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First-order correction terms in the weak-field asymptotic theory of tunneling ionization
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The weak-field asymptotic theory (WFAT) of tunneling ionization in a static electric field is developed to the
next order in field. The first-order corrections to the ionization rate and transverse momentum distribution of
the ionized electrons are derived. This extends the region of applicability of the WFAT at the quantitative
level toward stronger fields, practically up to the boundary between tunneling and over-the-barrier regimes of
ionization. The results apply to any atom or molecule treated in the single-active-electron and frozen-nuclei
approximations. The theory is illustrated by calculations for hydrogen and noble-gas atoms.
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I. INTRODUCTION

Tunneling ionization is the first step for a variety of
processes launched by the interaction of atoms and molecules
with intense low-frequency few-cycle laser pulses [1,2].
Accurate ionization rates are required for the analysis of
experimentally observable spectra of photoelectrons and ions
[3–9] and harmonics [5,10–12] produced in such processes.

In the adiabatic regime, that is, for sufficiently low
frequency at a given intensity, the interaction of an atom
or molecule with an oscillating laser field can be described
in terms of the outgoing-wave solution to the stationary
Schrödinger equation which originates from the initial bound
state in the presence of a static electric field [13]. Such
solutions are called Siegert states (SSs) in an electric field
[14,15]. In particular, the instantaneous value of the ionization
rate is determined by the imaginary part of the complex SS
energy eigenvalue as a function of the instantaneous value
of field. Thus, the problem of calculating the ionization rate
in a laser field reduces to that in a static electric field.
The conditions of validity of the adiabatic approximation can
be found in Ref. [13]. We note that for few-cycle laser pulses of
current experimental interest the very concept of an ionization
rate only has a meaning in the adiabatic regime.

Recently we have initiated the development of the weak-
field asymptotic theory (WFAT) of tunneling ionization in
a static electric field [16]. This theory generalizes the well-
known results for hydrogen [17–19] and an arbitrary atom
[20] and enables one to evaluate the ionization rate for an
arbitrary molecule under the following approximations. The
first is the single-active-electron approximation; extending the
WFAT to many-electron systems becomes a priority goal for
future studies. The second is the frozen-nuclei approximation;
how to incorporate into the WFAT the effect of nuclear
motion in molecules was shown in Ref. [21]. Finally, the
third approximation, which gives the name of the theory,
consists of the assumption that the ionizing field F is much less
than a critical field Fc giving a boundary between tunneling
and over-the-barrier regimes of ionization. In other words,
the WFAT applies in the deep tunneling regime. In this
case, the SS mentioned above can be constructed analytically
and the ionization rate can be obtained as an asymptotic

expansion in F . For neutral atoms and molecules in the ground
state Fc ∼ 0.1 a.u., which corresponds to an intensity I ∼
3.5 × 1014 W/cm2. Thus, in spite of a seeming contradiction
in terminology, the WFAT has a wide range of applications in
modern strong-field physics.

In the leading-order approximation of the WFAT developed
in Ref. [16], the ionization rate is given by a product of two
factors which are now called structure and field factors [22,23].
The structure factor does not depend on F and is determined by
the asymptotic tail of the unperturbed active electron’s orbital.
For atoms, because of spherical symmetry, it is just a number,
but for molecules it is a function of the orientation with respect
to the field which reveals valuable structure information. The
structure factor presents one of the basic properties of atoms
and molecules along with other related properties, such as
dipole moment and polarizability. The techniques to calculate
the molecular structure factors for a given orbital based on
various quantum chemistry codes within the Hartree-Fock
approximation were developed in Refs. [22,23]. The field
factor, on the other hand, is a simple analytic function of F and
the energy of the unperturbed orbital which does not depend
on the orientation. While Refs. [22,23] were concerned with
application of the leading-order WFAT to linear molecules, an
application to nonlinear systems was demonstrated in Ref. [3]
by the analysis of experimental photoelectron spectra of C2H4.

In the present work we develop the WFAT to the next
order in field. So far, such an extension of the theory was
available only for the hydrogen atom. In Ref. [24], the
first-order correction to the leading-order term [18,19] in the
weak-field asymptotics of the ionization rate of hydrogen in an
arbitrary state was derived. In Ref. [25], a procedure to obtain
higher-order terms in the asymptotic expansion was developed
and a number of such terms for a few lowest states were given.
In the case of the Coulomb potential, one can separate variables
in the Schrödinger equation in parabolic coordinates, which
crucially simplifies the analysis. This important advantage of
parabolic coordinates is inherited in the general approach of
Ref. [16], which applies to arbitrary one-electron potentials.
This approach enables us to overcome technical difficulties
and generalize the results of Ref. [24] to arbitrary atoms and
molecules. We obtain the first-order correction terms in the
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asymptotic expansions not only for the ionization rate, but
also for the transverse momentum distribution (TMD) of the
ionized electrons, which defines the photoelectron momentum
distribution within the adiabatic theory [13]. These results
essentially extend the region of applicability of the WFAT at
the quantitative level toward stronger fields, practically up to
F ∼ Fc. Such an extension is the main goal of the present
development.

The paper is organized as follows. In Sec. II, we summarize
basic equations of the theory of SSs in an electric field [16].
In Sec. III, following the approach developed in Ref. [16], we
construct the asymptotic solution of the SS eigenvalue problem
for F → 0, extending the results to the next order in F . The
most technically involved part of the derivation is deferred
to Appendix A. In Sec. IV, we present illustrative numerical
results for hydrogen and noble-gas atoms. The WFAT results
are compared with accurate numerical calculations by an
original multiple-precision procedure outlined in Appendix B,
for H, and by the method developed in Ref. [14], for Ne, Ar,
Kr, and Xe. A summary of the results and the conclusions are
given in Sec. V.

II. SIEGERT STATES IN AN ELECTRIC FIELD:
BASIC EQUATIONS

We consider a molecule (for definiteness, we talk about
molecules, but our analysis applies also to atoms) treated in
the single-active-electron and frozen-nuclei approximations
interacting with an external static uniform electric field F =
F ez, F � 0. The stationary Schrödinger equation for the active
electron reads (atomic units are used throughout)[− 1

2 � + V (r) + Fz − E
]
ψ(r) = 0, (1)

where V (r) describes the interaction with the molecular ion
and r is measured from the center of mass of the nuclei
[16]. The potential V (r) implicitly depends on the nuclear
configuration and orientation of the molecule with respect to
the field. It can be arbitrary, the only assumption is

V (r)|r→∞ = −Z

r
− Dn

r2
+ O(r−3), (2)

where Z is the total charge of the molecular ion, D is its
dipole moment, and n = r/r . The SSs are the solutions to
Eq. (1) satisfying the regularity and outgoing-wave boundary
conditions. To treat such solutions, it is convenient to introduce
parabolic coordinates [17],

ξ = r + z, 0 � ξ < ∞, (3a)

η = r − z, 0 � η < ∞, (3b)

ϕ = arctan
y

x
, 0 � ϕ < 2π, (3c)

and rewrite Eq. (1) in the form [16][
∂

∂η
η

∂

∂η
+ B(η) + Eη

2
+ Fη2

4

]
ψ(r) = 0, (4)

where the adiabatic Hamiltonian

B(η) = ∂

∂ξ
ξ

∂

∂ξ
+ ξ + η

4ξη

∂2

∂ϕ2
− rV (r) + Eξ

2
− Fξ 2

4
(5)

is an operator acting on functions of ξ and ϕ and depending
on η as a parameter. From Eq. (2) we obtain

B ≡ B(η)|η→∞ = ∂

∂ξ
ξ

∂

∂ξ
+ 1

4ξ

∂2

∂ϕ2
+ Z + Eξ

2
− Fξ 2

4
.

(6)

In Ref. [16], the solution to Eq. (4) was sought as an expansion
in terms of the adiabatic basis consisting of the eigenfunctions
ofB(η). Such an approach is indeed very efficient for numerical
solution of the problem [14,15]. However, in the present
analysis it is more convenient to use a diabatic basis consisting
of the eigenfunctions of B defined by the equation

(B − βν)�ν(ξ,ϕ) = 0 (7)

supplemented by the regularity boundary condition at ξ = 0,
zero boundary condition at ξ → ∞, and periodic boundary
condition in ϕ. Here ν is a discrete multi-index enumerating
the solutions. Equation (7) allows separation of variables and
has solutions of the form

�ν(ξ,ϕ) = φν(ξ )
eimϕ

√
2π

, (8a)

ν = (nξ ,m), nξ = 0,1, . . . , m = 0, ± 1, . . . , (8b)

where φν(ξ ) and the corresponding eigenvalue βν are defined
by[

d

dξ
ξ

d

dξ
− m2

4ξ
+ Z + Eξ

2
− Fξ 2

4
− βν

]
φν(ξ ) = 0, (9a)

φν(ξ )|ξ→0 ∝ ξ |m|/2, φν(ξ )|ξ→∞ = 0, (9b)∫ ∞

0
φnξ m(ξ )φn′

ξ m
(ξ ) dξ = δnξ n

′
ξ
. (9c)

Here m is the azimuthal quantum number and nξ enumerates
the different solutions to Eq. (9a) for a given m. The
eigenfunctions (8a) are called parabolic channel functions.
They are orthonormal with respect to the inner product

〈�ν |�ν ′ 〉 ≡
∫ ∞

0

∫ 2π

0
φnξ m(ξ )φn′

ξ m
′ (ξ )

ei(m′−m)ϕ

2π
dξ dϕ = δνν ′ ,

(10)

where ν ′ = (n′
ξ ,m

′). The solution to Eq. (4) is sought in the
form

ψ(r) = η−1/2
∑

ν

fν(η)�ν(ξ,ϕ). (11)

Substituting this expansion into Eq. (4), we obtain a set of
ordinary differential equations defining the unknown functions
fν(η), [

d2

dη2
+ Fη

4
+ E

2
+ βν

η
+ 1 − m2

4η2

]
fν(η)

− 1

η

∑
ν ′

Wνν ′ (η)fν ′(η) = 0, (12)

where

Wνν ′(η) = 〈�ν |[rV (r) + Z]| �ν ′ 〉. (13)
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The field term in Eq. (1) drives ionized electrons toward
z → −∞, which corresponds to η → ∞ [see Eq. (3b)]. This
asymptotic region plays a key role in our analysis. The main
advantage of parabolic coordinates in treating the SSs stems
from the fact that Eqs. (12) become decoupled in this region.
Indeed, from Eq. (2) we have

[rV (r) + Z]|η→∞ = 2Dz

η
− 2(e−iϕD+ + eiϕD−)

ξ 1/2

η3/2

+O(η−2), (14)

where D± = Dx ± iDy . Thus the coupling matrix (13) van-
ishes at η → ∞ and Eqs. (12) take the form[

d2

dη2
+ Fη

4
+ E

2
+ βν

η
+ γm

η2
+ O(η−5/2)

]
fν(η) = 0,

(15)

where

γm = 1 − m2

4
− 2Dz. (16)

In Ref. [16], we retained only terms up to order O(η−1) in this
equation; this was sufficient for obtaining the leading-order
term in the asymptotic solution of the problem for F → 0.
For deriving the first-order correction in F , we need terms
up to order O(η−2) in Eq. (15). The dominant contribution to
the off-diagonal elements of Wνν ′ (η) at η → ∞, which couple
the different parabolic channels, comes from the second term
in the expansion (14). These coupling terms are represented
by O(η−5/2) in Eq. (15); their explicit form is immaterial for
the following discussion. It is fortunate that they vanish faster
than the term O(η−2) needed for the present derivation, which
greatly simplifies our analysis. It is convenient to introduce a
boundary of the coupling or core region ηc such that for η > ηc

the last term in Eq. (15) can be neglected within a desired
accuracy, and hence these equations for the different ν become
decoupled. In the following, we consider only the region η >

ηc. The outgoing-wave solution to Eq. (15) satisfies [16]

fν(η)|η→∞ = 21/2fν

(Fη)1/4
exp

[
iF 1/2η3/2

3
+ iEη1/2

F 1/2

]
. (17)

The solutions to Eqs. (12) satisfying the regularity boundary
condition at η = 0 and the outgoing-wave boundary condition
(17) at η → ∞ exist only for a discrete set of generally
complex values of E—this is the SS eigenvalue problem. The
real and imaginary parts of the eigenvalue E define the energy
E and ionization rate � of the state,

E = E − i
2 �. (18)

The eigenfunction is normalized by∫
ψ2(r) dr = 1

4

∫ ∞

0

∫ ∞

0

∫ 2π

0
ψ2(r)(ξ + η)dξ dη dϕ = 1,

(19)

where the integral should be regularized by deforming the
integration path in η from the real semiaxis into a contour in
the complex η plane (for more details see Ref. [14]).

The outgoing-wave boundary condition for Eq. (1) can also
be presented in the form [16]

ψ(r)|z→−∞ =
∫

A(k⊥)eik⊥·r⊥g(z,k⊥)
dk⊥

(2π )2
, (20)

where r⊥ = (x,y) = (r⊥ cos ϕ,r⊥ sin ϕ), k⊥ = (kx,ky) =
(k⊥ cos ϕk,k⊥ sin ϕk), and

g(z,k⊥) = e−iπ/122π1/2(2F )−1/6 Ai(ζ ), (21a)

ζ = 2e−iπ/3

(2F )2/3

[
E − Fz − k2

⊥
2

]
. (21b)

Here Ai(x) is the Airy function [26]. The function g(z,k⊥)
contains only an outgoing wave as z → −∞. The TMD
amplitude A(k⊥) can be expressed in terms of the coefficients
in Eq. (17) and parabolic channel functions (8) [16],

A(k⊥) = 23/2πi

F 1/2

∑
ν

fν�ν

(
k2
⊥
F

,ϕk

)
. (22)

The TMD of ionized electrons in the outgoing flux is given by

P (k⊥) = |A(k⊥)|2. (23)

Thus the main quantities characterizing a SS and related to
observables are the complex eigenvalue E defining its energy
and ionization rate, Eq. (18), and the asymptotic coefficients
fν in Eq. (17) defining the TMD amplitude (22). An efficient
numerical procedure to accurately calculate E and fν was
developed in Ref. [14], for axially symmetric potentials, and
in Ref. [15], for arbitrary potentials without any symmetry.

III. WEAK-FIELD ASYMPTOTICS

Meanwhile, in the weak-field limit the values of E and
fν can be found analytically. In Ref. [16], the leading-order
asymptotic solution to the SS eigenvalue problem for

F → 0 (24)

was obtained. In this section, we derive the first-order
correction to this solution. We follow the approach of Ref. [16],
successively extending each of its steps to the next order in F .

A. Perturbation theory

Let, for F = 0, Eq. (1) have a bound-state solution with
energy E0 < 0 and wave function ψ0(r). It is convenient to
introduce the notation

κ =
√

−2E0. (25)

We assume that ψ0(r) is real, which is always possible to
achieve for a bound state, and normalized by∫

ψ2
0 (r) dr = 1. (26)

Within the standard perturbation theory [17], the solution to
Eq. (1) for F > 0 originating from this bound state is given by

E = E0 − μzF − 1
2αzzF

2 + O(F 3), (27a)

ψ(r) = ψ0(r) + ψ1(r)F + O(F 2). (27b)

Here μz and αzz are the components of the electronic dipole
moment vector μi and the static dipole polarizability tensor
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αij , i,j = x,y,z, in the unperturbed state ψ0(r), respectively,
and ∫

ψ1(r)ψ0(r) dr = 0, (28)

so that the function (27b) satisfies the normalization condition
(19) with an error of order O(F 2). The series (27) are known
to have two important shortcomings. First, all terms in these
series, up to any finite order in F , are real. Thus Eq. (27a)
defines only the real part of the complex SS eigenvalue (18);
the ionization rate � is exponentially small in F and cannot
be accounted for by a power series. Second, Eq. (27b) holds
only in the region η � 2|E0|/F , where the field term in
Eq. (15) can be treated perturbatively. The right-hand side
of Eq. (27b) exponentially decays in the asymptotic region,
where the outgoing wave (17) is formed, so this expansion
does not allow one to find the coefficients fν , which are also
exponentially small in F . To calculate fν and then � one
has to connect Eq. (27b) with Eq. (17) by solving Eq. (15).
In the weak-field limit (24) this can be done by asymptotic
methods [27,28].

In the following, we assume that all quantities appearing
in Eqs. (27) are known. They can, for example, be obtained
by calculations in a finite volume, where various efficient
numerical techniques can be used. Our goal is to express
observables related to tunneling ionization in terms of these
quantities.

B. Parabolic channels

The parabolic channels are defined by Eqs. (8) and (9),
where one should substitute E given by Eq. (27a) for E into
Eq. (9a). The solution to this eigenvalue problem can be found
using perturbation theory,

βν = β(0)
ν + β(1)

ν F + O(F 2), (29a)

φν(ξ ) = φ(0)
ν (ξ ) + φ(1)

ν (ξ )F + O(F 2). (29b)

The zeroth-order terms in these expansions were obtained in
Ref. [16],

β(0)
ν = Z − κ

(
nξ + |m| + 1

2

)
, (30a)

φ(0)
ν (ξ ) = κ

1/2(κξ )|m|/2e−κξ/2

√
nξ !

(nξ + |m|)! L(|m|)
nξ

(κξ ),

(30b)

where L(α)
n (x) are the generalized Laguerre polynomials [26].

Here we obtain the first-order terms,

β(1)
ν = − μz

2κ

(2nξ + |m| + 1)

− 1

4κ
2

[
6nξ (nξ + |m| + 1) + m2 + 3|m| + 2

]
,

(31a)

φ(1)
ν (ξ ) = 1

8κ
3
{cnξ −2cnξ −1φ

(0)
nξ −2,m(ξ ) − 4cnξ −1

× [κμz + (2nξ + |m|)]φ(0)
nξ −1,m(ξ ) + 4cnξ

[κμz

+ (2nξ + |m| + 2)]φ(0)
nξ +1,m(ξ )

− cnξ
cnξ +1φ

(0)
nξ +2,m(ξ )}, (31b)

where

cnξ
= √

(nξ + 1)(nξ + |m| + 1) (32)

and it is implied that the functions φ(0)
nξ m

(ξ ) with negative
nξ in Eq. (31b) are equal to zero. Substituting Eq. (29b)
into Eq. (8a), we obtain the corresponding expansion for the
parabolic channel functions,

�ν(ξ,ϕ) = �(0)
ν (ξ,ϕ) + �(1)

ν (ξ,ϕ)F + O(F 2). (33)

C. Asymptotic coefficients

Here we find the coefficient fν in Eq. (17). To this end, we
need to connect Eq. (27b) with Eq. (17) by constructing the
asymptotic solution of the uncoupled equations (15). This is
done in Appendix A; here we invoke the results obtained there.
The correspondence between Eq. (A1) treated in Appendix A
and Eq. (15) is established by identifying the coefficients E, β,
and γ in Eq. (A1) with E , βν , and γm given by Eqs. (27a), (29a),
and (16), respectively. Substituting Eqs. (27a) and (29a) into
the equations of Appendix A, one should perform an additional
expansion in F . In this way from Eq. (A13) we obtain the
solution to Eq. (15) in the region 1 � η � F−1/2 [here we
assume that η > ηc, which is always possible to achieve since
ηc = O(F 0)]:

fν(η) = gνη
β(0)

ν /κe−κη/2{1 + O(η−1) + [C2η
2 + C1η

+Cl ln η + C0 + aν + O(η−1 ln η)]F + O(F 2)},
(34)

where

C2 = (8κ)−1, (35a)

C1 = − μz

2κ

+ 2 − γm

8κ
2

+ 5β(0)
ν

8κ
3

− β(0)2
ν

8κ
4
, (35b)

Cl = β(1)
ν

κ

+ γm − 2μzβ
(0)
ν

2κ
3

+ 3β(0)2
ν

2κ
5

, (35c)

C0 = μz

2κ
2

(
γm − β(0)

ν

κ

+ β(0)2
ν

κ
2

)
. (35d)

Expansion (34) contains two unknown field-independent
coefficients, gν and aν , which can be found by matching it
with Eq. (27b). Indeed, from Eq. (11) we have

η−1/2fν(η) = 〈�ν |ψ(r)〉
= 〈

�(0)
ν

∣∣ψ0(r)
〉 + [〈

�(1)
ν

∣∣ψ0(r)
〉 + 〈

�(0)
ν

∣∣ψ1(r)
〉]
F

+O(F 2). (36)

By comparing this with Eq. (34), we find

gν = η1/2−β(0)
ν /κeκη/2

〈
�(0)

ν

∣∣ψ0(r)
〉
η→∞ (37)

and

aν = g−1
ν η1/2−β(0)

ν /κeκη/2 [〈
�(1)

ν

∣∣ψ0(r)
〉 + 〈

�(0)
ν

∣∣ψ1(r)
〉]

η→∞
− (C2η

2 + C1η + Cl ln η + C0). (38)
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Having thus defined gν and aν , we obtain from Eq. (A25)

fν = κ
1/2gν

21/2

(
4κ

2

F

)β(0)
ν /κ

exp

[
iπ

4
+ iπβ(0)

ν

κ

− κμz − κ
3

3F

]

×
[

1 + 1

2
AνF ln

F

4κ
2

+ 1

2
(Bν + 2i Im aν − iπAν)F

+O(F 2)

]
, (39)

where

Aν = −2β(1)
ν

κ

− γm − 2μzβ
(0)
ν

κ
3

− 3β(0)2
ν

κ
5

, (40a)

Bν = −καzz − μ2
z

κ

+ μz

κ
2

+ 4μzβ
(0)
ν

κ
3

− 10 + 18γm + 3γ 2
m

24κ
3

− (9 − 6γm)β(0)
ν

4κ
4

− (49 + 2γm)β(0)2
ν

8κ
5

+ 3β(0)3
ν

2κ
6

− β(0)4
ν

8κ
7

+ 2 Re aν. (40b)

Note that gν and aν are generally complex and for real ψ0(r)
and ψ1(r) they satisfy

gnξ ,−m = g∗
nξ m

, anξ ,−m = a∗
nξ m

, (41)

while Aν and Bν are real. Equation (39) generalizes Eq. (57)
from Ref. [16].

D. Ionization rate

In the weak-field limit (24), the ionization rate � is equal
to the total flux of ionized electrons and therefore can be
expressed in terms of the coefficients fν in Eq. (17). This
expression was already given in Ref. [16], but it is worthwhile
to reiterate its derivation on the basis of the present diabatic
expansion (11). From Eqs. (1) and (18) we have

�|ψ(r)|2 = ∇j(r), (42)

where

j(r) = −i

2
[ψ∗(r)∇ψ(r) − ψ(r)∇ψ∗(r)]. (43)

The imaginary part of ψ(r) is exponentially small in F and can
be neglected on the left-hand side of Eq. (42) (but not on its
right-hand side). Then, integrating both sides of this equation
and using the normalization condition (19), we obtain

� =
∫

Sη

eη · j(r) dSη

∣∣∣∣
η→∞

, (44)

where Sη is a surface of constant η, eη is the unit normal vector
to Sη pointing toward η → ∞, and dSη is the area element of
Sη. We have

dSη =
√

rη

2
dξ dϕ, eη · ∇ =

√
2η

r

∂

∂η
, (45)

and hence

� = −iη

2

∫ ∞

0
dξ

∫ 2π

0
dϕ

[
ψ∗(r)

∂

∂η
ψ(r)

−ψ(r)
∂

∂η
ψ∗(r)

]
η→∞

. (46)

Substituting here Eq. (11), using Eqs. (10) and (17), and noting
that the imaginary part of E is exponentially small in F and
can be neglected in Eqs. (9a) and (17), we obtain [16]

� =
∑

ν

�ν + O(�2), �ν = |fν |2. (47)

Here �ν is the partial rate corresponding to ionization into
parabolic channel ν and the error term O(�2) arises from the
exponentially small contributions neglected in the derivation.
We note that in the same approximation from Eqs. (22) and
(23) we have [16]

� =
∫

P (k⊥)
dk⊥

(2π )2
+ O(�2), (48)

which is consistent with the physical meaning of � and P (k⊥).
Substituting Eq. (39) into Eq. (47), we find

�ν = |Gν |2Wν(F )

[
1 + AνF ln

F

4κ
2

+ BνF + O(F 2)

]
,

(49)

where Gν and Wν(F ) are the standard structure and field
factors [22,23],

Gν = e−κμzgν, (50)

Wν(F ) = κ

2

(
4κ

2

F

)2Z/κ−2nξ −|m|−1

exp

(
−2κ

3

3F

)
, (51)

and the correction coefficients Aν and Bν are defined by
Eqs. (40). Equation (49) generalizes Eq. (60) from Ref. [16].

Now, when the asymptotic coefficient fν is converted into
the partial ionization rate �ν , which is a more transparent
quantity, it is worthwhile to list the physical effects resulting
in the appearance of the correction terms in Eqs. (39) and (49).
The first is the first-order correction to the eigenvalue (29a)
of the Hamiltonian (6) generating the parabolic channels. This
correction is related to a modification of the Runge-Lenz vector
of the active electron when it is outside the core region by the
external electric field. It contributes to Aν in Eq. (40a). The
second is the second-order Stark shift of the energy (27a) of
the state defined by the polarizability αzz. The third is the
distortion of the unperturbed bound-state orbital represented
by the second term in Eq. (27b) and characterized by the
coefficient aν defined by Eq. (38). The latter two corrections
contribute to Bν in Eq. (40b). The fourth is the dipole term
in Eq. (2), which enters the definition of γm in Eq. (16).
Finally, the fifth is a correction to the asymptotic solution of the
uncoupled equations (15). The latter two corrections contribute
to both Aν and Bν . All these effects must be taken into account
to obtain the exact values of the correction coefficients Aν

and Bν .
The partial ionization rates (49) for the different channels

have the same exponential factor but different powers of F in
Eq. (51). The power of F grows by 2 and 1 as nξ or |m| are
increased by unity, respectively. Therefore in the leading-order
approximation one should retain in the total ionization rate (47)
only the contribution from the dominant channel, the one with
the minimum values of nξ and |m| for which gν �= 0 [16].
However, including the first-order correction terms for the
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dominant channel in Eq. (49), one should also retain in Eq. (47)
the leading-order approximation for contributions from the
next-to-the-dominant channels, the ones with the same nξ and
|m| increased by unity, which have the same power of F .
The dominant channel is determined by the symmetry of the
potential. Three symmetry cases should be distinguished [16].
Below we give final formulas for the total ionization rate in
these cases.

(a) Potentials without any symmetry. This corresponds
to arbitrary molecules arbitrarily oriented with respect to
the field. In this case, all the coefficients gν are generally
nonzero, the dominant channel is ν = (0,0), and there are two
next-to-the-dominant channels (0, ± 1). From Eqs. (47) and
(49) we obtain

� ≈ W00(F )

[
|G00|2

(
1 + A00F ln

F

4κ
2

+ B00F

)

+ F

2κ
2

|G01|2
]
. (52)

(b) Axially symmetric potentials. This corresponds to atoms
and linear molecules aligned along the field. In this case,
V (r) = V (ξ,η) and Eq. (1) has solutions of the form ψ(r) =
ψ(ξ,η)eimϕ , for which m is an exact quantum number [14]. For
m �= 0, the solutions ∝ e±imϕ are degenerate, so one can switch
to another pair of solutions proportional to cos mϕ and sin mϕ.
According to our convention, ψ0(r) is real, which corresponds
to the latter representation. Then the sums in Eqs. (11) and
(47) contain only channels with ν = (nξ , ± |m|). There is one
dominant channel (0,0), for m = 0, and two dominant channels
(0, ± |m|), for m �= 0, but there are no next-to-the-dominant
channels. It can be seen that all the coefficients in Eq. (49)
in this case depend only on the absolute value of m. Thus for
states with a given m we obtain

� ≈ (2 − δm0)|G0m|2W0m(F )

(
1 + A0mF ln

F

4κ
2

+ B0mF

)
.

(53)

For m = 0 this formula coincides with Eq. (52), taking into
account that in the present case G01 = 0.

(c) The Coulomb potential. For a purely Coulomb potential,
Eq. (1) allows separation of variables in parabolic coordinates
[17], so both quantum numbers nξ and m identifying the
parabolic channels are exact. In this case, it is convenient
to switch to a more conventional representation in which the
solutions to Eq. (1) depend on ϕ as eimϕ . Let us consider the
hydrogen atom in a state with parabolic quantum numbers
(nξ ,nη,m) (nξ ≡ n1 and nη ≡ n2 in the notation of Ref. [17]).
Then the sums in Eqs. (11) and (47) contain only one channel
with ν = (nξ ,m); this is the dominant channel and there are no
next-to-the-dominant channels. For hydrogen Z = 1, D = 0,
and αij = αδij . The values of E0, μz, and α are well known
[17]. Substituting all these into Eq. (40a), we find Aν = 0.
Thus

� ≈ |Gν |2Wν(F )(1 + BνF ). (54)

We have

ψ0(r) =
√

2

n
φ(0)

nηm
(η)�(0)

ν (ξ,ϕ), (55a)

ψ1(r) =
√

2

n

[
φ(0)

nηm
(η)�(1)

ν (ξ,ϕ) − φ̃(1)
nηm

(η)�(0)
ν (ξ,ϕ)

]
+ 3

4
n3(nξ − nη)ψ0(r), (55b)

where n = nξ + nη + |m| + 1 is the principle quantum num-
ber and φ̃(1)

nm(x) coincides with φ(1)
nm(x) defined by Eq. (31b)

with the sign of μz changed to the opposite. Note that the
functions (55) satisfy Eqs. (26) and (28), where one of the
factors in the integrand is to be replaced by its complex
conjugate, because of the factor eimϕ . Substituting Eq. (55a)
into Eq. (37), we reproduce Eq. (67) from Ref. [16],

gν = (−1)nη

√
2

nnη+|m|/2+3/2
√

nη!(nη + |m|)! . (56)

Substituting Eq. (55b) into Eq. (38), we find

aν = n3

16

[
n4

η + (2|m| − 10)n3
η + (m2 − 15|m| − 11)n2

η

− (5m2 + 24nξ + 23|m| + 36)nη

− 6(2nξ + |m| + 3)|m| − 12
]
. (57)

With these values of gν and aν , Eq. (54) is in full agreement
with the result obtained by a different method in Ref. [24].
We note that the method of Ref. [24] is applicable only
to the Coulomb potential, when the variables in Eq. (1)
can be separated, while the present approach applies to
arbitrary potentials. This agreement provides an independent
confirmation of the consistency of the present approach and
results.

E. Transverse momentum distribution

The weak-field asymptotic expansion for the TMD (23) can
be obtained by substituting Eqs. (33) and (39) into Eq. (22).
In calculating the sum in Eq. (22), one should again retain all
channels whose contributions have the same power of F as the
correction terms in Eq. (39) for the dominant channel. Here
we give the final formula only for the case when the dominant
channel is ν = (0,0). In this case, one should retain in Eq. (22)
also the contributions from channels (0, ± 1), (0, ± 2), and
(1,0). The TMD is thus given by

P (k⊥) ≈ 4πκ

F
W00(F )e−s

[
G2

00

(
1+A00F ln

F

4κ
2

+
{
B00 + 1

4κ
3

[6 + 4κμz − 4(κμz+1)s − s2]

}
F

)
−{(1 − s)G00G10 − 2s[Re(G01e

iϕk )]2

+
√

2sG00 Re(G02e
2iϕk )} F

2κ
2

]
, (58)

where

s = κk2
⊥

F
, (59)

and we have explicitly used that Gnξ ,−m = G∗
nξ m

, which
follows from the first of Eqs. (41). Equation (58) generalizes
Eq. (64) from Ref. [16]. It applies to potentials without any
symmetry, but also to states with m = 0 in axially symmetric
potentials, when G01 = G02 = 0, and to the ground state of
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hydrogen, when G01 = G02 = G10 = 0. In the latter case it
reduces to

P (k⊥) ≈ 16π

F 2
exp

(
− 2

3F
− s

)[
1 −

(
89

12
+ s + s2

4

)
F

]
.

(60)

The exponential factor e−s in Eqs. (58) and (60) results in
a well-known Gaussian shape of the TMD in the weak-field
limit, P (k⊥) ∝ exp(−κk2

⊥/F ). This shape was first obtained
within the static limit of the Keldysh theory [29,30] and later
was reproduced by different methods by other authors [16,31,
32]. The s-dependent part of the correction terms in Eqs. (58)
and (60) accounts for a departure from the Gaussian shape
at stronger fields, while the s-independent part accounts for
a change of the magnitude of the TMD corresponding to a
departure of � from the leading-order term in Eq. (52), in
accordance with Eq. (48).

F. Region of applicability

Mathematically, the asymptotic solution of the SS eigen-
value problem developed in this section applies in the limit
(24). Physically, however, it is desirable to indicate the upper
boundary of the interval of F where the expansions obtained
hold. The region of applicability of the WFAT can be specified
by the condition [16]

F � Fc, (61)

where the critical field Fc is a boundary between the tunneling
and over-the-barrier ionization regimes. The value of Fc can
be estimated as the field for which the two turning points of
Eq. (15) for the dominant channel coalesce. Substituting for E

and βν the leading-order terms from Eqs. (27a) and (29a), we
obtain

Fc ≈ κ
4

8|2Z − κ(2nξ + |m| + 1)| , (62)

where nξ and m correspond to the dominant channel. The
condition (61) ensures that the first-order correction terms in
Eqs. (39) and (49) are much smaller than unity. In practice,
we shall see that these corrections remain meaningful, that is,
improve the leading-order results, up to F ∼ Fc.

IV. ILLUSTRATIVE CALCULATIONS

The derivation in Sec. III of the first-order correction terms
in the asymptotic expansions of the ionization rate and TMD
within the WFAT is general and covers atomic (spherically
symmetric potentials) as well as molecular (arbitrary potentials
without any symmetry) cases. In this first illustration of
the results obtained we restrict our treatment to the atomic
case when accurate calculations of the coefficients required
to implement the theory can be performed relatively easily.
We consider hydrogen and four noble-gas atoms. In all
cases the asymptotic charge seen by the outgoing electron
is Z = 1, the dipole of the atomic ion is D = 0 [see Eq. (2)],
the polarizability tensor reduces to a scalar αij = αδij , and
the TMD (23) depends only on the absolute value of the
transverse momentum and is denoted by P (k⊥). We compare
the ionization rate and TMD predicted by the WFAT with

the results of accurate numerical calculations. For brevity,
the leading-order WFAT results and those including the
first-order corrections are denoted by WFAT(0) and WFAT(1),
respectively, and the accurate numerical results are referred to
as “exact.”

A. Hydrogen

We first consider hydrogen for which earlier theories
including higher-order corrections in the field strength for
the ionization rate are available [24,25]. In this case, all the
coefficients needed to implement the present theory are known
analytically [see Eqs. (56) and (57)]. The exact results are
obtained by the procedure outlined in Appendix B.

In Fig. 1, we show the ionization rate for the ground state
divided by the field factor (51) with ν = (0,0). In this repre-
sentation, rapid variation of � by many orders of magnitude
as F → 0 is eliminated, which facilitates comparison of the
different results. As detailed in the caption, labels WFAT(n)
refer to the results obtained by including terms up to order Fn

in the asymptotic expansion of �. The WFAT(0) and WFAT(1)
results are obtained from Eq. (54) omitting the linear in F term
and including this term with B00 = −107/12, respectively.
The WFAT(2) and WFAT(10) results are obtained by adopting
the coefficients of higher powers of F given in Ref. [25].
The good agreement between the WFAT(1) and the exact
results at F � 0.02 confirms the second term in Eq. (54).
We note that although the value of B00 has been known for a
long time [24,25], its unambiguous confirmation by accurate
calculations was hindered by extremely small values of � at
such small F where Eq. (54) holds with sufficient accuracy.
To overcome this difficulty, which is needed for validating the
asymptotic results, we have developed a multiple-precision
procedure discussed in Appendix B. The departure of the
WFAT(1) from the exact results at larger fields is caused by the
presence of higher-order terms in the asymptotic expansion.
Figure 1 illustrates quantitatively how much such higher-order
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FIG. 1. (Color online) Ratio of the ionization rate to the field
factor (51) as a function of field for hydrogen in the ground state.
Solid (black) line: exact results. Dotted (blue) line, WFAT(0): the
leading-order WFAT results obtained by omitting the linear in F

correction term in Eq. (54). Dashed (red) line, WFAT(1): the WFAT
results including the first-order correction in F , Eq. (54). Dotted-
dashed (green) line, WFAT(2), and dashed-double-dotted (magenta)
line, WFAT(10): results from Ref. [25] including terms up to order
F 2 and F 10, respectively, in the asymptotic expansion for �.
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corrections improve the prediction of the WFAT. For any
given F < Fc, the inclusion of terms up to certain maximum
order improves the results, but incorporating further terms
makes the results only worse. The smaller F , the larger this
maximum order, and the higher accuracy can be achieved.
Thus, for example, at F = 0.05 the WFAT(10) is closer to
the exact results than WFAT(1), but at F = 0.1 the opposite
is true. Such a behavior reflects a well-known property of
divergent asymptotic series; a good illustration of this point
on the example of the perturbation-theory series (27a) for the
real part of the energy of the ground state can be found in
Ref. [33]. In contrast to the WFAT(0), which yields at least
a positive value of � for any field, the WFAT(1) cannot be
extended beyond Fc = −1/B00 ≈ 0.112, where the right-hand
side of Eq. (54) turns zero, which again reflects the asymptotic
nature of the expansion. This value of Fc is slightly lower
than Fc = 0.125 obtained from Eq. (62) and gives a better
estimate of the boundary for over-the-barrier ionization. The
main conclusion to be drawn from Fig. 1 is that the first-
order correction included in WFAT(1) significantly improves
the prediction for � as compared to WFAT(0), extending
the region of applicability of the theory up to F ∼ Fc, while the
higher-order terms can be safely neglected in this region within
a tolerable error. For example, the WFAT(1) remains valid
within an error of 20% up to F = 0.076, while the WFAT(0)
is beyond this error already at F = 0.020. We will see that this
conclusion applies also to other atoms.

The excited states of hydrogen are also of interest to
investigate with the present theory. In this case, for states
with nξ �= nη, there exists a permanent dipole moment μz =
−3n(nξ − nη)/2 which modifies the structure factor (50) and
also contributes to the coefficient Bν in Eq. (54). In Fig. 2, we
compare the exact results with the WFAT(0) and WFAT(1),
again focusing on the ratio of the rate and the field factor (51)
which enables one to compare the results quantitatively. We
consider the three states with n = 2 and (nξ ,nη,m) = (1,0,0),
(0,1,0), and (0,0,1), which are degenerate in the absence of
the field. The first two of these states have nonzero dipoles
of the same value but different sign. Due to the presence of
this dipole in the exponent in Eq. (50), and the corresponding
polarization of the electron density, there is a large difference
in the magnitude of the ionization rates for these states. The
third state with m = 1 does not have a dipole and its rate takes
values between the two other states. Figure 2 shows that in
all cases a significant improvement on the step from WFAT(0)
to WFAT(1) in agreement with the exact results is achieved.
The convergence of the WFAT(1) with the exact results as F

decreases confirms the linear in F term in Eq. (54), including
the case of states with a permanent dipole. This illustrates that
our theory correctly treats polar systems, a typical situation for
molecules.

We now turn to a discussion of the accuracy of the WFAT in
predicting the TMD. Together with the complex SS eigenvalue
(18), the TMD (23) presents an essential characteristic required
for implementing the adiabatic theory [13], so it is instructive
to see in which region of the field strengths the WFAT can be
used instead of much more time-consuming exact calculations.
We consider only the ground state. The results for two
representative values of F are shown in Fig. 3. The WFAT(0)
and WFAT(1) results are obtained from Eq. (60) omitting
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FIG. 2. (Color online) Ratio of the ionization rate to the field
factor (51) as a function of field for hydrogen in states with parabolic
quantum numbers (nξ ,nη,m) indicated in the figure. Solid (black)
lines: exact results. Dotted (blue) lines, WFAT(0): the leading-order
WFAT results. Dashed (red) lines, WFAT(1): the WFAT results
including the first-order correction in F , Eq. (54).

and including the linear in F correction term, respectively.
The exact results are calculated using the general method
developed in Ref. [14]. Figure 3 shows that the WFAT(1)
prediction is in much better agreement with the exact results
than the WFAT(0). This is not a surprise, because the field
values considered belong to the interval where Eq. (54) works
well. The improvement of WFAT(1) over WFAT(0) is mainly
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FIG. 3. (Color online) Transverse momentum distributions for
hydrogen in the ground state at two representative values of the field
F . Solid (black) lines: exact results. Dotted (blue) lines, WFAT(0):
the leading-order WFAT results obtained by omitting the linear in F

correction term in Eq. (60). Dashed (red) line, WFAT(1): the WFAT
results including the first-order correction in F , Eq. (60).
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TABLE I. Characteristics of noble-gas atoms. The number of electrons N and the parameters u and v define the effective charge (64) in the
one-electron model potential (63). E0 is the unperturbed bound-state energy of the active electron and α is its polarizability. The asymptotic
coefficients g00, g10, and a00 are defined by Eqs. (37) and (38). The correction coefficients A00 and B00 are defined by Eqs. (40). All values are
given in atomic units.

Atom N u v E0 α g00 g10 a00 A00 B00

Ne(2p) 10 1.704 2.810 −0.793 0.152 2.1 3.7 −0.8 0.246 − 2.6
Ar(3p) 18 0.933 3.600 −0.579 1.323 2.7 5.3 −2.1 0.158 − 7.7
Kr(4p) 36 1.340 4.311 −0.515 2.099 2.3 4.6 −2.8 0.042 −10.5
Xe(5p) 54 1.048 5.197 −0.446 3.079 2.5 5.2 −4.8 −0.222 −16.4

attributed to the s-independent part of the correction term
in Eq. (60) (see the discussion after that equation). The
investigation of a more subtle effect of the departure of the
shape of the TMD from the Gaussian, which is accounted for
by the s-dependent part of the correction term, is postponed to
the end of the next section.

B. Noble-gas atoms

We proceed with calculations for the noble-gas atoms Ne,
Ar, Kr, and Xe. The active electron in these atoms is described
by the 2p, 3p, 4p, and 5p states, respectively, with azimuthal
quantum number m = 0 in all cases, in a local spherically
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FIG. 4. (Color online) Real part of the energy (top panel),
ionization rate (middle panel), and its ratio to the structure factor
(51) (bottom panel) as functions of field for Ne(2p). Solid lines:
exact results. Dashed (red) line in the top panel: perturbation theory,
Eq. (27a). Dotted (blue) lines in the lower two panels, WFAT(0):
the leading-order WFAT results obtained by omitting the first-order
correction terms in Eq. (53). Dashed (red) lines in the lower
two panels, WFAT(1): the WFAT results including the first-order
correction, Eq. (53).

symmetric potential of the form [34,35]

V (r) = −Zeff(r)

r
, (63)

where the effective charge Zeff(r) monotonically decreases
from the bare nuclear charge equal to the number of electrons
N , at r = 0, to 1, at r → ∞, and is given by

Zeff(r) = N − (N − 1){1 − [(v/u)(eur − 1) + 1]−1}. (64)

Equations (63) and (64) comply with Eq. (2). The recom-
mended values of the parameters u and v are given in Table I.

All the atomic characteristics needed to implement the
WFAT are also given in Table I. For all atoms, the dominant
channel is ν = (0,0) and the dipole moment is μz = 0. The
unperturbed bound-state energy E0 and wave function ψ0(r)
are obtained using the Laguerre discrete variable representa-
tion [36] in parabolic coordinates. The same procedure yields
a complete discrete set of the eigenstates of the unperturbed
Hamiltonian in the functional space spanned by the Laguerre
basis. The polarizability α and the first-order correction ψ1(r)
to the wave function are then calculated by implementing
standard spectral expansions of perturbation theory [17]; a
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FIG. 5. (Color online) Same as in Fig. 4, but for Ar(3p).
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FIG. 6. (Color online) Same as in Fig. 4, but for Kr(4p).

similar procedure using the Legendre basis in a finite box
in spherical coordinates was described in Ref. [15]. The
coefficients g00, g10, and a00 are obtained from Eqs. (37) and
(38) by a fitting procedure outlined in Ref. [23] applied at
sufficiently large values of η. From Eq. (50) in the present case
we have G00 = g00 and G10 = g10. The correction coefficients
A00 and B00 are found from Eqs. (40). Note that A00 as a
function of κ turns zero for κ = 1, which corresponds to
E0 = −0.5. This explains the small value of this coefficient
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FIG. 7. (Color online) Same as in Fig. 4, but for Xe(5p).
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lines: exact results. Dotted (blue) lines, WFAT(0): the leading-order
WFAT results obtained by omitting the first-order correction terms in
Eq. (58). Dashed (red) lines, WFAT(1): the WFAT results including
the first-order correction, Eq. (58).

for Kr(4p) and its different sign for Xe(5p). The WFAT results
for the ionization rate and TMD are obtained from Eq. (53)
with m = 0 and Eq. (58) with G01 = G02 = 0, respectively.
For completeness, we also present exact results for the real
part of the SS eigenvalue (18) and compare them with the
perturbation-theory expansion (27a). The exact results in all
cases are calculated using the method of Ref. [14].

Figures 4–7 show the energy E , ionization rate �, and
its ratio to the field factor (51) as functions of F for the
four atoms. The perturbation theory for E to the second
order in field, Eq. (27a), is accurate up to F � 0.1, 0.05,
0.05, and 0.03 for Ne(2p), Ar(3p), Kr(4p), and Xe(5p),
respectively. These values of field correlate with the values
of Fc estimated as the field where the WFAT(1) prediction
for � turns zero and given by Fc � 0.3, 0.12, 0.095, and
0.065, respectively. Similar to the case of H(1s), Eq. (62)
slightly overestimates the critical field giving Fc � 0.4, 0.18,
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FIG. 9. (Color online) Same as in Fig. 8, but for Ar(3p).
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FIG. 10. (Color online) Same as in Fig. 8, but for Kr(4p).

0.13, and 0.09, respectively. The exact results for the ratio
shown in the bottom panels cannot be continued to smaller F

because of a limitation of our double-precision calculations
[14] discussed in Appendix B. However, even the available
results unambiguously show that the WFAT(1) converges to
the exact results as F decreases. This provides a numerical
confirmation of Eq. (53) for non-Coulomb potentials, when
Eqs. (12) are coupled in the core region η < ηc. We again
conclude that for all atoms the first-order correction included in
WFAT(1) significantly improves the results for � as compared
to WFAT(0), extending the region of applicability of the theory
up to F ∼ Fc.

The results for the TMDs at two representative values of F

for each of the atoms are shown in Figs. 8–11. The WFAT(0)
and WFAT(1) results are obtained from Eq. (58) omitting
and including the first-order correction terms (proportional to
F ln F and F ), respectively. Similar to the case of hydrogen
illustrated in Fig. 3, the WFAT(1) prediction is always in much
better agreement with the exact results than the WFAT(0),
provided that the value of F is in the interval where Eq. (53)
works well. This improvement of WFAT(1) over WFAT(0) is
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FIG. 11. (Color online) Same as in Fig. 8, but for Xe(5p).
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FIG. 12. (Color online) Transverse momentum distribution
P (k⊥) for Ar(3p) at F = 0.04 divided by the Gaussian distribution
P (0) exp(−κk2

⊥/F ) as a function of the scaled transverse momentum.
Solid (black) line: exact results. Dotted (blue) line, WFAT(0): the
leading-order WFAT results. Dashed (red) line, WFAT(1): the WFAT
results including the first-order correction.

again attributed to the s-independent part of the correction in
Eq. (58).

Let us illustrate the role of the s-dependent part of the
correction in Eq. (58), which accounts for a departure of
the shape of the TMD from Gaussian, on the example of
Ar(3p). To facilitate the comparison of the different results,
we divide the TMD P (k⊥) by P (0) exp(−κk2

⊥/F ). The results
for this ratio as a function of the scaled transverse momentum
k⊥/F 1/2 are shown in Fig. 12. The field F = 0.04 considered
coincides with that in the top panel of Fig. 9. The WFAT(1)
is in much better agreement with the exact results than the
WFAT(0), certainly qualitatively, but also quantitatively up to
a certain value of the scaled momentum. For example, for
the present case the error of the WFAT(1) does not exceed
10% up to k⊥/F 1/2 = 2, which corresponds to k⊥ = 0.4 in
Fig. 9. This boundary value depends on field and decreases
as F grows. Beyond this value the WFAT(1) quickly diverges
from the exact results. All this agrees with a typical behavior
of asymptotic expansions. As can be seen from Eqs. (22) and
(23), the departure of the shape of the TMD from Gaussian
results from two effects: the distortion of the eigenfunction
for the dominant parabolic channel ν = (0,0) by field and the
contribution from higher channels. In the weak-field limit, the
first-order account of these effects is given by Eq. (58). As
the field grows, the role of these effects also grows, and
the TMD changes more considerably. In the over-the-barrier
ionization regime the shape of the TMD may qualitatively
differ from Gaussian [14].

V. CONCLUSIONS AND OUTLOOK

In this paper, the first-order correction terms in the
asymptotic expansions of the ionization rate and TMD within
the WFAT [16] are obtained. The results apply to any atom
or molecule in a static electric field treated in the single-
active-electron and frozen-nuclei approximations. So far, the
first-order correction was available only for the ionization
rate of hydrogen [24]. The present extension of these results
in the analytical form to general atomic and molecular
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potentials became possible on the basis of the method of
Ref. [16], which takes the advantage of the separability of
variables in the Schrödinger equation in parabolic coordinates
in the asymptotic region, where the potential is dominated
by the Coulomb tail. The illustrative calculations show that
the inclusion of the first-order correction terms greatly im-
proves the agreement between the rate and the TMD predicted
by the WFAT and the results obtained from accurate numerical
solution of the SS eigenvalue problem [14]. In practice, the
present development extends the region of applicability of the
WFAT at the quantitative level up to the boundary between
tunneling and over-the-barrier regimes of ionization. Hence,
the theory now covers a regime that has been notoriously
difficult to describe by previous analytical approaches.

To evaluate the leading-order WFAT results [16], only
the asymptotic charge Z and the energy E0, dipole moment
μz, and the asymptotic coefficient gν [Eq. (37)] for the
dominant channel characterizing the unperturbed active orbital
are needed. These characteristics define the structure (50)
and field (51) factors. The techniques to calculate them for
atoms and molecules based on quantum chemistry codes have
been developed in Refs. [22,23]. To evaluate the first-order
correction terms, one additionally needs the ionic dipole
moment Dz, coefficients gν for several next-to-the-dominant
channels, but also the polarizability αzz and a new asymptotic
coefficient aν [Eq. (38)] for the dominant channel which
account for the second-order Stark shift and the distortion of
the unperturbed orbital by field, respectively. These additional
characteristics are needed to find the correction coefficients Aν

and Bν , Eqs. (40). The calculation of αzz and aν requires new
techniques. The development of such techniques for general
molecules using the experience gained in Refs. [22,23] is in
progress.

In the present work the theory was demonstrated by calcu-
lations for atoms. The next goal is to extend its applications to
molecules. It will, for example, be interesting to see whether
the first-order correction to the ionization rate solves the
controversies between theory and experiment for CO2 [37,38],
OCS [9], and CO [39] as to which orientation of the molecule
with respect to the field produces maximum ionization yield.
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APPENDIX A: CONNECTION FORMULA

Here we consider an auxiliary problem, which gives the
solution to Eq. (15) of the main text. Namely, we construct the
asymptotics of the outgoing-wave solution of the equation

[
d2

dη2
+ Fη

4
+ E

2
+ β

η
+ γ

η2

]
f (η) = 0 (A1)

for

F → 0, E = O(F 0), β = O(F 0), γ = O(F 0). (A2)

The outer turning point for Eq. (A1) is given by

ηt = κ2

F
+ O(F 0) = O(F−1), (A3)

where

κ = √−2E. (A4)

Our goal is to derive the connection formula which expresses
the coefficient of the outgoing wave at η � ηt in terms of
coefficients appearing in the expansion of the same solution at
1 � η � ηt .

1. Perturbation-theory solution in the inner region

We first consider Eq. (A1) in the inner region

1 � η � F−1/2. (A5)

The term with F in this region can be treated perturbatively.
For F = 0, one of the two linearly independent solutions to
Eq. (A1) behaves as

f0(η) = ηβ/κe−κη/2

[
1 + c1

η
+ c2

η2
+ O(η−3)

]
. (A6)

Substituting this expansion into Eq. (A1), we find

c1 = −γ

κ
+ β

κ2
− β2

κ3
. (A7)

The higher coefficients in Eq. (A6) can be found similarly. The
second linearly independent solution diverges ∝ η−β/κeκη/2 as
η grows. In this case, the solution we need is given by

f (η) = gf0(η), (A8)

where g is a field-independent coefficient. For F �= 0, the same
solution is sought in the form

f (η) = g[f0(η) + f1(η)F + O(F 2)]. (A9)

Substituting this into Eq. (A1) and neglecting terms O(F 2),
we obtain an inhomogeneous equation for f1(η),[

d2

dη2
+ E

2
+ β

η
+ γ

η2

]
f1(η) = −η

4
f0(η). (A10)

The solution to this equation that decays as η grows can be
sought in the form

f1(η) = ηβ/κe−κη/2

{
a2η

2 + a1η + a0 + a−1

η
+ O(η−2)

+
[
b0 + b−1

η
+ O(η−2)

]
ln η

}
. (A11)

Substituting this expansion into Eq. (A10), we find

a2 = 1

8κ
, a1 = 1

4κ2

(
2 − γ

2
+ 5β

2κ
− β2

2κ2

)
, (A12a)

b0 = 1

2κ3

(
γ + 3β2

κ2

)
. (A12b)

One can continue and express a−1, b−1, and the higher
coefficients in Eq. (A11) in terms of the coefficients in Eq. (A1)
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and a0. However, the coefficient a0 cannot be found in this way.
Such an uncertainty is explained by the fact that the solution to
Eq. (A10) is defined up to an admixture of the solution f0(η)
to the corresponding homogeneous equation. Summarizing,

f (η) = gηβ/κe−κη/2

{
1 −

(
γ

κ
− β

κ2
+ β2

κ3

)
1

η
+ O

(
1

η2

)

+
[

η2

8κ
+

(
2 − γ

8κ2
+ 5β

8κ3
− β2

8κ4

)
η +

(
γ

2κ3
+ 3β2

2κ5

)

× ln η + a0 + O

(
ln η

η

)]
F + O(F 2)

}
. (A13)

This is a perturbation-theory expansion in F for F → 0 and
asymptotic expansion in 1/η for η → ∞. The terms ∝1/η and
∝F within the curly brackets represent corrections existing
without the field and caused by the field, respectively. The
requirement that these terms must be much smaller than
unity defines the lower and upper boundaries of the region of
validity (A5) of this expansion. Note that these terms become
comparable at η = O(F−1/3), which belongs to the region
(A5). The coefficients g and a0 in Eq. (A13) remain undefined;
they are determined by the behavior of f (η) to the left of the
region (A5), for example, by the regularity boundary condition
at η = 0.

2. Asymptotic solution in the outer region

We now consider Eq. (A1) in the outer region

η = O(F−1). (A14)

Introducing a new variable,

y = Fη

κ2
= O(F 0), (A15)

we rewrite Eq. (A1) as[
d2

dy2
+ κ4

F 2
q(y)

]
f (y) = 0, (A16)

where

q(y) = q0(y) + q1(y)F + q2(y)F 2, (A17a)

q0(y) = κ2

4
(y − 1), q1(y) = β

κ2y
, q2(y) = γ

κ4y2
.

(A17b)

We seek the solution to Eq. (A16) in the form [27,28]

f (y) = f exp

{
iκ2

F
[s0(y) + s1(y)F + s2(y)F 2

+ s3(y)F 3 + O(F 4)]

}
, (A18)

where f is a field-dependent coefficient. Substituting
Eq. (A18) into Eq. (A16), we obtain equations defining sn(y),

−s ′2
0 (y) + q0(y) = 0, (A19a)

−2s ′
0(y)s ′

1(y) + is ′′
0 (y)

κ2
+ q1(y) = 0, (A19b)

−s ′2
1 (y) − 2s ′

0(y)s ′
2(y) + is ′′

1 (y)

κ2
+ q2(y) = 0, (A19c)

−2s ′
0(y)s ′

3(y) − 2s ′
1(y)s ′

2(y) + is ′′
2 (y)

κ2
= 0. (A19d)

The solutions to these equations are given by

s0(y) = κ

3
(y − 1)3/2, (A20a)

s1(y) = i

4κ2
ln

κ2(y − 1)

4
+ 2β

κ3

[
arctan(y − 1)1/2 − π

2

]
,

(A20b)

s2(y) = − 5

24κ5(y − 1)3/2
+ iβ

κ6y(y − 1)
+

[
γ

κ5
+ 3β2

κ7

]

× 1

(y − 1)1/2
−

[
γ

κ5
+ β2

κ7

]
1

y(y − 1)1/2

+
[

γ

κ5
+ 3β2

κ7

][
arctan(y − 1)1/2 − π

2

]
. (A20c)

The choice of the integration constants on the step from
Eqs. (A19) to Eqs. (A20) is related to the definition of the
coefficient f in Eq. (A18) and is dictated by the wish to
arrive at Eq. (A22). The sign in Eq. (A20a) is determined
by the outgoing-wave boundary condition. We have omitted
the tedious expression for s3(y); in the following, we need
this function only at y � 1 and y � 1, which can be easily
obtained from Eq. (A19d) and the corresponding expansions
for s0(y), s1(y), and s2(y) given below.

For y � 1, we have

s0(y) = κ

3
y3/2 − κ

2
y1/2 + O(y−1/2), (A21a)

s1(y) = i

4κ2
ln

κ2y

4
+ O(y−1/2), (A21b)

s2(y) = O(y−1/2), s3(y) = O(y−2). (A21c)

Thus

f (η)|η�ηt
= 21/2f

(Fη)1/4
exp

[
iF 1/2η3/2

3
+ iEη1/2

F 1/2

]
, (A22)

which agrees with Eq. (17). For y � 1, we find

s0(y) = −i

[
κ

3
− κy

2
+ κy2

8
+ O(y3)

]
, (A23a)

s1(y) = −i

[
β

κ3
ln

y

4
− ln(κ/2)

2κ2
− iπ

4κ2
− iπβ

κ3

+
(

1

4κ2
+ β

2κ3

)
y + O(y2)

]
, (A23b)

s2(y) = i

[
γ

κ5
− β

κ6
+ β2

κ7

]
1

y
− i

[
γ

2κ5
+ 3β2

2κ7

]
ln

y

4

− i

[
5 + 12(1 − iπ )γ

24κ5
+ β

κ6
+ (5 − 3iπ )β2

2κ7

]
+O(y1), (A23c)

s3(y) = i

[
γ

κ5
− β

κ6
+ β2

κ7

] (
β

κ4
− 1

κ3

)
1

y2
+ O(y−1).

(A23d)
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Substituting these expansions into Eq. (A18) and considering the region (A5), where y2/F � 1 and F/y � 1, we
obtain

f (η) = f exp

[
κ3

3F
− iπ

4
− iπβ

κ

]√
2

κ

(
Fη

4κ2

)β/κ

e−κη/2

{
1 −

(
γ

κ
− β

κ2
+ β2

κ3

)
1

η
+ O

(
1

η2

)
+

[
η2

8κ
+

(
2 − γ

8κ2
+ 5β

8κ3
− β2

8κ4

)
η

+
(

γ

2κ3
+ 3β2

2κ5

)
ln

Fη

4κ2
+

(
10 + 18γ + 3γ 2

48κ3
+ β(9 − 6γ )

8κ4
+ β2(49 + 2γ )

16κ5
− 3β3

4κ6
+ β4

16κ7

)

−iπ

(
γ

2κ3
+ 3β2

2κ5

)
+ O

(
ln η

η

)]
F + O(F 2)

}
. (A24)

3. Matching

The inner, Eq. (A13), and outer, Eq. (A18), solutions can be matched in the region (A5), where they both apply. Indeed,
expansions (A13) and (A24) have the same form. By comparing the coefficients in these expansions we find

f = g exp

[
− κ3

3F
+ iπ

4
+ iπβ

κ

]√
κ

2

(
4κ2

F

)β/κ {
1 −

[(
γ

2κ3
+ 3β2

2κ5

)
ln

F

4κ2
+ 10 + 18γ + 3γ 2

48κ3

+ β(9 − 6γ )

8κ4
+ β2(49 + 2γ )

16κ5
− 3β3

4κ6
+ β4

16κ7
− a0 − iπ

(
γ

2κ3
+ 3β2

2κ5

)]
F + O(F 2)

}
. (A25)

This is the connection formula expressing the coefficient f in
Eq. (A22) in terms of the field-independent coefficients g and
a0 appearing in Eq. (A13).

APPENDIX B: MULTIPLE-PRECISION NUMERICAL
PROCEDURE FOR HYDROGEN

The ionization rate is determined by the imaginary part of
the SS energy eigenvalue (18). In the weak-field limit (24)
it becomes exponentially small, while the real part of the
eigenvalue tends to a constant E0. Therefore any numerical
procedure of calculating � with finite-precision arithmetic fails
at sufficiently small F , when the ratio �/|E0| approaches the
value of the roundoff error. For neutral atoms in the ground
state |E0| ∼ 1, so double-precision calculations [14] fail when
� � 10−12. This impedes extending the exact results shown
in the bottom panels in Figs. 4–7 to smaller F . However, for
hydrogen this fundamental problem can be overcome, at least
in principle, for any nonzero F by using multiple-precision
arithmetic [40,41]. We note that although there exist many
efficient numerical techniques to calculate the ionization rate
of hydrogen [42–50], the problem mentioned above, as far as
we know, has never been addressed in the literature.

The peculiarity of hydrogen stems from the fact that the
algorithm to calculate � can be formulated in a very simple
form involving only basic arithmetic operations, which is
required for the application of the multiple-precision package

described in Refs. [40,41]. For V (r) = −1/r , the variables in
Eq. (1) can be separated in parabolic coordinates [17]. The
solutions to the separated equations in ξ and η are then sought
as expansions in a Laguerre basis similar to the one defined by
Eq. (30b). To impose the outgoing-wave boundary condition
(17) in such an L2-integrable basis expansion approach, we
rotate the ray η ∈ [0,∞) into the upper half of the complex
plane by an angle ∼π/3 whose precise value for each state
and field is found empirically. In this way the differential
equations are turned into algebraic eigenvalue problems with
five-diagonal symmetric matrices. The determinant of these
matrices can be efficiently calculated by means of the recursive
relations presented in Ref. [51]. For any given generally
complex energy E, the eigenvalues of the equations in ξ and η

can be found by the Newton-Raphson method [52]. The energy
E is then adjusted to satisfy a relation for the eigenvalues [17].
The entire procedure can be relatively simply embedded in
multiple-precision arithmetic [40] and works very fast. We
thus could reproduce all significant digits in the available
results for E and � obtained by other methods [42–50]. But
the present procedure works also for very weak fields, when
� attains extremely small values. The smallest F that can be
treated is determined by the available computer memory. For
example, with our computational resources we could obtain
for the ground state � = 0.694 773 113 409 051 × 10−575 at
F = 5 × 10−4, which is in full agreement with the WFAT(5)
results [25].
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