hubbard model

ĤHM = −
J∑

mn=1

∑
〈RR′〉

tmn
RR′ b̂

m†
R b̂n

R′

+ 1

2

J∑
mnop=1

∑
〈RR′R′′R′′′〉

U
mnop

RR′R′′R′′′ b̂
m†
R b̂

n†
R′ b̂

o
R′′ b̂

p

R′′′ ,

where the angular brackets indicate that the sum is restricted to
local terms, e.g., same-site, nearest-neighbor, or next-nearest-
neighbor, etc. The range of the terms that need to be kept
will depend on how local the wn

R(r) can be, which in turn is
dependent on the form of the potential V (r).

B. Generalized Wannier states

We now turn our attention to the choice of wave functions
wn

R(r) used in the above procedure. A complete basis of
orthonormal functions is provided by the Bloch states |ψ (k)

m 〉,
corresponding to eigenfunctions of ĥ,

ψ (k)
m (r) = eik·ru(k)

m (r),

where u(k)
m (r) are cell-periodic functions [16]. The Bloch states

of a given band m are uniquely labeled by a wave vector k that
runs over the first Brillouin zone of the reciprocal lattice. Any
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band m with energies

E(k)
m = 〈

ψ (k)
m

∣∣ĥ∣∣ψ (k)
m

〉
,

satisfying E(k)
m � Ekin,Eint for all k will not contribute to the

physics and may be ignored. For all optical-lattice potentials
we consider here it is possible to focus solely on a small
number J of the lowest-energy bands which may be degenerate
amongst themselves but are separated in energy from the
others.

To describe local interactions within this J -band subspace,
a good choice of basis are states of the form

|Rn〉 = ϒ

(2π )D

∫
BZ

dk e−ik·R
J∑

m=1

U (k)
mn

∣∣ψ (k)
m

〉
, (2)

where ϒ is the volume of the primitive cell of the
D-dimensional direct lattice, and U (k) is a unitary matrix that
mixes the Bloch bands. In the case that U (k) is diagonal, i.e.,
there is no band mixing, these states are exactly those first
considered by Wannier [6]. Thus the states appearing in Eq. (2)
are commonly referred to as generalized Wannier states.

The separation in energy of the J lowest bands from the
others ensures that some states |Rn〉 exist with mode functions
wn

R(r) that are exponentially localized at lattice site R in
coordinate space [17–21]. This exponential localization occurs
if and only if the Bloch superpositions

|ψ̃ (k)
n 〉 =

J∑
m=1

U (k)
mn

∣∣ψ (k)
m

〉
(3)

are analytic (infinitely differentiable) in k across the whole
Brillouin zone [22]. This is a rigorous way of saying that only
smoothed-out Bloch superpositions will lead to localization
when Fourier transformed. When there are no degeneracies
between bands can one simply use the phases of elements
of a diagonal U (k) (representing the freedom in the phase
of each |ψ (k)

m 〉) to ensure the smoothness of the Bloch states
|ψ̃ (k)

n 〉. Hence simple Wannier states provide an exponentially
localized basis in such cases. However, this is no longer the
case when degeneracies and crossings in the band structure
lead to nonanalytic |ψ (k)

m 〉. In this situation band mixing and
therefore a nondiagonal U (k) are required to obtain smooth
Bloch superpositions and an exponentially localized basis. The
“only if” case highlights the importance of the generalization
of Wannier states to include nondiagonal U (k). Even when
exponential localization is possible using simple Wannier
states, generalized Wannier states may still significantly
improve the localization. We will give examples of this in
Sec. IV.

C. Maximally localized generalized Wannier states

Generalized Wannier states therefore have the potential
to provide a well-localized basis for the derivation of a
Hubbard model. However, generalized Wannier states are
highly nonunique and so it remains to find and choose a single
exponentially localized basis.

Several criteria have been proposed as a means of selecting
a specific basis of generalized Wannier states [10,23,24]. Here,
following Ref. [10], we seek the generalized Wannier states

with a minimal combined spatial variance, henceforth called
spread, defined as

� =
J∑

n=1

[〈0n|r̂2|0n〉 − 〈0n|r̂|0n〉2]

=
J∑

n=1

[〈r2〉n − r̄2
n

] =
J∑

n=1

�n. (4)

The minimizing states are called the maximally localized
generalized Wannier states.

It is known that the maximally localized generalized Wan-
nier states are indeed exponentially localized [17–19,25,26].
They do not necessarily provide the optimal approximation
to Ĥ when restricting the number of terms kept in ĤHM

but can be expected to be close to optimal. Finding a set of
generalized Wannier states which makes the Hubbard-model
approximation optimal is challenging. Hence minimizing the
spread of the generalized Wannier functions is both an effective
and a practical choice with the added benefit of having a
straightforward interpretation in terms of a particle occupying
a specific lattice site. Note that it has been hypothesized that
the maximally localized generalized Wannier states always
correspond to real functions, up to a global phase, when
dealing with an isolated group of J bands [20,26,27]. All
of our calculations support this hypothesis.

III. METHOD

To obtain maximally localized Wannier states we must
first calculate the band structure E(k)

m and Bloch states |ψ (k)
m 〉.

Such calculations are well understood and we include our
procedure here only for completeness and to introduce notation
required later. Then we must find the gauge U (k) such that
the resulting generalized Wannier states |Rn〉, defined by
Eq. (2), minimize the spread, defined by Eq. (4). This usually
consists of several steps: initially, we choose the gauge
U (k) = 1J to be the J × J identity matrix. Then the gauge is
transformed iteratively U (k) → U (k)V (k) according to a unitary
V (k). These transformations accumulate until they converge to
the desired gauge U (k), corresponding to the minimum spread.
From this, the maximally localized generalized Wannier states
may be calculated together with the hopping and interaction
parameters.

In the strategy devised by Mazari and Vanderbilt [10] an
initial unitary V (k) is constructed via projections of J localized
trial orbitals onto the Bloch states. This transformation leads
to a gauge U (k) = V (k) corresponding to an analytic set of
Bloch superpositions |ψ̃ (k)

n 〉 and thus exponentially-localized
generalized Wannier states |Rn〉. Subsequently, other unitary
transformations V (k) are iteratively applied as part of a
steepest-descent algorithm, in the hope that the cumulative
gauge U (k) converges towards the spread-minimizing gauge.

Unfortunately when applying this strategy to investigate
common optical-lattice potentials, we found that the gauge
corresponding to the maximally localized generalized Wannier
states is rarely obtained. Instead the spread often converges
to some nonglobal minimum. Therefore we adopt a different
initialization procedure, to precede the same steepest-descent
algorithm. In contrast, we find that, for the optical-lattice

043613-3



WALTERS, COTUGNO, JOHNSON, CLARK, AND JAKSCH PHYSICAL REVIEW A 87, 043613 (2013)

potentials considered, our strategy converges quite
consistently to the global minimum, and thus the maximally
localized generalized Wannier states are reliably obtained.
While proving convergence to the global minimum is difficult,
we test numerically both that the same solution is found
when starting from two Bloch states differing by random
permutations of the bands at each k, and that the final
generalized Wannier states are real.

In this section we begin by outlining the band structure
calculation, and the representation of quantities, such as the
spread, in reciprocal space. We then briefly describe Mazari
and Vanderbilt’s steepest-descent algorithm, before outlining
two methods we will use as our initialization procedure. To
end the section, we describe our full procedure for calculating
the maximally localized generalized Wannier states.

A. Band structure

We work with the Fourier-space representation of the
potential and cell-periodic functions,

v(G) = 1√
ϒ

∫
PC

dr V (r)e−iG·r,

c(k,G)
m = 1√

ϒ

∫
PC

dr u(k)
m (r)e−iG·r,

where the integral is over a primitive cell of the direct lattice.
In this representation the single-particle Schrödinger equation
ĥ|ψ (k)

m 〉 = E(k)
m |ψ (k)

m 〉 may be written as

1

2M
(G + k)2c(k,G)

m + 1√
ϒ

∑
G′

v(G−G′)c(k,G′)
m = E(k)

m c(k,G)
m .

(5)

The full band structure is obtained by solving this equation
for all wave vectors k in the Brillouin zone and all reciprocal-
lattice vectors G [16].

To make this calculation tractable on a computer, we first
truncate the Fourier expansions to include some finite number
N of terms, corresponding to reciprocal-lattice vectors G with
magnitudes |G| less than Gmax, as shown in Fig. 1(a). Then we

FIG. 1. (Color online) Representation of the problem in k space.
(a) The reciprocal-lattice points for a two-dimensional oblique lattice.
The black circle has a radius of Gmax and is centered on �. Fourier
components corresponding to reciprocal lattice points within the
circle (red points) are included in the truncated basis set, while those
outside (blue points) are not. (b) A mesh of wave vectors k for a hexag-
onal two-dimensional lattice used to interpolate values of functions
of k over the Brillouin zone, which is shown by the black hexagon.

solve Eq. (5) only for a D-dimensional uniform discrete mesh
of MD wave vectors k = G/M contained within some primitive
cell of the reciprocal lattice, and interpolate between these
wave vectors. As shown in Fig. 1(b), this primitive cell need not
be the first Brillouin zone since the corresponding Bloch states
are invariant when translated by a reciprocal-lattice vector into
the Brillouin zone. For each k in the mesh, solving the set of
Eqs. (5) then reduces to an eigenvalue problem. The justifica-
tion of the truncation and mesh discretization, as well as the
values of Gmax and M we use are discussed in Appendix A.

Note that various symmetries guarantee certain properties
of the coefficients c(k,G)

m [28]. For a given m and k, time-
reversal symmetry implies that we may choose c(−k,−G)

m =
c(k,G)∗
m . The addition of inversion symmetry allows us to

set c(k,G)
m and v(G) as real up to a common phase factor

and ensures that v(G) = v(−G). This implies that, when both
symmetries are present, we may both reduce our mesh of
reciprocal-lattice vectors by nearly half, as the coefficients for
−G may be inferred from those for G, and restrict all quantities
in the eigenvalue equation (5) to be real, thus speeding up
computations for each k.

B. Contributions to the spread

Following Mazari and Vanderbilt, the spread � = �I + �̃

can be conveniently decomposed into two positive-definite
parts, �I and �̃. The latter depends on the choice of gauge
U (k) appearing in Eq. (2), while the former does not. The
gauge-independent part �I depends only on the smoothness
in k space of the underlying manifold of Bloch states, while the
gauge-dependent part �̃ depends on the additional smoothing
achieved by applying phases to and mixing the Bloch states. In
preparation for what follows, it is useful to further decompose
�I = �I,D + �I,OD and �̃ = �D + �OD into band-diagonal
and band-off-diagonal terms. For the diagonal terms �I,D =∑

n �n
I,D and �D = ∑

n �n
D it makes sense to break them

down into positive-definite contributions from each band. The
decomposition is expressed neatly as

� =
�I︷ ︸︸ ︷∑

n

�n
I,D

︸ ︷︷ ︸
�I,D

+�I,OD +
�̃︷ ︸︸ ︷∑

n

�n
D

︸ ︷︷ ︸
�D

+�OD .

Our minimization method will of course leave �I invariant,
while minimizing �̃. The Mazari and Vanderbilt steepest-
descent algorithm iteratively minimizes �̃ directly, while our
initialization procedure is divided into two stages, one which
reduces �OD and another which minimizes �D .

In terms of generalized Wannier states, the contributions to
the spread are written

�n
I,D = 〈0n|r̂2|0n〉 −

∑
R

|〈0n|r̂|Rn〉|2, (6a)

�I,OD = −
∑

n

∑
m�=n

∑
R

|〈0m|r̂|Rn〉|2, (6b)

�n
D =

∑
R�=0

|〈0n|r̂|Rn〉|2, (6c)

�OD =
∑

n

∑
m�=n

∑
R

|〈0m|r̂|Rn〉|2. (6d)
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Again, for computational tractability, we move to the
truncated Fourier representation with a discretized mesh. In
this, all integrals over the Brillouin zone are replaced by
summations over the mesh,

ϒ

(2π )D

∫
BZ

dk → 1

MD

∑
k

,

and gradients represented by finite differences (the gradients
in reciprocal space arise from moments in position space). We
use the finite-difference expressions recommended by Marzari
and Vanderbilt [10], which have the property of transforming
correctly under translations of the generalized Wannier states
by a direct lattice vector. In this way, contributions to the spread
are reexpressed as

�n
I,D = 1

MD

∑
k,b

ωb
(
1 − ∣∣M (k,b)

nn

∣∣2)
, (7a)

�I,OD = − 1

MD

∑
k,b

ωb

∑
n

∑
m�=n

∣∣M (k,b)
mn

∣∣2
, (7b)

�n
D = − 1

MD

∑
k,b

ωb
(
Im

[
ln M (k,b)

nn

] + b · rn

)2
, (7c)

�OD = 1

MD

∑
k,b

ωb

∑
n

∑
m�=n

∣∣M (k,b)
mn

∣∣2
. (7d)

Here the vectors b connect each wave vector k to its nearest
neighbors, ωb are factors that depend on the geometry of the
mesh [29], and

rn = − 1

MD

∑
k,b

ωbbIm
[

ln M (k,b)
nn

]
.

It is clear then that all the information about the spread is
contained in the matrix elements

M (k,b)
mn =

∑
op

U (k)∗
pm

∑
G

c(k,G)∗
p c(k+b,G)

o U (k)
on ,

which is the truncated Fourier representation of the overlap
〈ũ(k)

m |ũ(k+b)
n 〉, where similarly to Eq. (3),

∣∣ũ(k)
n

〉 =
J∑

m=1

U (k)
mn

∣∣u(k)
m

〉
, (8)

with |u(k)
m 〉 the state associated with periodic function u(k)

m (r).
These elements are initialized to M (k,b)

mn = ∑
G c(k,G)∗

m c(k+b,G)
n

when U (k) = 1J . Then under a gauge transformation U (k) →
U (k)V (k) they undergo the computationally simple transforma-
tion M (k,b) → V (k)†M (k,b)V (k+b).

C. Minimization of the total spread

The gradient �(k) = d�/dW (k), embodying the change
in spread due to a gauge transformation V (k) = edW (k)

, with
dW (k) an infinitesimal anti-Hermitian matrix, can be efficiently
calculated from the matrices M (k,b) (see Ref. [10] for details).
The steepest-descent approach, as used in Refs. [10,13],
then implements the gauge transformation V (k) = edW (k)

with
dW (k) = −ε�(k) and ε a small positive number. These steps
are repeated until convergence is achieved.

To a large extent, the steepest-descent algorithm is only
as good as its initialization procedure, since starting from an
arbitrary set of generalized Wannier states, the algorithm is
likely to drive the set towards one of the many local minima
in the spread, rather than the global minimum. We do not
discuss here the commonly used projection-based initialization
procedure (see Ref. [11] for information on this) that we
found to struggle for optical-lattice potentials. Instead we
now discuss two other approaches for reducing the spread,
which together will form the initialization procedure we use
successfully for optical-lattice potentials.

D. Reduction of interband spread

We break down the task of finding the maximally localized
Wannier states into two stages. The first stage is to mix
the bands to create a new set of pseudobands from which
a maximally localized ordinary Wannier-states calculation is
optimal (i.e., leading to the smallest possible spread). The
second stage is to calculate the maximally localized ordinary
Wannier states using these premixed bands as a starting point.
The first stage corresponds to minimizing the off-diagonal
term �OD, and the second to minimizing the diagonal term
�D . Our initialization procedure is split accordingly: first we
reduce (but not necessarily minimize) �OD, as described in
this section; second we minimize �D , as described in the next
section.

Our first goal is then to reduce the band-off-diagonal term
�OD, which is equivalent to reducing �I,D . This equivalence
is clear from the interpretation above, that reducing �OD

corresponds to optimizing the bands from which to perform
a maximally localized ordinary Wannier-states calculation.
Mathematically, it follows from observing that the band-
off-diagonal parts of the gauge-invariant spread �I and the
gauge-dependent spread �̃ are the negative of each other [see
Eqs. (6b), (6d) and (7b), (7d)]: reducing �OD is achieved by
increasing the band-off-diagonal part �I,OD of the gauge-
invariant spread or, equivalently, reducing its diagonal part
�I,D .

To reduce �I,D , we use a method devised by Souza,
Mazari, and Vanderbilt [13]. For K degenerate bands, their
minimizes the contributions to �I from a subset K ′ < K bands
obtained through a unitary mixing of these bands. The aim
of this approach is then to construct the K ′ bands with the
smoothest k space such that they provide the optimal set of K ′
bands from which to construct localized generalized Wannier
states (optimal in the sense of having the smallest possible
gauge-invariant contribution to the spread).

We use their approach to reduce �I,D in the following way:
First, we use the Souza et al. method to minimize �1

I,D and
therefore construct, from the K = J bands, a single (K ′ = 1)
band whose smoothness in k space is optimum for constructing
a localized Wannier state. Then, keeping this band fixed, we use
the Souza et al. method again to minimize �2

I,D and construct
from the K = J − 1 remaining bands a single (K ′ = 1) band
that is optimum for constructing a localized Wannier state.
This is repeated in a similar fashion to obtain a third, fourth,
etc., band until finally we use the Souza et al. method to
minimize �J−1

I,D and construct an optimized (J − 1)th band
out of the two remaining bands, with all lower bands fixed.
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Our approach therefore consists of J − 1 applications of the
Souza et al. method, in each case optimally extracting a single
(K ′ = 1) band from K = J,J − 1, . . . ,2 others.

Note that this does not necessarily minimize �I,D and
therefore �OD, but we find that following this procedure �OD

is very small. Details of the Souza et al. method and our use
of it can be found in Ref. [13] and Appendix B, respectively.
Here we simply note that the Souza et al. method proceeds via
several iterations, each of which applies a transformation V (k)

over all k space that would have minimized the contribution
to the spread from any given point in k space had there been
no transformation applied at the other points in k space. The
desired gauge must be left unchanged by such an iteration and
thus it is a possible point of convergence. To protect against
false convergences, we initialize the whole procedure above
by applying a transformation V (k), where at each k we take a
J × J identity matrix and randomly permute its rows. We find
that in practice, following this initialization, the desired gauge
is nearly always obtained.

E. Reduction of intraband spread

We next present a method that reduces the intraband
contribution �D to the spread, while leaving the interband
contribution �OD invariant. To ensure this invariance, in this
section we restrict ourselves to gauge transformations V (k) that
are diagonal, i.e., while we allow changes to the phases of the
Bloch superpositions |ψ̃ (k)

n 〉, we do not allow any transforma-
tions that further mix the bands. Hence the task splits into
J independent parts, each to reduce �n

D by applying phases
to the Bloch superpositions |ψ̃ (k)

n 〉. One may interpret this as
constructing the maximally localized ordinary Wannier states
from a set of bands comprising the mixed Bloch states |ψ̃ (k)

n 〉.
Such single-band tasks are usually described in terms of

the Berry connection A(k) = i〈ũ(k)
n |∇(k)|ũ(k)

n 〉 [30]. Integrals
(Berry phases ϑC) of the Berry connection around closed
paths C in the Brillouin zone are invariant under changes
to the phases of the Bloch states |ψ̃ (k)

n 〉. This implies that r̄n,
equal to the average value of A(k) across the Brillouin zone,
is also invariant [31]. A further invariant quantity is given
by B = ∇ × A(k), called the Berry curvature. Local values
of A(k), however, depend on the phases of the Bloch states,
which determine the phase-dependent part of the spread �n

D .
It is known that this spread is minimized when the divergence
of the connection vanishes, ∇ · A(k) = 0, and the minimum
possible spread depends only on the Berry curvature B.

In particular, if B = 0, then the minimum possible spread
�n

D is zero. It follows that all Berry phases are zero and it
is possible to smooth A(k) such that it is uniform, at which
point �n

D = 0. To smooth the connection A(k), we use a
progressive phase update method: it consists of taking a
succession of closed loops through the Brillouin zone, and,
for each, altering the Bloch phases at points along the loop
such that the projections of A(k) along it are constant. This
constant value is fixed by their integral around the loop, the
Berry phase, which is invariant. Adjusting the phases in this
way for several loops, given in Appendix C, will result in a
flattened connection, if possible.

For nonzero B, absolute uniformity of the connection A(k) is
not possible. However, in an attempt to suppress the divergence

of the connection and therefore approach the minimum spread
�n

D , we still choose to smooth out A(k) using the progressive
phase update method and find this greatly reduces �n

D . To
achieve the minimum, we follow the progressive phase updates
with the steepest-descent minimization algorithm of Marzari
and Vanderbilt (cf. Sec. III C), when only terms corresponding
to �n

D contribute to the gradient �(k).
A particular case of interest is a system with inversion

symmetry and a current gauge U (k) that is diagonal, i.e., the
bands have not been mixed. As a result of the symmetry,
the mode functions ũ(k)

n (r) ∝ u(k)
n (r) must be real up to a

global phase, at which point the Berry curvature and thus the
spread �n

D vanishes. Note that optical-lattice potentials usually
possess inversion symmetry since this is inherited from the
lasers that created them; superlattice techniques are required
to break this.

We found that even if U (k) is not diagonal, e.g., after the
interband spread is reduced, the output of the disentangling
procedure often still had zero Berry curvature for each band
and the progressive phase update method reduced �n

D to zero.
Specifically, this occurred whenever the degeneracies in our
J -band subspace were a result of purely geometric symme-
tries. We hypothesize that this is a general feature, also hinted
at in the results of Refs. [20,26,27].

F. Full procedure

Having described the elements of our computational ap-
proach, we now describe how they are pieced together. The full
procedure for calculating the maximally localized generalized
Wannier states is shown in Fig. 2.

FIG. 2. Flow diagram of how our software package calculates the
maximally localized generalized Wannier states. First, it calculates
the band structure, and from this computes the matrix elements
M (k,b)

mn = ∑
G c(k,G)†

m c(k+b,G)
n . Second, it minimizes �n

D for each band
as far as possible without mixing the bands. Third, it reduces �OD.
Fourth, it again minimizes �n

D for each band as far as possible
without further mixing the bands. Fifth, it minimizes the total
� to its global minimum via steepest-descent minimization. Last,
we compute the Hubbard parameters and construct the maximally
localized generalized Wannier states.
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First we calculate the band structure. Then we minimize
the intraband spread via a progressive phase update, followed
by a restricted version of the steepest-descent method (for
potentials with inversion symmetry, the steepest-descent part
is unnecessary). At this point we are at the gauge corresponding
to the maximally localized ordinary Wannier states. We then
reduce the interband spread using the method adapted from
Souza et al. [13]. The interband spread reduction usually has
the side effect of increasing the intraband spread slightly,
so we again apply a progressive phase update, followed
by the restricted version of the steepest-descent method
to minimize the intraband spread. The above forms our
initialization procedure. If this has not already found the global
minimum of spread, we find that it is sufficiently close that
the full steepest-descent algorithm [10] returns the maximally
localized generalized Wannier states with a close-to-perfect
success rate.

IV. RESULTS

We next use the above procedure to derive ab initio the
Hubbard Hamiltonians realized by bosons in a variety of
optical-lattice potentials. The reasons are fourfold. First, we
test the accuracy of our procedure. Second, we compare
the procedure against others, e.g., methods using ordinary
rather than generalized Wannier states. Third, we demonstrate
that local Hubbard Hamiltonians can be justified for several
experimentally important cold-atom optical-lattice systems.
Fourth, we provide the relevant model parameters accurately in
terms of well-known control parameters like the laser intensity.

For the testing, we use the hopping parameters from our
derived Hubbard Hamiltonian to calculate an interpolated
band structure according to the tight-binding model. The
legitimacy of our approximations can then be considered by
comparing the interpolated band structure to the original. Note
that this allows us to determine the accuracy of only the
hopping parameters, not the interaction terms. Since we are
unable to directly verify the accuracy of discarding interaction
parameters, we discard only those of magnitude equal to, or
less than, that of the discarded hopping parameters for some
typical range of interaction strengths g � g̃ = ERλD , where

ER = h

2μλ2
, (9)

is the recoil energy, and λ is the “averaged” wavelength of the
laser beams creating the optical lattice.1

We now obtain the maximally localized Wannier states and
nearest-neighbor Hubbard models for atoms in several one-
and two-dimensional optical-lattice potentials. We leave three-
dimensional potentials for a future presentation.

A. One-dimensional systems

To begin, we find the maximally localized generalized
Wannier states and related Hubbard parameters for bosons

1The word “averaged” here acknowledges that the wavelengths of
the lasers used to produce the lattice must be slightly detuned from
each other to avoid unwanted interference.

FIG. 3. (Color online) One-dimensional superlattice. (a) The
configuration of lasers red detuned from wavelength λ to produce
the superlattice potential. (b) The potential over the unit cell, for
s = 0 (blue solid line), s = 0.5 (red dotted line), and s = 1 (green
dashed line). (c) The band structure corresponding to the potentials
in (b).

in a one-dimensional superlattice potential, given by

V (x) = V0[(1 − s) sin2(2πx/λ) + s sin2(4πx/λ)].

Such a potential can be produced using two independent pairs
of laser beams, each red detuned from wavelength λ and at an
angle to each other, as shown in Fig. 3(a). Their total intensities
determine the potential depth V0 and their relative intensities
determine the superlattice parameter 0 � s < 1. The lattice
parameter is λ/2. This system has been experimentally realized
in Refs. [32,33], and was proposed in Ref. [34] as a method for
initializing a quantum register on a time scale that is an order
of magnitude smaller than the conventional quantum freezing
of a superfluid to a Mott insulator state [4,35].

The potentials for three values of s are shown in Fig. 3(b),
where V0 = 20ER . For s = 0 the potential is sinusoidal with a
minimum at the center of each primitive cell. For s �= 0 there
are two minima in each primitive cell, which move either side
of the center. As s → 1 the potential approaches a sinusoid
with lattice parameter λ/4.

The band structures for the same parameters are shown
in Fig. 3(c). For all 0 � s < 1 the two lowest-lying bands
are well separated from the higher bands, and also are not
degenerate among themselves. Therefore, ordinary Wannier
states will provide an exponentially localized basis. We use
this superlattice potential then to demonstrate that using
generalized Wannier states can further localize the Wannier
states even when there are no interband degeneracies.

FIG. 4. (Color online) Maximally localized Wannier states for
the one-dimensional superlattice with V0 = 20ER and s = 0.999.
(a) The dotted green and dotted-dashed blue lines are the m = 1,2
generalized Wannier states. (b) The solid red and dashed light blue
lines are the n = 1,2 maximally localized ordinary Wannier states.
(c) The spreads of the maximally localized ordinary and generalized
Wannier states as a function of s [line type is the same as in
(a) and (b)].
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We expect the benefits of generalized over ordinary Wannier
states to be most notable in the s → 1 limit, where the bands are
close together. The maximally localized generalized Wannier
states and ordinary Wannier states for the case s = 0.999 and
J = 2 are presented in Figs. 4(a) and 4(b), respectively. It is
clear from inspection that the generalized Wannier states are
more localized. This improved localization occurs for even
small s but is very significant for moderate or large s � 0.5,
as is shown in Fig. 4(c), which plots the respective spreads as
a function of s.

Another way to see the effects of improved localization
is to look at the magnitudes of the hopping and interaction
parameters. These are shown in Fig. 5 (hopping) and Fig. 6
(interaction), as a function of s, for both the ordinary
and generalized Wannier states. For large s � 0.5, nonlocal
Hubbard parameters are significantly reduced when using

FIG. 5. (Color online) Hopping parameters for the one-
dimensional superlattice. The lines show the magnitudes |tmn

j | = |tmn
0R |

with 2|R| = jλ. The black, blue, red, and green lines correspond to
j = 0,1,2,3, as labeled in the figure. The solid (dashed) lines cor-
respond to the maximally localized generalized (ordinary) Wannier
states.

FIG. 6. (Color online) Interaction parameters for the one-
dimensional superlattice. The lines show the magnitudes |Umn

j | =
|Ummnn

00RR | of interactions between two particles in bands m and n at
sites separated by 2|R| = jλ. The black, blue, red, and green lines
correspond to j = 0,1,2,3, as labeled in the figure. The solid (dashed)
lines correspond to the maximally localized generalized (ordinary)
Wannier states.

generalized Wannier states. This comes at the expense of
allowing interband hopping.

From these values it is clear that using either ordinary or
generalized Wannier states, a tight-binding Hamiltonian

ĤHM =
∑

j

2∑
n=1

{
−tnn

0 b̂
n†
j b̂n

j − tnn
1 b̂

n†
j

(
b̂n

j+1 + b̂n
j−1

)

+ 1

2
Unn

0 b̂
n†
j b̂

n†
j b̂n

j b̂
n
j +

2∑
m=1,m�=n

[
−tmn

0 b̂
m†
j b̂n

j

− tmn
1 b̂

m†
j

(
b̂n

j+1 + b̂n
j−1

) + 1

2
Umn

0 b̂
m†
j b̂m

j b̂
n†
j b̂n

j

]}

can be derived and justified from first principles. Here,
for clarity, we have replaced the label R by the label
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FIG. 7. (Color online) Accuracy of the one-dimensional super-
lattice Hubbard models. (a) Lowest and first excited bands for the
superlattice potential with V0 = 20ER and s = 0.999. The blue and
red solid (cyan and magenta dashed) lines show the interpolated
lowest and first excited bands, respectively, for a tight-binding model
using the maximally localized generalized (ordinary) Wannier states.
For maximally localized generalized Wannier states, the interpolated
bands are indistinguishable from the exact bands on this scale. (b)
The standard deviation σ between the exact bands and the interpolated
bands as a function of the superlattice parameter s. The solid blue
(dashed red) line is for maximally localized generalized (ordinary)
Wannier states.

j = 2|R|/λ. The model derived using generalized Wannier
states is more accurate, as we can demonstrate by comparing
the interpolated bands to the original. In Fig. 7(a) this is
shown for both maximally localized ordinary and generalized
Wannier states, and superlattice parameter s = 0.999. The
generalized Wannier states almost exactly reproduce the
band structure, while there are significant deviations for
the Hamiltonian derived using ordinary Wannier states. In
Fig. 7(b) we show the standard deviation,i.e., the average
root-mean-squared error of the energies averaged over the
bands between the interpolated bands and exact bands as a
function of s. This demonstrates that the difference in accuracy
between using ordinary and generalized Wannier states is
appreciable for s � 0.5. In fact, we should have expected this
from the nonsinusoidal nature of the bands for large s. A tight-
binding model built from ordinary Wannier states can only
ever result in a sinusoidal band structure. Generalized Wannier
states and the interband hopping they describe have no such
restriction.

These results confirm that for s � 0.5, the accuracy of the
local model found using generalized Wannier states becomes
significantly better than that using ordinary Wannier states. The
reason for this difference is that the two generalized Wannier
states can each break the reflection symmetry in the primitive
cell to localize around a different minimum [see Fig. 4(a)].
Meanwhile the maximally localized ordinary Wannier states
cannot break this symmetry and instead are symmetric and
antisymmetric combinations of two functions localized at each
of the minima [see Fig. 4(b)]. Aside from leading to more
accurate local Hubbard models, the use of generalized Wannier
states is more relevant for cold-atom experiments. In such
experiments, it is the presence of a particle at a position in space
rather than the symmetry of its wave function that is measured
through high-resolution imaging [3]. Thus a Hubbard model
corresponding to atoms in spatially separated sites is preferable
to atoms in symmetric or antisymmetric superpositions. We
similarly expect generalized Wannier states to be important for
other lattices that possess more than one potential minimum
per primitive cell.

B. Two-dimensional systems

The use of generalized Wannier states is paramount in two
dimensions, as degeneracies in the lowest bands are likely to
occur as a result of crystallographic point-group symmetries.
Hence the maximally localized ordinary Wannier states could
fail to provide an exponentially localized basis due to the
resulting nonanalyticity of the bands. Further, we will see cases
where the maximally localized generalized Wannier states are
not centered around inversion points of the lattice, and do not
share the symmetry of the lattice. In these cases, approximating
the states using Gaussian functions would lead to a particularly
inaccurate estimate of the Hubbard parameters.

To showcase our procedure we now calculate accurately
and from first principles the maximally localized generalized
Wannier states and Hubbard parameters for atoms in an optical
lattice, with either hexagonal or kagome geometries. Both
potentials have multiple minima per primitive cell and lead to a
degenerate set of lowest bands, thus representing a significant
challenge using any other method. Both of these structures
also play an important role in condensed-matter physics; see,
e.g., Refs. [8,36–39].

1. Hexagonal lattice

Three blue-detuned beams of approximately equal wave-
length λ, shown in Fig. 8(a), generate a hexagonal optical-
lattice potential, written as

V (x,y) = V0

9

[
3 + 2 cos

(
2
√

3πy

λ

)

+ 4 cos

(
3πx

λ

)
cos

(√
3πy

λ

)]
,

and plotted in Fig. 8(b). The potential exhibits two minima
per unit cell, positioned at cell vertices that form a hexagonal
(honeycomb) structure. The consequence of there being two
potential minima per unit cell is that the two lowest bands are
degenerate at the K points of the Brillouin zone, as shown in

FIG. 8. (Color online) Hexagonal lattice. (a) The beam config-
uration for generating the optical lattice. The three beams are blue
detuned from the wavelength λ. (b) The lattice potential, with the
white line marking the boundary of the Wigner-Seitz unit cell. (c)
The band structure for lattice depth V0 = 10ER . The energies are
displayed along the path through the Brillouin zone shown in the
inset. (d) Similarly for V0 = 30ER .
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FIG. 9. (Color online) Maximally localized generalized Wannier
states for the hexagonal lattice. The two lowest bands are shown for
lattice depth V0 = 10ER . We have labeled the potential minima with
equal hopping and interaction parameters from the “home” minimum
by j = 0,1,2,3,4.

Figs. 8(c) and 8(d) for lattice depths V0 = 10ER and V0 =
30ER , respectively.

The maximally localized generalized Wannier states for the
two lowest bands, using J = 2, are shown in Fig. 9 for a lattice
depth V0 = 10ER . Both states possess threefold rotational
symmetry about their centers and are images of one another
through a rotation of 60◦ about the center of the Wigner-
Seitz unit cell. As for the one-dimensional superlattice, both
generalized Wannier states are localized around a potential
minimum, rather than at the Wyckoff positions (centers of
inversion). As a result �D �= 0 for the pair although the total
spread is minimized and the cell-periodic superposed states
[cf. Eq. (8)] are real. Since inversion symmetry is broken it is
clear that a Gaussian function would not adequately describe
these Wannier states even in the deep-lattice limit.

The magnitudes of the hopping and interaction parameters
for the two lowest bands are shown in Fig. 10. Since the
maximally localized generalized Wannier states are related
through a symmetry operation the parameters within each band
are identical. We therefore label the parameters not by site and
band, but by j , the rank of the distance between potential
minima, as shown in Fig. 9. The parameters for j = 0,2
are intraband, while those for j = 1,3,4 are interband. We
calculate these parameters up to a lattice depth of V0 = 200ER .
We observe that for large V0 the significant parameters are the
on-site interaction parameter U0 and the hopping parameter t1.
The interaction parameter U1 corresponding to the interaction
of Wannier states in neighboring potential minima is also
relatively large but is at least an order of magnitude less than t1
for V0 � 10ER and typical interaction strengths g ≈ g̃. With
these observations, the Hamiltonian for the hexagonal optical
lattice is accurately represented by

ĤHM = −
∑

i

t0b̂
†
i b̂i −

∑
〈i,j〉

t1b̂
†
i b̂j +

∑
i

1
2U0b̂

†
i b̂

†
i b̂i b̂i , (10)

where the sums are taken over potential minima (we have now
dropped the band index and instead labeled the minima by the
indices i and j ), each with three nearest neighbors, which we
denote by the angled brackets.

We once again insert the hopping parameters included in the
Hamiltonian into a tight-binding model to recreate the single-
particle band structure. The standard deviation between the
interpolated bands and the exact bands is shown in Fig. 10(c) as
a function of lattice depth. This again decreases exponentially
with lattice depth, indicating the high accuracy of the model
at all but shallow depths.

FIG. 10. (Color online) Hopping and interaction parameters for
the hexagonal lattice. (a) The magnitudes |tj | = |tmn

0R | of the hopping
parameters, as a function of lattice depth V0, where the centers
of |0m〉 and |Rn〉 are the j th smallest distance from each other
(cf. Fig. 9). The black solid, blue dotted, red dashed, green dot-
dashed, and magenta dot–long-dashed lines are for j = 0,1,2,3,4
respectively. (b) Similarly for the magnitudes |Uj | = |Ummnn

00RR | of the
interaction parameters. (c) The total standard deviation σ between
the exact lowest bands and the interpolated tight-binding bands as a
function of lattice depth.

2. Kagome lattice

The kagome lattice has received a large degree of interest in
recent years because it leads to a highly frustrated many-body
Hamiltonian [7,8,38,39]. This lattice may be created using six
lasers of approximate wavelength λ, three of which are red
detuned and three of which are blue detuned. The setup is
shown schematically in Fig. 11(a) and the resulting kagome
potential

V (x,y) ∝ − cos

(
2
√

3πy

λ

)
− 2 cos

(
3πx

λ

)
cos

(√
3πy

λ

)

+ cos

(√
3πy

λ

)
+ 2 cos

(
3πx

2λ

)
cos

(√
3πy

2λ

)

is shown in Fig. 11(b). We scale the potential such that the
full lattice depth V0 is the difference between the maximum
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FIG. 11. (Color online) The kagome lattice. (a) The beam con-
figuration for generating the optical-lattice potential. The projections
of the beam wave vectors are shown in the x-y and x-z planes. The
beams are both red and blue detuned from the same wavelength λ.
(b) The resulting lattice potential, with the white line marking the
boundary of the Wigner-Seitz unit cell. (c) The band structure for
lattice depth V0 = 2ER . The energies are displayed along the path
through the Brillouin zone shown in the inset.

and minimum of the potential V (x,y). The primitive unit
cell possesses three potential minima, and the lowest three
bands, shown in Fig. 11(c) for a lattice depth V0 = 2ER , are
degenerate; two of the bands are degenerate at the K points and
are reminiscent of the lowest bands of the hexagonal lattice,
while the highest-energy band is almost flat and is degenerate
at the � point.

The three maximally localized generalized Wannier states
for the three lowest bands, using J = 3, are plotted in Fig. 12
for a lattice depth V0 = 10ER , and each is once again located
at a potential minimum. Since the potential minima are
located at Wyckoff positions, the generalized Wannier states
possess inversion symmetry and �D = 0. Each state is only
twofold symmetric under rotation in accordance with the point
symmetry of the Wyckoff position it is centered on.

The states are images of each other through a rotation
of 120◦ about the center of a trimer. Because of this the
magnitudes of the hopping parameters, plotted in Fig. 13(a),
between equivalent neighboring potential minima are equal,
as was observed with the hexagonal lattice. Also similarly to
the hexagonal lattice, the parameters corresponding to hopping
between adjacent minima decay almost exponentially, while
the on-site interaction parameter dominates [see Fig. 13(b)].
The nearest-neighbor interaction parameters are at least
an order of magnitude smaller except at very low lattice
depths. Once again, due to symmetry this leads us, for a
sufficiently deep lattice, to the Hamiltonian given in Eq. (10),
where instead there are four nearest neighbors. Once again
we can reassure ourselves of the accuracy of the derived
Hamiltonian by looking at the standard deviation, shown
in Fig. 13(c), between the interpolated bands and the exact

FIG. 12. (Color online) Maximally localized generalized Wan-
nier states for the kagome lattice. The three lowest bands are
shown for lattice depth V0 = 10ER . We have labeled the potential
minima with equal hopping parameters from the “home” minimum
by j = 0,1,2,3,4.

FIG. 13. (Color online) Hopping and density-density interaction
parameters for the kagome lattice. (a) The magnitudes |tj | = |tmn

0R |
of the hopping parameters, as a function of lattice depth V0, where
the centers of |0m〉 and |Rn〉 are the j th smallest distance from each
other (cf. Fig. 12). The black solid, blue dotted, red dashed, green dot-
dashed, and magenta dot–long-dashed lines are for j = 0,1,2,3,4,
respectively. (b) Similarly for the magnitudes |Uj | = |Ummnn

00RR | of the
interaction parameters. (c) The total standard deviation σ between
the exact lowest bands and the interpolated tight-binding bands as a
function of lattice depth.

bands. This decreases exponentially with lattice depth and is
significantly smaller than the exact bandwidth, indicating good
accuracy.

V. CONCLUSIONS

We have calculated, from first principles, the parameters of
nearest-neighbour Hubbard models for several optical-lattice
potentials, including the honeycomb and kagome potentials,
demonstrating quantitatively for which lattice depths such
models are accurate. Strongly correlated phenomena probed in
optical-lattice experiments and quantum simulations depend
delicately on the ratios of kinetic and interaction energies.
Therefore a precise determination of them ab initio, as
done here, is essential for diagnosing and interpreting such
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experimental results and for using optical lattices as quantum
simulators.

To perform our calculations we have developed a freely
available software package [14] that, given an optical-lattice
potential, will efficiently calculate the corresponding maxi-
mally localized generalized Wannier states without any prior
knowledge of their form in any spatial dimension. This will
allow cold-atom researchers to easily and accurately determine
Hubbard models realized by any laser setup. We hope that this
tool will be useful for the optical-lattice community.
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APPENDIX A: ACCURACY OF THE TRUNCATED
FOURIER REPRESENTATION AND DISCRETIZED MESH

The cutoff wave vector corresponds to a maximum kinetic
energy for the plane-wave components given by Ecutoff =
G2

max/2M, and introduces a minimum spatial resolution λmin =
2π/Gmax for describing real-space functions in the system,
namely, the potential, the Bloch states, and the Wannier states.
The minimum spatial resolution must be smaller than the
spatial variations in these states in order for them to be
accurately recreated using the truncated set of coefficients;
therefore the cutoff energy must be at least as large as the
highest-energy Fourier component of the potential. One can
then increase the cutoff energy until the energies for each
band under consideration have converged, at which point
all coefficients c(k,G)

n of significant magnitude describing the
Bloch-periodic functions u(k)

n (r) are included. Typically, this
requires the cutoff energy to be an order of magnitude greater
than the upper end of the energy range of interest. In our
calculations a cutoff energy of Ecutoff = 50ER is sufficient
for band convergence and suitably limits the total number of
coefficients such that even in three dimensions our procedure
is not computationally expensive. Here ER is the recoil energy,
defined in Eq. (9).

The discretization of vectors in reciprocal space corre-
sponds to considering a finite real-space lattice with periodic
boundary conditions and M primitive unit cells in each lattice
direction. So we expect it to be valid when M is large and
surface effects are negligible.

APPENDIX B: ALGORITHM FOR REDUCING
INTERBAND SPREAD

Our method for reducing the interband spread involves
taking, for each n = 1, . . . ,J − 1 in turn, the J − n + 1 bands
n, . . . ,J and constructing from them an nth band that is
optimally smooth in k space, such that the most localized
Wannier state possible may be constructed for this band.

For each n, the algorithm, based on Ref. [13], proceeds as
follows. We calculate the Hermitian matrices

Z(k)
mp =

∑
b

ωbM
(k,b)
mn M (k,b)∗

pn , (B1)

where m,p run over n, . . . ,J . We then apply, for every k in
turn, a transformation V (k) = 1n−1 ⊗ X(k), where the unitary
X(k) diagonalizes Z(k), i.e., Z(k) = X(k)�(k)X(k)†, with �(k)

diagonal, reducing the spread to

�n
I,D =

∑
b

ωb − 1

MD

∑
k

�
(k)
11 .

The X(k) are always chosen at each k such that �
(k)
11 is the

largest eigenvalue of Z(k), so this spread is as small as possible.
The procedure in this paragraph is then applied repeatedly
until convergence is achieved. The gauge for which �n

I,D is
minimized is a convergence point [13].

On occasion the above procedure can become unstable, and
we prevent this by replacing Eq. (B1) by an equal weighting
of Z(k)

mp calculated during the current and previous iterations.
This has no effect on the locations at which the algorithm can
converge.

APPENDIX C: ALGORITHM FOR REDUCING
INTRABAND SPREAD

For the progressive phase update method, we smooth
the Berry connection over loops consisting of straight lines
through the Brillouin zone, in the directions of the reciprocal-
lattice vectors. In the reciprocal-mesh representation, the Berry
connection at each k is given by −∑

b ωbbIm[ln M (k,b)
nn ], and

so uniformity across a straight loop C(k′,b) going through k′
in direction b is achieved by choosing phases such that the
projection Im[ln M (k,b)

nn ] of the connection onto this line is the
same at each point. Specifically, since integrating over the loop
must give the Berry phase ϑC(k′ ,b) = ∑

k∈C(k′ ,b) −Im[ln M (k,b)
nn ],

we set Im[ln M (k,b)
nn ] = ϑC(k′ ,b)/M at each point k on the loop.

The loops and the order in which we smooth the Berry
connection across them are depicted in Fig. 14.

FIG. 14. (Color online) Progressive phase update method. Start-
ing from the bottom left corner of the Brillouin zone mesh (blue dots),
the phase of the neighbor to the right (connected by the black arrow)
is adjusted such that Im[lnM (k,b)] = ϑx,1/M for the pair, where ϑx,1

is the Berry phase in this direction. The same adjustment is made
for the next neighbor and so on until the end of the mesh is reached
(lower right corner). One then has Im[lnM (k,b)] = ϑx,1/M for all mesh
points along this path. The process is repeated for each path in the
next reciprocal-lattice direction as shown by the red arrows.
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