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Effects of small recoil momenta in one-photon two-electron ionization
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We calculate the distributions in recoil momenta and the energy distributions for the high-energy nonrelativistic
double photoionization of helium caused by the quasifree mechanism of the process. The distributions obtain
local maxima at small values of the recoil momenta. This is in agreement with the earlier predictions and with
recently obtained experimental data. We obtained also the angular correlations, which reach the largest value in
the “back-to-back” configuration of the photoelectrons. Our analysis is valid in all high-energy nonrelativistic
region. Particular equations are true up to the photon energies making several kilo-electron-volts. We present
numerical results for the photon energies in the region of 1 keV, employed in the recent experiments.
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I. INTRODUCTION

The recent measurement of the yield of double-charged ions
in photoionization of helium [1–3] confirmed the existence of
the quasifree mechanism (QFM) of the double photoionization
which was predicted in [4]. The differential cross sections of
the double photoionization were calculated earlier in a number
of papers [4–9], where the authors studied the distributions
in characteristics of each photoelectron. In the pioneering
experiments [1–3], the distribution in momentum transferred
to the nucleus q (recoil momentum) was measured. Thus the
problem of calculation of such distributions as dσ 2+/dq2dε

with ε the energy of one of the photoelectrons and dσ 2+/dq2

became actual.
In the present paper we calculate these differential cross sec-

tions for the double photoionization of helium at high values of
the photon energies, corresponding, however, to nonrelativistic
energies of the photoelectrons. We present the results for
the differential cross sections dσ 2+/dq2dε. We trace the
dependence of these characteristics on the photon energy ω.

Recall that the experiments [1–3] in which the photons
carried the energies 450, 800, and 900 eV demonstrated that
the distribution of outgoing electrons obtains a surplus at small
q of about 2 a.u.. The kinematics of these experiments enables
the separation of the nondipole contributions at small values of
q. Thus the observed surplus is entirely due to the nondipole
terms.

By that time, only two mechanisms of the process were
known. In both of them the electron which interacted with
the photon directly obtained almost all the incoming photon
energy ω. In the first one, known as the shakeoff, the secondary
electron is pushed to continuum by the sudden change of the
effective field. In the second, called the knockout mechanism,
the photoelectron inelastically collides with the bound one,
sharing the photon energy. Both mechanisms contain the single
photoionization as the first step. This process cannot take
place on a free electron. Thus the momentum q, which is
transferred in this step to the nucleus, strongly exceeds the
averaged momentum of the bound electron μ, in the case of
the high-energy photon

ω � I (1)

(I is the single-particle ionization potential). Of course, there
is a configuration in which the second electron transfers
momentum q1 � μ such that |q + q1| ∼ μ. However, since
each act of transferring a large momentum q � μ leads to
an additional small factor [10,11], its probability is very
small. The distribution dσ 2+/dq2dε provided by these two
mechanisms peaks at q ≈ (2mω)1/2 � μ (m is the electron
mass), becoming very small at q ∼ μ. This remains true
beyond the dipole approximation.

In contrast to a single-electron case, the two electrons
can absorb a photon without participation of the nucleus.
In the free process, q = 0. In the QFM small momentum
q ∼ μ is transferred to the nucleus, i.e., q is much smaller
than the momenta of the outgoing electrons. The distributions
dσ 2+/dq2dε and dσ 2+/dq2 the have local maxima at small q

of the order of μ. That is what was detected in [1–3].
Momentum q transferred to the nucleus can be written

as

q = k − p1 − p2, (2)

where p1,2 are momenta of the outgoing electrons, while k
is that of the photon. The recoil momentum q can become
small only if the large momenta of the outgoing photoelec-
tron with pi = |pi | � μ compensate each other to a large
extent (k = |k| is always much smaller than pi while we
consider the photon energies, corresponding to nonrelativistic
photoelectrons). Hence the values of pi should be close, i.e.,
p1 ≈ p2 ≈ √

mE with E the sum of the energies of the
photoelectrons. Thus in QFM the bound electrons exchange
by small momentum q ∼ μ with the nucleus and by large
momentum of the order pi � μ between themselves.

We calculate the amplitude of the QFM in the lowest order
of expansion in powers of q/pi . This corresponds to expansion
of the bound state wave function in the lowest order in powers
of r12/ri , with ri standing for the distance between the electron
and the nucleus, while r12 is the interelectron distance. We
consider the high-energy photons, corresponding, however, to
nonrelativistic energies of the outgoing electrons. Thus we
assume that ω � m. Keeping in mind future extension of the
analysis to the relativistic case, we employ the relativistic units
h̄ = c = 1.
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Since q ∼ μ the higher terms of expansion in powers
of q/pi are of the same order as those coming from the
interactions between the photoelectrons and the nucleus.
However, they are of quite different physical origin. Thus we
include interactions of the nucleus with the electrons exactly,
describing the latter by the nonrelativistic functions of the
Coulomb field. Interaction between the outgoing electrons
is proportional to the square of its Sommerfeld parameter
ξee = α/v, where v is their relative velocity. For the energies
of the order 1 keV employed in the experiments [1–3], this
interaction provides a correction of the order of 2% and can
be neglected.

Direct relation of the QFM to the behavior of the bound
state wave function �(r1,r2,r12) at small distance r12 was
demonstrated in [10]. It was shown that the QFM amplitude
contains the factor ∂�/∂r12 at r12 = 0, which is connected to
the function �(r1,r1,r12 = 0) by the Kato cusp condition [11].
The latter appears to be very important for calculation of the
QFM amplitude [7]. We employ a very precise wave function
[12] which also satisfies the Kato cusp conditions. We use an
analytical function which approximates these wave functions
at the electron coalescence line r12 = 0 very accurately [13].

We include only the quadrupole part of the electron-photon
interaction. Note that the amplitude also contains the dipole
terms proportional to the product (e · q) with e the vector
of the photon polarization. However, at least in the leading
approximation, it is canceled by the contribution in which
the electrons exchange by large momentum in the final state
[7]. Anyway, in the experiments [1–3] the observations were
carried out in the plane where (e · q) = 0. Thus we can focus
on the quadrupole contribution.

Besides the conservation of the linear momentum expressed
by Eq. (2) we write the energy conservation condition

ω − I = E, E = ε1 + ε2, (3)

where εi = p2
i /2m (i = 1,2) are the photoelectron energies.

Note that in our system of units ω = |k|.
To simplify the calculations we restrict ourselves to the case

when the photon wavelength is much larger than the size of
the bound state, i.e.,

ω � μ. (4)

For the helium atom this means that ω � 6 keV. Under this
condition, Eq. (2) can be written as

q = −p1 − p2, (5)

in the lowest order of expansion in powers of k.
Momentum q can become as small as μ only if momenta of

the outgoing electrons almost compensate for each other, i.e.,
|p1 + p2| ∼ μ � p1,2. Hence, the photoelectrons are emitted
mostly “back to back,” with t ≡ (p1 · p2)/p1p2 close to −1,
while the values p1 ≈ p2, i.e., |p1 − p2| � p1,2. Thus the
relative difference of the energies of the outgoing electrons

β ≡ |ε1 − ε2|
E

(6)

should be small. Since q � |p1 − p2|, we find

β <
q

(mE)1/2
� 1. (7)

This equation is presented in the lowest order in β.

FIG. 1. (Color online) Distribution dσ 2+/dq2dβ in 10−10r4
0 , r0 =

1/mα for ω = 800 eV. The recoil momentum q is in atomic units.

Besides the distributions dσ 2+/dq2dε and dσ 2+/dq2

(Figs. 1–3), we calculate the differential cross sections
dσ 2+/dtdε and dσ 2+/dt (Figs. 4–6). We present the numer-
ical data for the photons carrying the energy of about 1 keV,
employed in the experiments [1–3].

Note that this approach was used in [14] for calculation of
the distributions dσ 2+/dtdε and dσ 2+/dε at the point of the
peak t = −1. In other words, in [14] the height of the peaks of
these distributions was found. In the present paper we calculate
the shape of the peaks.

II. GENERAL EQUATIONS

The differential cross section of the double photoionization
can be written as

dσ 2+ = 1

2ω
|F (k,p1,p2)|2d
. (8)

Here F (k,p1,p2) is the amplitude of the process. Averaging
over polarizations of the photon is assumed. The last factor is

FIG. 2. (Color online) Distribution dσ 2+/dq2dβ in 10−10r4
0 , r0 =

1/mα for β = 0. Solid line is for ω = 800 eV, dashed line is for
ω = 1 keV. The recoil momentum q is in atomic units.
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FIG. 3. (Color online) Distribution dσ 2+/dq2 in 10−10r4
0 , r0 =

1/mα. Notations are the same as in Fig. 2.

the phase volume

d
 = 2πδ(ω − I − ε1 − ε2)
d3p1

(2π )3

d3p2

(2π )3
. (9)

Employing Eq. (5), we can present

d
 = δ

(
ω − I − 2ε1 − p1qz

m
− q2

2m

)
dq2dqz

4π

d3p1

(2π )3
(10)

with z the direction of momentum p1. Using the δ function for
integration over qz we can write

dσ 2+ = |F (k,p1,p2)|2 θ (q/p − β)

8π

Em2

ω

dβ

2π

d�

4π

dq2

2π
, (11)

with � the solid angle of the photoelectron with momentum
p1, p = (mE)1/2.

The amplitude of the process can be written as

F (k,p1,p2) = 〈�f (1,2)|γ1 + γ2|�i(1,2)〉, (12)

where the numbers 1 and 2 denote the variables corresponding
to two electrons, �i,f are the wave functions of the initial and
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FIG. 4. (Color online) Distribution dσ 2+/dtdβ in barns for ω =
800 eV.

FIG. 5. (Color online) Distribution dσ 2+/dtdβ in barns for β =
0. Notations are the same as in Fig. 2.

final states, and

γ = (4πα)1/2ei(k·r) −i(e · ∇)

m
, (13)

where e is the vector of polarization of the photon, (e · k) = 0.
Recall that we shall pick only the quadrupole terms of
interaction between the photon and electron. For further
evaluation we denote

F (k,p1,p2) = (4πα)1/2M(k,p1,p2). (14)

As we said earlier, we describe the final state by the function

�f (r1,r2) = 1√
2

[(ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)], (15)

where ψi are the single-particle nonrelativistic Coulomb field
functions with asymptotic momenta pi. We shall need the

FIG. 6. (Color online) Distribution dσ 2+/dt in barns for β = 0.
Notations are the same as in Fig. 2.
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functions

ψ∗
pi

(r) = e−i(pi·r)X(pi,ξi,r), i = 1,2. (16)

Here

X(pi,ξi,r) = N (ξi)1F1(iξi,1,ipir + i(pi · r)), (17)

while

N (ξi) =
(

2πξi

1 − e−2πξi

)1/2

, (18)

with

ξi = η

pi

, η = mαZ. (19)

Here Z is the charge of the nucleus. Note that in the
hydrogenlike approximation, η is the averaged momentum of
the electron in the 1s state.

Thus

M(k,p1,p2) =
√

2[A(k,p1,p2) + (p1 ←→ p2)],

A(k,p1,p2) =
∫

d3r1d
3r2e

i(k·r1)−i(p1·r1)−i(p2·r2)X1(r1)X2(r2)

× (
e · ∇r1

)
�i(r1,r2) ≡ A. (20)

Here we denoted

Xi(r) = X(pi,ξi,r). (21)

We introduce

R = r1 + r2

2
, ρ = r2 − r1. (22)

Presenting

r1 = R − ρ/2, r2 = R + ρ/2, ∇r1 = 1
2∇R − ∇ρ, (23)

and

�i(r1,r2) = �(R,ρ), (24)

we obtain

A = A1 + A2, (25)

with

A1 = i

m

∫
d3Rd3ρe−i(a·ρ)+i(q·R)

×X1

(
R − ρ

2

)
X2

(
R + ρ

2

)
(e · ∇ρ)�(R,ρ), (26)

while

A2 = − i

2m

∫
d3Rd3ρe−i(a·ρ)+i(q·R)

×X1

(
R − ρ

2

)
X2

(
R + ρ

2

)
(e · ∇R)�(R,ρ), (27)

where

a = p1 − p2 + k
2

, a = |a|. (28)

Since a � q, the integrals on the right-hand sides of
Eqs. (26) and (27) are saturated by R ∼ 1/q � ρ. Thus we
can set ρ = 0 in the functions Xi . This provides

A1 = (e · a)

m

∫
d3Rei(q·R)X1(R)X2(R)

∫
d3ρe−i(a·ρ)�(R,ρ).

(29)

Now we expand the wave function

�(R,ρ) = �(R,τ,ρ) = �(R,0,0) + τ� ′
τ (R,τ,0)

+ ρ� ′
ρ(R,0,ρ) + 0(ρ2). (30)

Here τ = (R · ρ), the derivatives are taken at τ = ρ = 0.
We can calculate the integral over ρ multiplying the

integrand by e−νρ and putting ν = 0 in the final step:
∫

d3ρe−i(a·ρ)�(R,ρ) =
∫

d3ρe−i(a·ρ)−νρ�(R,ρ = 0)

=
∫

d3ρe−i(a·ρ)−νρρ� ′
ρ(R,0,ρ = 0)

= −8π� ′
ρ(R,0,ρ = 0)

a4
. (31)

The derivative �ρ at ρ = 0 is related to the wave function
by the Kato cusp condition [13]

lim
ρ→0

r0�
′
ρ(R,ρ) = 1

2�(R,0), (32)

where r0 = 1/mα is the Bohr radius. It is identical to similar
relation for the wave function presented in variables r1,r2,ρ.
Introducing

�(R) = �(R,ρ = 0), (33)

we can write

A1 = 4πα

a4
(e · a)S1(q), (34)

with

S1(q) =
∫

d3Rei(q·R)X1(R)X2(R)�(R), (35)

with the functions Xi(R) defined by Eq. (21).
Combining Eqs. (14), (20), (25), and (28), we find for the

quadrupole terms of the amplitude

F (k,p1,p2) = (4πα)3/24
√

2
(e · n)(k · n)

p4
S1(q). (36)

After averaging over the photon polarization and integration
over the angles Eq. (11) takes the form

d2σ

dq2dβ
= 27

15
α3 ω

E4
|S1(q)|2. (37)

In order to calculate S1(q) we employ the presentation of
the function

�(R) = c1e
−λ1R + c2e

−λ2R, (38)
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with numerical values of the parameters

c1 = 0.380ζ 3, c2 = 0.990ζ 3, λ1 = 5.54ζ,

λ2 = 3.41ζ, ζ = mα

found in [13].
Further calculations are described in the Appendix. We

obtain for the function S1(q) defined by Eq. (35)

|S1(q)|2 =
∣∣∣∣∣
∑

i

ciI (λi)

∣∣∣∣∣
2

, i = 1,2, (39)

with I (λi) defined by Eq. (A11).

III. RESULTS

Now we present the results of the computations. The cross
section d2σ/dq2dβ determined by Eq. (37) is presented in
a three-dimensional Fig. 1 for ω = 800 eV. As expected, it
obtains the largest values at small β � 1 and in the region of
small q ∼ 1 a.u. in agreement with the experimental results [3].
This distribution at β = 0, corresponding to the center of the
spectrum is shown in Fig. 2 for ω = 800 eV and ω = 1 keV.
Since the effects of finite β manifest themselves in the terms
of the order β2, there is no noticeable difference from similar
figures for β �= 0 in the QFM region due to Eq. (7).

It is instructive also to view the energy distribution of the
angular correlation

d2σ

dtdβ
= 2p1p2

d2σ

dq2dβ
, t = (p1 · p2)

p1p2
. (40)

It is shown for ω = 800 eV in the three-dimensional Fig. 4. As
expected, the largest values are reached at β � 1 and t close
to −1, corresponding to the electrons ejected in the opposite
directions (back to back). For β = 0 this differential cross
section is shown in Fig. 5 for ω = 800 eV and ω = 1 keV.

We also calculate the distribution in recoil momentum

dσ

dq2
= 1

2

∫ q/p

0
dβ

d2σ

dq2dβ
, (41)

and the angular correlation

dσ

dt
= 1

2

∫ 1

0
dβ

d2σ

dtdβ
. (42)

They are presented in Figs. 3 and 6, correspondingly. As
expected, the distribution dσ/dq2 has a local maximum at
q about 1 a.u.. At q = 0 this distribution turns to zero just
because the interval of integration over β vanishes. The angular
correlation dσ/dt has a sharp peak at t = −1, in agreement
with the previous analysis.

IV. SUMMARY

We calculated the distributions in recoil momenta q and
their energy distribution for the high-energy nonrelativistic
double photoionization of helium caused by the QFM [4]. They
are closely related to the distributions in the angle between
momenta of the outgoing electrons (angular correlations). As
expected, the distributions in recoil momenta obtain local
maxima at small q of the order 1 − 2 a.u., in agreement with
the results of the pioneering experiments [1–3]. Unfortunately,

the way the results in [1–3] are presented does not permit
comparison of the quantitative results. The corresponding
angular distributions obtain maxima when the photoelectrons
move in the opposite directions (back-to-back scattering). The
qualitative picture is the same for heavier atoms.

The QFM is caused by the initial state interactions and,
contrary to a misleading statement in [3], is contained in
the standard Feynman diagrams for the amplitude [4]. Since
the QFM is at work at small separation between the bound
electrons r12, we described the initial state by a very precise
wave function [12], employing its analytical approximation at
small values of r12 [13]. We neglected the electron interactions
in the final state. The numerical results for the photon energies
in the keV region are shown in Figs. 1 through 6. This energy
region attracts attention nowadays in connection with the laser
experiments. Also, the experiments [1–3] were carried out at
these energies. The approach can be applied for the double
photoionization of heavier atoms.

The results show that it is not necessary to go to very large
energies to find manifestation of the QFM. It manifests itself
in the distributions in recoil momenta at the energies of the
order of 1 keV.

One can obtain more precise results by directly employing
precise wave functions, i.e., those found in [8]. However, such
approaches do not allow analysis of the mechanisms of the
process. On the other hand, very “accurate” wave functions
(i.e., those which reproduce the value of the binding energy
very accurately) may have a wrong behavior at r12 → 0. It was
demonstrated in [7,16] that a number of publications on the
subject employing such functions contain erroneous results.
More examples are given in [17]. That is why we consider
our results to be a necessary step in the investigation of the
process.

There are a number of possibilities to carry out the
experimental investigation of other phenomena connected with
the QFM. Outside the plane (e · q) = 0 interference between
the dipole and quadrupole terms should manifest itself in the
angular distributions. Also, it would be interesting to trace
the ω dependence of the shape of the energy distribution. Its
theoretical analysis was presented in [17].
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APPENDIX

Thus we calculate the integral

S1(q) =
∫

d3Rei(q·R)X1(R)X2(R)e−λR = N (ξ1)N (ξ2)I (λ),

(A1)

where

I (λ) = −∂J (λ)

∂λ
, J (λ) =

∫
d3Rei(q·R)F1(R)F2(R)

e−λR

R
,

(A2)
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with

Fi = 1F1(iξi,1,ipiR + i(pi · R)), (A3)

The integral J (λ) was calculated in [15] as

J (λ) = 2πe−πξ1

αc

(
αc

γc

)iξ1
(

γc + δc

γc

)−iξ2

2F1(1 − iξ1,iξ2,1,g),

(A4)

with

αc = q2 + λ2

2
, βc = (p2 · q) − iλp2,

γc = −(p1 · q) + iλp1 − αc, (A5)

δc = p1p2 − (p1 · p2) − βc, g = αcδc − βcγc

αc(γc + δc)
.

We write Eq. (A4) in a more symmetric form,

J (λ) = 2πe−πξ1

αc

(
αc

γc

)iξ1
(

αc

αc + βc

)iξ2

2F1(iξ1,iξ2,1,h),

(A6)

with

h = βcγc − αcδc

γc(αc + βc)
. (A7)

Thus

J (λ) = 4π�(λ)2F1(iξ1,iξ2,1,h(λ)), (A8)

with

�(λ) = (q2 + λ2)−1+iξ1+ξ2 (p1 + p2 + iλ)−iξ1−iξ2

× (p2 − p1 − iλ)−iξ1 (p1 − p2 − iλ)−iξ2 . (A9)

Employing

∂

∂h
2F1(iξ1,iξ2,1,h) = −ξ1ξ22F1(iξ1 + 1,iξ2 + 1,2,h),

(A10)

we find

I (λ) = 8πλ

(q2 + λ2)2
�i(ξ1+ξ2)(λ)T (λ)e−π/2(ξ1+ξ2). (A11)

Here

�(λ) = q2 + λ2

s(λ)u(λ)
, s(λ) =

√
(p1 + p2)2 + λ2,

(A12)
u(λ) =

√
(p1 − p2)2 + λ2

while

T (λ) =
(

1 − i(ξ1 + ξ2)

2

)
{[1 + h(λ)]2F1(iξ1,iξ2,1,h(λ))

− ξ1ξ2h(λ)[1 − h(λ)]2F1(iξ1 + 1,iξ2 + 1,2,h(λ))},
(A13)

with

h(λ) = 1 − q2 + λ2

u2(λ)
. (A14)
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