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Phase diagram of a rapidly rotating two-component Bose gas
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We derive analytically the phase diagram of a two-component Bose gas confined in an anharmonic potential,
which becomes exact and universal in the limit of weak interactions and small anharmonicity of the trapping
potential. The transitions between the different phases, which consist of vortex states of single and multiple
quantization, are all continuous because of the addition of the second component.
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I. INTRODUCTION

One of the remarkable features of cold atomic gases is their
high degree of tunability, allowing for a precise and flexible
control over most of the experimental parameters, and paving
the way for many different potential applications of these
systems. On the experimental side, remarkable progress has
been made by, e.g., the realization of confining potentials of
various functional forms (see, e.g., [1,2]), or by the creation of
mixtures of different atomic species (see, e.g., [3]).

Two-component rotating Bose-Einstein condensates have
been investigated thoroughly for the case of harmonic con-
finement [3]. One of the most interesting phenomena is the
presence of so-called “coreless vortices” that occur when only
one of the two components carries all the angular momentum
and forms a vortex state around the second one, which remains
at rest at the vortex core [3]. Indeed, the presence of the second,
nonrotating component gives rise to an effective anharmonic
potential acting on the rotating component, and therefore
allows the formation of multiply quantized vortex states [4,5].
These multiply quantized vortex states are not energetically
favorable in a single-component system in the case of harmonic
confinement.

The rotational properties of a single-component Bose-
Einstein condensate in the presence of an anharmonic
potential have been addressed previously, employing the
Gross-Pitaevskii mean-field approach, or the method of exact
diagonalization [6–17]. In the case of harmonic confinement
the rotational frequency of the trap � is limited by the trap
frequency ω because of the centrifugal force: as � → ω the
system enters a highly correlated regime [18–20], while for
� > ω the system is not bounded. On the other hand, in the
case of anharmonic confinement the system is bounded for any
value of �.

In this study we consider a mixture of two Bose-Einstein
condensates, which are confined in an anharmonic poten-
tial [21,22]. We investigate the rotational properties of this
system as a function of the rotational frequency of the trap
and the coupling between the atoms. As we show, in the
limit of weak interactions and small anharmonicity of the
confining potential one can derive the corresponding phase
diagram analytically by solving a quadratic algebraic equation.

Remarkably the phase diagram is exact and universal in these
limits.

Our paper is organized as follows. We first focus on the
case of zero and sufficiently weak interatomic interactions,
where the order parameters of the two species are multiply
quantized vortex states. The simplicity of these states then
allows us to investigate their stability as the coupling constant
between the atoms increases, deriving the phase diagram of
the system as a function of the interaction strength and of
the rotational frequency of the trap. We finally analyze and
interpret our results physically and compare them with those
of a single-component system, as the inclusion of a second
component changes the corresponding phase diagram rather
drastically.

II. MODEL

We consider a mixture of two distinguishable bosonic
atoms, labeled A and B with equal mass M , but with different
numbers of atoms NA and NB . The system is confined in a
two-dimensional anharmonic potential of the form

V (ρ) = 1

2
Mω2ρ2

[
1 + λ

(
ρ

a0

)2 ]
, (1)

where ρ is the radial coordinate in cylindrical coordinates, ω

is the trap frequency, a0 = √
h̄/(Mω) is the oscillator length,

and λ is a positive dimensionless parameter measuring the
strength of the anharmonicity of the trapping potential. Along
the axial direction, the density is assumed to be homogeneous
within a width Z, with a total density per unit length σ =
(NA + NB)/Z. The intra- and interspecies interactions are
modeled as hard-core potentials with scattering lengths for
elastic atom-atom collisions aAA, aBB , and aAB , which are
assumed to be repulsive. The general formalism is given for
any value of the scattering lengths, while the final results are
presented for equal scattering lengths aAA = aBB = aAB = a.
The dimensionless parameter σa thus gives the “strength” of
the interatomic coupling.

Within the mean-field approximation the two order parame-
ters �A and �B obey coupled, nonlinear, Gross-Pitaevskii-like,
differential equations, which in the rotating frame have the
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form

−h̄2∇2

2M
�i + V (ρ)�i + (gii |�i |2 + gij |�j |2)�i

−�L̂z�i = μi�i, (2)

with i = A,B; j = B,A. Here L̂z is the axial component of
the angular momentum operator, μi is the chemical potential
of each component, and gij = 4πh̄2σaij /M .

III. DISCONTINUOUS TRANSITIONS

Starting with the case of zero coupling, σa = 0, and small
anharmonicity, λ � 1, the order parameters �A and �B are
given by the eigenstates of the harmonic potential with no
radial nodes, 	m(ρ,φ) ∝ ρmeimφe−ρ2/2a2

0 , where m is the
quantum number that corresponds to the angular momentum
mh̄ (assumed to be positive). The single-particle energy
spectrum Em of the above states 	m scales quadratically with
m, Em = h̄ω[1 + m + λ(m + 1)(m + 2)/2], as opposed to the
harmonic potential, where Em ∝ m. As a result, as � increases,
the system undergoes discontinuous phase transitions between
the states 	m.

For weak coupling, σa � 1, one may treat the effect
of interactions perturbatively, still neglecting the states with
radial nodes. The energy of the system in a state of (m,n),
where component A is in the state 	m and component B is in
the state 	n, is

Em,n = xAEm + xBEn + h̄ωσa

(
αAAx2

A

(2m)!

22m(m!)2

+αBBx2
B

(2n)!

22n(n!)2
+ 2αABxAxB

(m + n)!

2m+n(m! n!)

)
. (3)

Here, xA,B = NA,B/N and αij = aij /a. The critical frequen-
cies for transitions between different states of (m,n) can be
calculated by comparing the energies in the rotating frame.
Figure 1 shows the corresponding phase boundaries for a
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FIG. 1. (Color online) Phase diagram, where the x axis is the
frequency of rotation of the trap �/ω and the y axis is the coupling
σa, for equal scattering lengths. The lines show the discontinuous
transitions between the states (m,n) ≡ (�A = 	m; �B = 	n). Here
λ = 0.005 and NA/NB = 2.

fixed population imbalance NA/NB = 2 and a weak anhar-
monicity, with λ = 0.005. In the absence of interactions the
corresponding critical frequencies are degenerate. However,
these degeneracies are lifted by the interactions, as seen in
Fig. 1. For a fixed coupling and increasing � the system first
undergoes a (discontinuous) transition from the state (0,0) to
the state (0,1), where the component with the smaller number
of atoms carries all the angular momentum and the other
component remains static, a so-called coreless vortex state.
Then, with increasing �, a vortex state forms in the larger
component, while the smaller one becomes static, the state
(1,0). For an even larger value of �, there is a transition to
the state (1,1), where a vortex state forms in both components.
It is interesting that the same result is obtained in the case of
mixtures in a purely harmonic potential [4,5].

IV. CONTINUOUS TRANSITIONS

As the interaction strength increases, the states of multiple
quantization become unstable, as the energy of the system is
minimized by mixing states of different angular momentum
in the order parameters �A and �B . The multiply quantized
vortex states undergo continuous second-order phase transi-
tions. It turns out that the order parameters above the phase
boundaries are of the form

�A = cm	m + cm+q	m+q, �B = dn	n + dn+q	n+q . (4)

Sufficiently close to the phase boundary, the coefficients cm

and dn are of order unity, while the other two coefficients in
Eq. (4) tend to zero. For this reason we keep in the energy only
the terms which are up to quadratic in cm+q and dn+q ,

E = xA

SA

(
Emc2

m + Em+qc
2
m+q

) + xB

SB

(
End

2
n + En+qd

2
n+q

)

+ x2
A

S2
A

(
c4
mV AA

m,m,m,m + 4c2
mc2

m+qV
AA
m,m+q,m,m+q

)

+ x2
B

S2
B

(
d4

nV BB
n,n,n,n + 4d2

nd2
n+qV

BB
n,n+q,n,n+q

)

+ 2
xAxB

SASB

(
c2
md2

nV AB
m,n,m,n + c2

m+qd
2
nV AB

m+q,n,m+q,n

+ d2
n+qc

2
mV AB

m,n+q,m,n+q + 2cm+qdn+qcmdnV
AB
n,m+q,n+q,m

)
,

(5)

where SA = c2
m + c2

m+q and SB = d2
n + d2

n+q . Since the “pure”
states �A = 	m and �B = 	n provide extrema of the energy
at the phase boundaries, the first-order derivatives of the energy
in the rotating frame, Erot = E − (m + n)h̄�, with respect to
cm+q and dn+q vanish at the phase boundary. Therefore, the
stability of the states of multiple quantization is determined by
the eigenvalues of a 2 × 2 matrix whose elements consist of
the second-order derivatives of the energy with respect to cm+q

and dn+q , i.e., M1,1 = ∂2Erot/∂c2
m+q , M2,2 = ∂2Erot/∂d2

n+q ,
and M1,2 = ∂2Erot/∂cm+q∂dn+q . The resulting matrix elements
along the diagonal are

M1,1 = 2xA(Em+q − Em − qh̄�) + 4x2
A

[
2V AA

m,m+q,m,m+q

−V AA
m,m,m,m

] + 4xAxB

[
V AB

m+q,n,m+q,n − V AB
m,n,m,n

]
,

(6)
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M2,2 = 2xB (En+q − En − qh̄�) + 4x2
B

[
2V BB

n,n+q,n,n+q

−V BB
n,n,n,n

] + 4xAxB

[
V AB

m,n+q,m,n+q − V AB
m,n,m,n

]
, (7)

while the off-diagonal element is M1,2 = 4xAxBV AB
m,n+q,m+q,n,

where V
ij

k,l,m,n = σaij Ṽk,l,m,n, with

Ṽk,l,m,n = h̄ω
(k + l)!

2k+l
√

k!l!m!n!
δk+l,m+n. (8)

When all the eigenvalues of this matrix are positive, the
system is stable. However, as soon as any of the eigenvalues
becomes negative, an instability occurs via a second-order
and continuous phase transition. Assuming equal scattering
lengths, we derive the general expression for the phase
boundaries of the pure states �A = 	m and �B = 	n for
n = m, which is given by

(σa)q = 1

2

Em+q − Em − qh̄�

Ṽm,m,m,m − Ṽm,m+q,m,m+q

. (9)

The parameter q in the above expression can take any value,
provided that m + q � 0.

The result of the calculation described above is shown in
the phase diagram depicted in Fig. 2, which is the main result
of this study. The phase boundaries corresponding to these
continuous transitions (triangular regions) remain in between
the straight lines of discontinuous phase transitions of absolute
energetic stability shown in Fig. 1, which implies that the
transitions between the phases of multiply quantized vortex
states are no longer discontinuous. As long as the interaction
strength has a nonzero value, they are continuous. The resulting
phase diagram obtained for the two-component case in this
respect is different from that of the one-component case for
which the transitions between phases are found to be both
continuous and discontinuous [13].

The part of the phase boundary which represents the
instability towards the “mixed” states [i.e., states of the form
of Eq. (4)] with q = −1 are vertical due to the fact that

FIG. 2. (Color online) Phase diagram, where the x axis is the
frequency of rotation of the trap �/ω and the y axis is the coupling σa,
for equal scattering lengths. All the lines show continuous transitions.
Here (m,m) ≡ (�A = 	m; �B = 	m), while (	m,	n)A,B ≡ (�A =
cm	m + cn	n; �B = dm	m + dn	n) denotes the states of the form
of Eq. (4). Here λ = 0.005 and NA/NB = 2.

the denominator of Eq. (9) becomes zero (i.e., Ṽm,m,m,m =
Ṽm,m−1,m,m−1) for this unstable mode. The lines correspond-
ing to the unstable mode with q = 1 have negative slope,
since

(σa)q=1 = h̄ω
m + 1

Ṽm,m,m,m

[1 − �/ω + λ(m + 2)]. (10)

Thus, the region of stability takes the shape of a triangle
for the pure state with m = 1. The lines with positive slope
cutting the other triangular regions in Fig. 2 denote the phase
boundaries of the most unstable mode for the states with
m � 2. Accordingly, when m = 2 and m � 6, we find that
the most unstable mode corresponds to q = −2, while for
m = 3, 4, and 5, it turns out that q = −3.

As the rotational frequency increases, we observe that the
region of stability of the multiply quantized vortex states
extends further, up to the points where the lines with positive
slope cut the triangular regions. For sufficiently large values
of m, demanding that (σa)q=1 = (σa)q=−2 and ignoring terms
of order of 1/m, we find that �/ω ≈ 1 + λ(m + 1). In other
words, for large m, the lines with positive slope cut the ones
with negative slope right at the top of the triangle.

In the phase diagram obtained, we have determined triple
points where three phases coexist [10,13]. As seen from Fig. 2,
the states (2,2), (3,3), and (4,4) have such triple points, where
the two phase boundaries with positive and negative slopes
intersect. For example, in the phase (2,2) around the point
where the two corresponding phase boundaries cut each other,
there is a doubly quantized vortex state, a doubly quantized
vortex state with a single vortex around it, and two singly
quantized vortex states. To see this, we recall that the states
	m(ρ,φ) ∝ zm, where z = ρeiφ . Therefore, if, for example,
� = cm	m + cm+q	m+q , then � ∝ zm(cm + cm+qz

q). Since
each term z − z0, where z0 is a constant, represents a singly
quantized vortex state located at the point z0 on the x-y plane,
the state � represents a multiply quantized vortex state of
winding number m that is located at the trap center, plus q

singly quantized vortex states around it [23].
In the fast-rotating regime � > ω, the effective potential

due to the confinement and the centrifugal potential has a
“Mexican hat” form, which leads to a hole in the density of the
cloud at the trap center. This hole appears first at the instability
of the phase (4,4), which is towards (	1,	4), as seen in Fig. 3.
In this figure we show schematic plots of the density and of
the phase of the two order parameters �A and �B for the

FIG. 3. (Color online) Density (upper plots) and phase (lower
plots) of the order parameters of the two components, corresponding
to the mixed phases with (A1,B1), (	0,	2)A,B ; (A2,B2): (	0,	3)A,B ;
(A3, B3), (	1,	4)A,B ; (A4,B4), (	2,	5)A,B (here Ai,Bi refer to the
two components A and B, respectively). The spatial extent of the
plots is between −6.4a0 and 6.4a0 in both directions.
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regions above the phases (2,2), (3,3), (4,4), and (5,5). The
instability of the phase (3,3) is towards (	0,	3), which has a
nonvanishing density at the center of the cloud. Therefore, up
to the phase (3,3) there is no node in the density of the cloud
at the center of the trap, while for the phase (4,4) and beyond
there is always a hole. From the plots in Fig. 3 we also see that
the density minima of the one component coincide with the
density maxima of the other component. The total density of
the cloud thus remains as close as possible to axial symmetry
along these phase boundaries.

The phase diagram that we have evaluated is exact and
universal in the limit of weak interactions and weak anhar-
monicity of the trapping potential. In the single-component
case the phase diagram is also universal; however, it is only
partly exact [13] because there are also discontinuous phase
transitions, where the phase boundaries can be evaluated only
approximately. On the other hand, in the present problem all
the phase boundaries shown in Fig. 2 are continuous and thus
are all exact. The phase diagram is universal in the sense that
it is invariant under changes of the degree of anharmonicity λ

of the trapping potential (provided that λ � 1), under proper
rescaling of the two axes.

V. NUMERICAL RESULTS

We have confirmed the phase boundaries shown in Fig. 2
numerically for various values of the coupling and of the
rotational frequency. Since the transitions are continuous,
we start from the phases of multiple quantization found in
Fig. 1 for a fixed � and increasing σa (or for a fixed σa

and increasing �). We choose the initial state �A = 	m,
�B = 	n, adding some more states with different angular
momenta with very small amplitudes, and then propagate
those in imaginary time using a fourth-order split-step Fourier
method [24].

In the regions of the phase diagram where the multiply
quantized vortex states are energetically favorable, the ampli-
tudes of the extra components decay in time. This behavior is
seen in the shaded parts of the triangular regions in Fig. 2.
On the other hand, outside these regions (but sufficiently
close to them) one of the small amplitudes exhibits a steady
increase in time, indicating that the multiply quantized vortex
states undergo a continuous second-order phase transition,
corresponding to the formation of a mixed state of the form
of Eq. (4). The clear difference in the temporal imaginary-
time evolution of these small amplitudes thus allows us to
characterize each point in the phase diagram and also to locate
the phase boundaries rather easily. The result of this calculation
is shown by the crosses in the phase diagram of Fig. 2. These
numerical results are in good agreement with the exact analytic
solution. However, the discrepancy between the analytic and
the numerical results grows rapidly with increasing λ, since
our analytic approach is perturbative.

We stress that the method adopted here makes it possible to
verify the location of the phase boundaries, without actually
having to evaluate the ground state for the relevant point in
the phase diagram, which is a much more demanding calcu-
lation, since convergence to the actual lowest-energy state is
slow.

VI. SUMMARY

In summary, we have examined the phase diagram of
a mixture of two Bose-Einstein condensed gases confined
in an anharmonic potential under rotation, as a function of
the strength of the coupling constant and of the rotational
frequency of the trap. We have shown that it is possible to
derive the corresponding phase diagram analytically, reducing
the problem to the evaluation of the roots of an algebraic
equation of second degree, which is obtained from the
requirement that the determinant of the 2 × 2 matrix defined
above vanishes.

It is also remarkable that the presence of a second
component makes the solution of this problem in a sense
simpler than for its one-component counterpart. In both cases
for sufficiently weak interactions the angular momentum is
carried by states of multiple quantization. On the other hand,
the instability that is caused by the interaction is different
in the two cases. In a single-component system a multiply
quantized vortex state � = 	m becomes unstable against
a state of the form � = cm−q	m−q + cm	m + cm+q	m+q

[13,14]. In the present problem the instability is against
states of the form of Eq. (4). Furthermore, in the case of a
single component, for sufficiently weak interactions the cloud
undergoes discontinuous phase transitions between phases of
multiple quantization [13,14]. Here, while there are still phases
of vortex states of multiple quantization, the transition between
them takes place via continuous transitions. This becomes
possible via vortex states which enter the two components
successively from infinity, moving continuously towards the
trap center.

The phase diagram we have evaluated is exact for suffi-
ciently weak interactions and for small anharmonicity of the
trapping potential. As long as these two assumptions are not
violated, it is also universal. Furthermore, the phase diagram is
independent of the population imbalance; however, this result
is valid only under the assumption of equal scattering lengths,
provided that both components have a comparable number of
atoms, i.e., neither NA nor NB → 0, as otherwise the problem
reduces to the case of a single component. In the results of our
study we have assumed equal scattering lengths for inter- and
intraspecies collisions. In the more general case, i.e., when they
are not equal to each other, the phase boundaries are no longer
straight lines and they are also dependent on the population
imbalance; however, the problem is still of the same level of
difficulty. Similar conclusions also hold for the case of unequal
masses of the two species.

Last but not least, we should stress that the derived phase
diagram is generic for any trapping potential V (ρ) that rises
more rapidly than quadratically. The method adopted here
allows one to evaluate the corresponding phase diagram for
any such trapping potential. Given the simple and systematic
behavior of the evaluated phase diagram, it would be interest-
ing to confirm these results experimentally.
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