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Electron-electron collision dynamics of the four-electron escape in Be close to threshold
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We explore the escape geometry of four electrons a few eV above threshold following single-photon absorption
from the ground state of Be. We find that the four electrons leave the atom on the vertices of a triangular pyramid
instead of a previously predicted regular tetrahedron. To illustrate the physical mechanisms of quadruple ionization
we use a momentum transferring attosecond collision scheme which we show to be in accord with the triangular
pyramid breakup pattern.
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Exploring the correlated electronic motion during ioniza-
tion of multielectron atoms and molecules, for energies close
to the ionization threshold, is a fundamental and challenging
task in physics. This electronic correlation has been a topic
of intense interest (for recent work see Refs. [1,2]) since
Wannier’s pioneering work [3]. According to Wannier’s law
σ ∝ Eβ for excess energies E → 0, where σ is the cross
section of the process involved and β depends on the number
and type of particles involved in the breakup process. Using
classical mechanics, Wannier also showed that two electrons
moving in the Coulomb field of an ion escape back-to-back
for energies E → 0. Extending Wannier’s work, later studies
predicted a three-electron breakup on the vertices of an
equilateral triangle [4,5] and a four-electron breakup on the
vertices of a regular tetrahedron [5,6]. While these highest-
symmetry breakup patterns were predicted for E → 0, it is
generally expected that they also prevail for excess energies a
few eV above threshold where the threshold Wannier exponent
β is still retrieved. In this work we show that this is not
true.

We show that for single-photon quadruple ionization (QI)
from the ground state of Be the prevailing breakup pattern a
few eV above threshold is different than the one predicted for
E → 0. For single-photon triple ionization from the ground
state of Li we have already shown that the breakup pattern
is not the expected “triangle” but a T shape a few eV above
threshold [7]. In the T shape two electrons escape back-to-
back while the third electron escapes at 90◦ with respect
to the other two electrons. Very recently, further evidence
for the T shape was provided by fully quantum mechanical
calculations for energies 5 eV above the triple ionization
threshold of the ground state of Li [8]. The previously
predicted triangle pattern was, however, observed in recent
(e,3e) coincidence measurements for electron impact on the
ground state of He [9]. The above reinforce a prediction
we made in Ref. [10] that the three-electron breakup pattern
depends on the initial state and can be either a T shape or a
triangle.

In the current work, we present evidence that for single-
photon QI from the ground state of Be, a few eV above thresh-
old, the prevailing breakup pattern is a triangular pyramid. That
is, the three electrons escape on the vertices of an equilateral
triangle at 120◦ from each other and the other electron escapes
perpendicular to the plane of the three electrons. Our prediction

differs from the symmetric four-electron escape on the vertices
of a regular tetrahedron predicted in the limit E → 0 [5,6].
However, for four-electron escape we find that two more
breakup patterns of higher symmetry, a regular tetrahedron
and a square, previously predicted in Ref. [5], are also
present. Thus, the deviation from the Wannier breakup patterns
is larger for three electrons. This suggests the possibility
that as the number of electrons increases the prevailing
breakup patterns are more consistent with those predicted by
Wannier. Moreover, uncovering the physical mechanisms of
QI, we express the multielectron escape dynamics in terms
of momentum transferring attosecond collision sequences.
Thus, besides addressing a fundamental law of physics, we
also elucidate correlated electronic motion in multielectron
escape. This is of high interest since the advent of ultrashort
and intense laser pulses has brought time-resolving correlated
electron dynamics in intra-atomic ionization processes to the
forefront of attosecond science [11–15].

Given computational capabilities, addressing four-electron
escape with quantum mechanical techniques is currently out
of reach [16]. Classical mechanics is justified for excess
energies close to threshold as detailed in the original work of
Wannier [3] and in subsequent work on two-electron [17] and
three-electron atoms. Specifically, for three-electron escape
by single-photon absorption in Li, using the quasiclassical
technique we use in the current work, we computed the total
differential cross section in Ref. [7] which is in very good
agreement with the experimental results in Ref. [18]. We also
found the Wannier exponent in Ref. [19] equal to 2.15 in
very good agreement with the theoretical value of 2.16 [4]
and we computed the differential cross sections in energy [20]
which agree very well with the quantum results in Ref. [21].
We tackle quadruple photoionization using the quasiclassical
technique—quasi due to the choice of initial state—detailed
in Ref. [22]. Briefly, using the classical trajectory Monte
Carlo method [23,24], we propagate in time the full five-body
Hamiltonian accounting for all interactions to all orders. In
addition, we use a Wigner [25] distribution for setting up
the initial phase space of the bound electrons [26]. We note
that the quasiclassical technique we use for QI has produced
a number of results for three-electron atoms in very good
agreement with either experimental or quantum mechanical
results. We compute the probability for QI, P4+, for excess
energies ranging from 3 to 10 eV. 3 eV is close to threshold
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FIG. 1. (Color online) Probability for two electrons to escape with
an interelectronic angle θ for excess energies of 3 eV (black dots with
solid line) and 10 eV (blue squares with dashed line). To guide the
eye, for each excess energy, we connect the symbols representing our
data with a line.

(399 eV) and the computational time involved is not prohibitive
for obtaining good statistics. 10 eV is an upper bound estimate
of excess energies where the Wannier exponent β can still be
retrieved. Using our data for P4+ from 3 to 10 eV in steps of 1
eV we find β equal to 94% of the theoretically predicted value
of 3.288 [5]. In the framework of Wannier’s theory, in what
follows we discuss our results for 3 and 10 eV.

To identify the four-electron escape pattern we focus on an
observable that naturally encompasses electronic correlation.
Such an observable is the probability for two electrons to
escape with an interelectronic angle θ—we refer to it as angular
correlation probability C(θ ). In Fig. 1, we plot C(θ ) for 3 and
10 eV excess energies. Given that P4+ is 1.8 × 10−10 for 3 eV
and 7.3 × 10−9 for 10 eV the computational task involved is
immense. Nevertheless, to provide good accuracy, for each
excess energy we consider, our results involve roughly 104

quadruple ionization events. In Fig. 1, we see that for 10 eV
C(θ ) has two peaks: one around 74◦ and a second one around
100◦–125◦. However, for 3 eV it is not clear whether only
one or two less pronounced peaks—compared to 10 eV—are
present in the range 80◦–112◦. In Fig. 1, C(θ ) is plotted using
28 bins for θ . We choose the bin size so that the double-peak
structure in C(θ ) is best resolved given the limitations imposed
by our statistics.

To what four-electron escape geometry does the shape of
C(θ ) correspond to? A regular tetrahedron pattern with all
electrons escaping at 109.5◦ from each other would result in a
single peak in C(θ ). A square pattern with two interelectronic
angles being 180◦ and four interelectronic angles being 90◦
would result in two peaks in C(θ ) with the peak at 90◦ twice
as high as the peak at 180◦. A triangular pyramid pattern
with three electrons escaping at 120◦ from each other and
the other electron escaping at 90◦ from the three electrons
would result in two peaks in C(θ ) of equal height. Hence,
the double peak in C(θ ) (Fig. 1) for 10 eV is consistent
with a triangular pyramid shape. For 3 eV the shape of C(θ )
does not provide conclusive evidence for the prevailing escape
geometry.

We next elucidate the physical mechanisms of QI and
provide conclusive evidence for the breakup patterns the four
electrons follow. How does the photoelectron redistribute

the energy it gains from the photon to the remaining three
electrons? This is a natural question in the framework of
classical mechanics where the electrons undergo soft collisions
mediated by Coulomb forces. To answer this question, we use
a classification scheme similar to the one we first introduced in
the context of three-electron escape following single-photon
absorption from the ground state of Li [7]. That is, we define a
collision between electrons i and j—labeling it as îj—through
the momentum transfer

Dij =
∫ t2

t1

∇V (rij )dt (1)

under the condition that V (rij (tk)) are local minima in time
with t2 > t1 while rij = |ri − rj| and V (rij ) = 1/|ri − rj|.
During the time interval t1 < t < t2 all five particles interact
with each other. Hence, the above definition is meaningful if
the collision redistributes energy primarily within the three-
body subsystem that includes the nucleus and the electrons i

and j . For automated identification of the collisions, we need
sensitivity thresholds to register only the important collisions
for the quadruple events. Due to the significantly higher
complexity of the four-electron problem we introduce two
sensitivity thresholds instead of one for three electrons [7,27].
We do so for each individual QI trajectory by forming the
maximum D = maxi �=j |Dij | and registering only collisions
with |Dij |/D > δ, where i,j = 1,2,3,4. We introduce another
sensitivity threshold for how “sharp” a collision is. Namely,
if electron i gains energy through more than one collision,
we find the maximum �Vi = maxi �=j [V (rij )max − V (rij )min],
with V (rij )max/min being the max or min value of V (rij (t))
for t1 < t < t2, and register only collisions satisfying
[V (rij )max − V (rij )min]/�Vi > δ1. We have checked that our
results and conclusions do not change for different values of δ

and δ1; we choose δ = 1/12 and δ1 = 1/8.
According to this classification scheme we find that

electrons 2, 3, and 4 gain sufficient energy to leave the
atom through two prevailing ionization routes. We denote
by electron 1 the photoelectron (from a 1s orbital), by 2 the
other 1s electron, and by 3 and 4 the two 2s electrons. In the
first route the photoelectron 1 knocks out first electron 2 and
then proceeds to knock out electrons 3 and 4. That is, first
a collision 1̂2 takes place very early in time and roughly 24
as later collisions 1̂3 and 1̂4 occur. With collisions 1̂3 and
1̂4 taking place close in time we find that a fourth collision,
3̂4, can occur in addition to the previous three collisions. We
refer to this ionization route where the photoelectron transfers
energy to both electrons 3 and 4 as s1 = {1̂2,1̂3,1̂4}. In the
second route, the photoelectron 1 first knocks out electron
2 through the collision 1̂2. Then, electron 2 becomes the new
impacting electron knocking out, roughly 24 as later, electrons
3 and 4 through the collisions 2̂3 and 2̂4. With collisions 2̂3
and 2̂4 taking place close in time a fourth collision, 3̂4, can
occur in addition to the previous three collisions. We refer
to this ionization route where electron 2 transfers energy to
both electrons 3 and 4 as s2 = {1̂2,2̂3,2̂4}. s1 accounts for
41%, both for 3 eV and 10 eV, and s2 for 24% for 3 eV and
26% for 10 eV of all QI events. Using this scheme of mo-
mentum transferring attosecond collision sequences we have
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FIG. 2. (Color online) Same as Fig. 1 but for each interelectronic pair θij for the ionization routes s1 (top row) and s2 (bottom row).

thus obtained a physical picture of the correlated electronic
motion in an intra-atomic ionization process. Further, this
scheme offers insight in choosing the appropriate asymptotic
observables for inferring the temporal profile of electron-
electron collision dynamics [28]. This is important since
developing pump-probe schemes to time-resolve correlated
multielectron escape is one of the current challenges facing
attoscience [29].

In what direction do the four electrons escape in pathways
s1 and s2? For s1, at the time when all electrons to be ionized
have received enough energy to leave the atom, the spatial
electron distribution, we refer to it as transient threshold
configuration (TTC) [10], is r1 ≈ r3 ≈ r4 �= r2. That is, the
last colliding electrons 1, 3, and 4 have r1 ≈ r3 ≈ r4, which is
close to the fixed point (see below) of the four-body Coulomb
problem—three electrons and the nucleus. Thus, one expects
that electrons 1, 3, and 4 will escape symmetrically on a plane
at 120◦ from each other. In Fig. 2 (top row) we plot C(θ )
for each of the six interelectronic angles of escape using only
the QI events that correspond to the s1 pathway; i.e, we plot
Cs1 (θ ). Indeed, we see that Cs1 (θ ) for θ13, θ14, and θ34 peaks
around 115◦, for both 3 and 10 eV, corresponding to electrons
1, 3, and 4 escaping on the vertices of a triangle. (We note
that the distributions in Figs. 1 and 2 are convoluted by the
polar angle volume element sin θ resulting in a peak at 120◦
being shifted to slightly smaller angles while a peak at 90◦
is not affected). In addition, we see that Cs1 (θ ) for θ12, θ23,
and θ24 peaks around 65◦–75◦ and 75◦–85◦ for 10 and 3 eV,
respectively. Note that the shifting of the peak at smaller angles
from 65◦–75◦ for 10 eV to 75◦–85◦ for 3 eV shows a tendency
towards the triangular-pyramid-consistent angle of 90◦. Thus,
the distributions in Fig. 2 (top row) for the s1 ionization route
are consistent with the triangular pyramid shape shown in

FIG. 3. The triangular pyramid escape geometry for four elec-
trons corresponding to collision sequences s1 (a) and s2 (b).

Fig. 3(a). Similarly for the ionization route s2, Cs2 (θ ) for θ23,
θ24, and θ34 peaks around 115◦ while Cs2 (θ ) for θ12, θ13 and θ14

peaks around 65◦–75◦ and 85◦ for 10 and 3 eV, respectively
(Fig. 2 bottom row). These distributions are consistent with
the triangular pyramid shape shown in Fig. 3(b). Therefore,
for the majority (65%) of QI events the four electrons escape
on the vertices of a triangular pyramid.

We now provide further evidence that if the three electrons
escape on a plane at 120◦ from each other then the preferred
escape geometry of the other electron is perpendicular to
this plane. We do so analytically by expressing the five-body
Hamiltonian in hyperspherical coordinates:

H = p2
r

2
+ �2

2R2
+ C(�)

R
, (2)

where � = (α1,α2,α3,θ1,θ2,θ3,θ4,χ1,χ2,χ3,χ4) contains all
angular variables describing the positions of the electrons
and � is a function of � and all conjugate momenta. The
total Coulomb interaction V = C/R acquires in this form
simply an angular-dependent charge C(�). The hyperspherical
coordinates are given by

R =
√

r2
1 + r2

2 + r2
3 + r2

4 , χ1 = φ3 − φ1,

α1 = arctan

(
r1

r3

)
, χ2 = φ4 − φ1,

α2 = arctan

⎛
⎝

√
r2

1 + r2
3

r4

⎞
⎠ , χ3 = φ2 − φ1, (3)

α3 = arctan

⎛
⎝

√
r2

1 + r2
3 + r2

4

r2

⎞
⎠ , χ4 = φ1 + φ2 + φ3 + φ4,

where φi and θi are the azimuthal and polar angles of the ith
electron. Focusing on s1, the TTC is r1 ≈ r3 ≈ r4 �= r2. For
simplicity we assume r1 ≈ r3 ≈ r4 � r2, resulting in α3 ≈ 0
(the opposite case would lead to the same result). We then
expand C(�) in powers of α3:

C(�) ≈ α−1
3

3∑
n=0

cnα
n
3 . (4)
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FIG. 4. (Color online) C(θ ) for the ionization routes s3 (a), s1 + s2 (b), and s4 (c). The lower statistics in panels (a) and (c) compared to
those in panel (b) dictate using 18 [(a) and (c)] instead of 28 (b) bins.

The lowest-order term in α3 is the potential term of the four-
body Coulomb problem with Z = 4. Thus, the problem of find-
ing a stable configuration is that of the three-electron problem
with the solution α∗

1 = π/4, α∗
2 = arctan(

√
2), χ∗

1 = 2π/3,
χ∗

2 = 4π/3, and θ1 = θ3 = θ4 = 90◦ [10]. These values min-
imize c2 for any value θ2. Minimizing c3 with respect to θ2

we find the stable solution θ2 = 0◦ which indeed corresponds
to a triangular pyramid breakup geometry, which is of lower
symmetry than a regular tetrahedron.

It is now clear that for the s1 + s2 labeled QI events the
four electrons escape on the vertices of a triangular pyramid
(see Fig. 2). Since these events account for roughly 65% of
all QI events the triangular pyramid shape prevails for 3 and
10 eV excess energy. Why then is the double peak in C(θ )
for 10 eV more pronounced than that for 3 eV in Fig. 1?
One reason is the following: an analysis of Cs1 (θ ) and Cs2 (θ )
(Fig. 2) shows that for Cs1+s2 (θ ) [Fig. 4(b)] the two peaks
are closer for 3 eV (at 85◦ and 115◦) than for 10 eV (at
65◦–75◦ and 115◦), resulting in a stronger overlap and a less
pronounced double peak for 3 eV. The same effect is also
present when all QI events are considered in C(θ) in Fig. 1.
Another reason is an ionization route which involves at least
four distinct collisions: one collision is 1̂2 while two of them
involve electrons 3 and/or 4 each gaining energy by both
electrons 1 and 2—we label this route as s3. For s3 TTC is
r1 ≈ r3 ≈ r4 ≈ r2. This spatial distribution is close to the fixed
point of the five-body Coulomb problem corresponding to all
four electrons escaping on the vertices of a regular tetrahedron
at 109.5◦ from each other. Indeed, in Fig. 4(a) we find that
Cs3 (θ ) has a single peak consistent with a regular tetrahedron
geometry. As expected this single peak becomes sharper with
decreasing excess energy; compare Cs3 (θ ) for 10 and 3 eV
in Fig. 4(a). Thus, when all ionization routes are considered
the contribution of Cs3 (θ ) for 10 eV does not smear out the
double peak of Cs1+s2 (θ ) [see Fig. 4(b)], while it does so for
3 eV. Further contributing to the difference in the shape of
C(θ ) between 3 and 10 eV is that the percentage contribution
of s3 to all QI events increases with decreasing excess energy
from 7% for 10 eV to 11% for 3 eV. Note that while the
regular tetrahedron does not prevail in the breakup geometry, as
generally expected, it is nevertheless present. The same is true
for another high symmetry breakup pattern which results from

yet another ionization route that involves mainly three distinct
collisions. One collision is 1̂2 while the other two collisions
involve electrons 3 and 4 each gaining energy by different
electrons; i.e., if electron 3 gains energy from electron 1 then
electron 4 gains energy from electron 2. This route which we
label as s4 accounts for roughly 10% of all QI events for 3 and
10 eV excess energies. We find that for 3 eV Cs4 (θ ) in Fig. 4(c)
has two peaks at 90◦ and 150◦ with the peak at 90◦ being almost
twice as high as the peak at 150◦. This is consistent with the
four electrons escaping on the apexes of a square [30] with four
interelectronic angles being 90◦ and two being 180◦ (the peak
at 180◦ is shifted at 150◦ in Fig. 4(c) since the distribution
is convoluted by sinθ ). This planar breakup geometry was
previously predicted in Ref. [5].

In conclusion, we have shown that a triangular pyramid
is the prevailing breakup pattern for QI by single-photon
absorption from the ground state of Be for excess energies
as low as 3 eV above threshold. This pattern can be verified
by future quantum mechanical and experimental studies
of differential cross sections. Such studies have already
been performed for three-electron atoms (see, for example,
Refs. [8,9,16]). From our previous results on triple ionization
[10] and our current on QI we conjecture that the four-electron
breakup pattern is also initial state dependent. That is, a
regular tetrahedron will be the breakup pattern for initial
states where three electrons occupy orbitals with similar spatial
distribution. However, while we find that for the ground state
of Be the triangular pyramid breakup pattern prevails we also
find two more breakup patterns of higher symmetry, namely,
a regular tetrahedron and a square previously predicted in
Ref. [5]. This suggests the possibility that as the number
of electrons increases the prevailing breakup patterns are
more consistent with those predicted by Wannier. More
theoretical work is needed to explore whether this is indeed the
case.
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