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Adiabaticity and diabaticity in strong-field ionization
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If the photon energy is much less than the electron binding energy, ionization of an atom by a strong optical
field is often described in terms of electron tunneling through the potential barrier resulting from the superposition
of the atomic potential and the potential associated with the instantaneous electric component of the optical field.
In the strict tunneling regime, the electron response to the optical field is said to be adiabatic, and nonadiabatic
effects are assumed to be negligible. Here, we investigate to what degree this terminology is consistent with a
language based on the so-called adiabatic representation. This representation is commonly used in various fields
of physics. For electronically bound states, the adiabatic representation yields discrete potential-energy curves
that are connected by nonadiabatic transitions. When applying the adiabatic representation to optical strong-field
ionization, a conceptual challenge is that the eigenstates of the instantaneous Hamiltonian form a continuum;
i.e., there are no discrete adiabatic states. This difficulty can be overcome by applying an analytic-continuation
technique. In this way, we obtain a rigorous classification of adiabatic states and a clear characterization of
(non)adiabatic and (non)diabatic ionization dynamics. Moreover, we distinguish two different regimes within

tunneling ionization and explain the dependence of the ionization probability on the pulse envelope.
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I. INTRODUCTION

The realm of strong-field physics has become a focal
point of interest in the atomic, molecular, and optical physics
community over the last two decades. This was particularly
supported by the rapid development of lasers producing high
intensities (10'“~10'> W/cm?) that generate forces compara-
ble to intra-atomic forces and ultrashort pulse durations of the
order of femtoseconds (10~ 13 s) down to attoseconds (1078 5)
[1,2]. The time-resolved investigation of electron dynamics in
atoms and molecules has come into reach because the typical
time scales involved in electronic excitations (between 50 as
and 50 fs) can be accessed.

The process of tunneling ionization has been studied exten-
sively. Following the calculation of the tunneling ionization
rate for the ground state of hydrogen in a static electric field
by Landau [3], Keldysh extended the theory to ionization by
strong electromagnetic fields [4]. Later, Ammosov, Delone,
and Krainov (“ADK”) generalized the results to slowly
varying fields by introducing the quasistatic approximation and
defining the tunneling ionization rate by averaging over one
optical period (“ADK theory”) [5]. A self-contained derivation
of the tunneling rate in this approximation is presented in
[6]. In the original derivation [4] Keldysh introduced the
parameter y = ,/1,/(2U,), which is now known as the
Keldysh parameter [7]. Here, I, is the ionization potential
and U, is the ponderomotive potential, which corresponds to
the average energy of a free electron oscillating in the electric
field. According to Keldysh, y divides the phenomenon of
strong-field ionization into two regimes: for y < 1 ionization
is governed by tunneling ionization [3], while for y > 1 the
process is governed by perturbative multiphoton ionization
[8]. In the range of y =~ 1 both effects compete with each
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other [9,10]. In later papers the Keldysh parameter has been
connected to the notion of adiabaticity of the ionization process
[11,12]. Far into the tunneling regime, the atomic response is
considered to be purely adiabatic. Adiabatic means in this
context that the ionization rate at a given time is solely defined
by the instantaneous electric field.

More generally, when a time-dependent process is adia-
batic, the state of the system at any given time is always an
eigenstate of the instantaneous Hamiltonian, which depends
on one or more external parameters (like the electric field).
Consequently, the energy eigenstates and their corresponding
eigenenergies become parametrized and lead to energy curves
(or energy hyperplanes depending on the number of external
parameters). Nonadiabatic dynamics occur when transitions
between adiabatic curves start to appear. This is, particularly,
the case when two adiabatic curves are energetically close to
each other and the external parameters are changed relatively
fast such that the system has no time to “instantaneously” re-
spond to the change. As aresult, the system is not in one defined
adiabatic state anymore but rather in a superposition of several
adiabatic eigenstates. In various fields of physics and chemistry
the adiabatic representation has been used to study adiabatic
and nonadiabatic effects. Its application includes fields like
Rydberg atoms [13,14], molecular dynamics [15-17], atomic
and molecular collisions [18-20], and ultracold gases and
trapped ions [21-23].

An important aspect in the adiabatic representation is
the discreteness of eigenstates which is essential to obtain
a discrete set of energy curves. In the case of strong-field
ionization, however, the instantaneous eigenstates of the
Hamiltonian form a continuum. Therefore, the identification
of a nonadiabatic effect happens rather indirectly [24,25]:
either the spectrum of the photoelectron after the pulse or
the field dependence of the ionization rate is analyzed. Various
results on nonadiabatic behavior in strong-field ionization have
been presented in the literature [26-28] and there are many

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.87.043422

ANTONIA KARAMATSKOU, STEFAN PABST, AND ROBIN SANTRA

different usages of the terms “adiabatic” and “nonadiabatic.”
By introducing an analytic continuation in the complex plane
the instantaneous Hamiltonian becomes non-Hermitian and
tunneling states appear as discrete eigenstates. These discrete
states can be now used to apply the adiabatic representation to
strong-field ionization dynamics.

In this paper we strictly apply the adiabatic representation
to strong-field ionization and find that in the tunneling regime
the ionization dynamics is defined by a diabatic rather than an
adiabatic behavior. Diabatic dynamics means that the response
of the system follows one specific diabatic state. Here, the
diabatic states are defined by the overlap with the field-free
eigenstates. In this formulation we find that the ionization
dynamics can be divided into two regimes. Furthermore, with
increasing frequency we observe a transition from the diabatic
to the nondiabatic regime. In particular, we study the few-cycle
limit and find a nonconstant population as a function of the
optical frequency which has been interpreted in the literature
as a sign of a nonadiabatic process [12,25]. We show for a
few-cycle pulse with a Keldysh parameter y < 1 that this
effect rather represents a dependence on the form of the pulse
and can be fully explained by a diabatic picture depending on
a single diabatic state connected to the field-free ground state.
The main text is divided into three sections:

(1) Section II is devoted to the general theory of the
equations of motion in the adiabatic basis and introduces also
diabatic states.

(2) The third section presents one-photon absorption as an
extreme case of a nonadiabatic (and nondiabatic) ionization
process.

(3) In Sec. IV, the central section of this paper, we
develop the concept of diabaticity in strong-field ionization.
We examine the transition from the diabatic to the nondiabatic
ionization regime.

Atomic units are employed throughout unless otherwise
indicated.

II. ADIABATIC EIGENSTATES

Whenever a system is given time to adjust to the parameters
on which it depends, the response is called adiabatic. In the
following, we derive the quantum-mechanical equations of
motion in the adiabatic basis, which is given by the states that
are eigensolutions to the Hamiltonian of the system for a set
of instantaneous parameters.

Let us study a system where the Hamiltonian depends on an
external time-dependent parameter €(¢). The time-dependent
Schrodinger equation has the form

i0,|W(t)) = HO|W (1)) = {Ho + UleOBW (). (1)

I:IO describes the atomic Hamiltonian, whereas U includes all
external potentials and is dependent on the parameter (7). At
a given time ¢, the instantaneous eigenstates, which constitute
the adiabatic basis, are defined by1

[Hy + UO1W,(1)) = E ()| W,(1)). 2)

'The time dependence is implicit via the parameter €(t).
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To analyze adiabatic and nonadiabatic effects we expand the
electronic wave function in terms of the adiabatic eigenstates,
|W(1)) =Y, an(t)|W,(1)). Upon inserting this expression into
Eq. (1) and projecting onto the eigenstate |\V,, (7)), the equation
of motion for the coefficient «,, (¢) reads

[y (1) + i Zan(t)(‘llm(t)lazlllfn(t)) = an(O)En(1). 3)

The off-diagonal matrix elements (\W,,(¢)|9;|W,(¢)) introduce
couplings between different adiabatic eigenstates, thus making
the dynamics nonadiabatic [29]. In the adiabatic approxima-
tion, where these couplings are considered to be very small,
Eq. (3) becomes

id,,(1) + io‘m(t)<\ym(t)|\i’m(t)> = o, (1) E, (1), €]

which is solved with the initial condition ¢, (0) = 1 by
t
o (1) = exp [ —i / dt,Em(t/)i| expliym(1)], &)
0

where ¥, (1) =i [y dt'(¥,,(t)|W,, (1)), so that the system
evolves in a specific adiabatic eigenstate with a phase. If, on
the other hand, (W,,(t)| W, (¢)) cannot be neglected, the whole
sum in Eq. (3) has to be considered, so that different adiabatic
eigenstates get coupled and nonadiabatic motion emerges.
We can use 9, = g—fas and express the off-diagonal coupling
elements also in terms of the change in €:
de

(wmlan> = (\I’m|85\l’,,)§. (6)

Considering a two-level system with an external perturba-
tion proportional to €, the Hamiltonian of the system takes the

form
N —-10 Af01 €10
H=<o 1>+3<10)+§<0—1)’ )

Ho U

where A is an internal coupling parameter. In Fig. 1 the
energy curves of the two adiabatic states |W;) and |W,) of
this system are shown as a function of the external parameter
€,assuming A = 1. The internal coupling between the diabatic
states |1) = (1,0)T and |2) = (0,1)T results in the effect that
the two adiabatic curves do not cross. This phenomenon is
known as an “avoided crossing.” We see that A is the energy
splitting between |W;) and |\W;) at the degeneracy point of the
states |1) and |2). If the parameter € is changed sufficiently
slowly, the system will remain in a given adiabatic state |\W;)
if, for € <« 1 or >1, the system was in the state |\W;). Note
that in the vicinity of € =1 the character of the adiabatic
states changes from |1) to |2) and vice versa. If € changes
rapidly in the vicinity of € = 1, the system has no time to
change the character of its state; it makes a transition from one
adiabatic state to the other and follows the diabatic states |1)
and |2), respectively. These jumps between adiabatic curves
make the resulting dynamics nonadiabatic. For a given value
of the external parameter, we can obtain the diabatic states
also by choosing the adiabatic eigenstates with the maximal
overlap with the free states (¢ = 0). For € < 1, the diabatic
state | 1) has the maximal overlap with the adiabatic state W),
while for € > 1 the overlap of state |1) with the adiabatic
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FIG. 1. (Color online) The energy curves of the two adiabatic
states |W;) and |W,) are shown as functions of the parameter

€. Through the off-diagonal matrix element A/2 a nonadiabatic
transition is possible, whereupon the system follows the diabatic
states |1) and |2), respectively.

state |\W,) is maximal and vice versa for the diabatic state |2).
Asymptotically, the states |1) and |2) correspond to the states
|W;) and |W,) before the avoided crossing and vice versa after
the crossing. Near the crossing an interpolation is performed
in order to obtain a continuous and smooth state.

A system’s dynamics can of course also be formulated in
other representations, e.g., in a diabatic basis [30], where the
diabatic states do cross (see the states |1) and |2) in Fig. 1).
Usually the basis is chosen such that the off-diagonal couplings
in Eq. (6) vanish or are at least small [19,31]. However, the
diabatic basis, which is derived from the adiabatic basis by
a unitary transformation, is not unique and there are many
different approaches for reaching a diabatic representation
[32-34]. One practicable method of diabatization is a local
diabatization method, which means that the diabatic state is
constructed piecewise in a two-level model: At each avoided
crossing between two adiabatic states the diabatic state is
followed. To this end, the size of the overlap with the
corresponding field-free state can be used as a criterion. This
method turns out to be fruitful for the description of diabatic
and nondiabatic strong-field ionization (see Sec. IV). Once a
diabatic representation has been found, one can ask with which
rate transitions between diabatic states occur. These transitions
will be called nondiabatic.

In the following section we will make use of the fact
that for weak perturbations the adiabatic eigenstates can be
approximated through the field-free eigenstates. Therefore,
the diabatic states exhibiting the maximal overlap with the
field-free states are also the adiabatic states. In this case, the
nondiabatic transitions are exactly the nonadiabatic transitions
described above.

III. ONE-PHOTON ABSORPTION

First, we analyze the case of one-photon absorption within
the adiabatic representation. If the system is exposed to a
weak electric field of the form F (1) = F cos(wt) (in the dipole
approximation, see Sec. IV), with a frequency w, the system
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Hamiltonian is perturbed by the term F(¢)Z [35], where Z is
pointing in the direction of the field (which is assumed to be
linearly polarized). The Hamiltonian in Eq. (1) takes the form

H(t) = Hy + F(1)3, (8)

where I:IO is the atomic Hamiltonian and the electric field F(¢)
is coupled classically to the dipole operator Z of the electron
[the field F(¢) corresponds to the parameter € of Sec. II].

In the following, we show that in the adiabatic representa-
tion the off-diagonal coupling elements in Eq. (3) are crucial
for introducing transitions. Let {W(?}> be the eigenstates
of the field-free Hamiltonian, Ho|¥”) = w,|¥?). For sim-
plicity, we assume that the initial and final states of interest in
the one-photon transition are nondegenerate. Performing static
perturbation theory to first order, the adiabatic eigenstates
read [36]

W@V4WW

W) = ). ©)

’\I](O) + Z

k+#n

Inserting Eq. (9) in Eq. (6) with € being the field F, we obtain
the nonadiabatic coupling elements to first order in F:

(W ]2]w) IF (WO|z|w©)
©0) E O\ _ m 1< *n
\Il | Wy — W |\pk )= ot w, —wm (10)

We are now ready to solve Eq. (3) including nonadiabatic
coupling. We may treat the operator Vi = 3 570 as a perturb-
ing time-dependent operator and, hence, analyze the states
with time-dependent perturbation theory [36]. The first-order
correction to the zeroth-order coefficient [Eq. (5)] is given by

) qJ(O) w©®
oty = /Odt’“wfmf”—( )

o' wr—w;

Assuming w; > w;, we obtain the total transition probability
per unit time:

= Z|

><8(wf — W —Cl)).. (12)

(l)|

_5 O Fo2) o ?
=21y |(v§ |7| i)
-

This equation is exactly Fermi’s golden rule [37]. In the present
approach it is the nonadiabatic coupling that induces one-
photon transitions between the field-free eigenstates. Viewed
in this way, the phenomenon of one-photon absorption is
entirely nonadiabatic. In the one-photon case, the states are
well separated by a large energy gap and there is no avoided
crossing due to the weak field, which is only a perturbation
to the field-free states. Note that the adiabatic states coincide
with the diabatic states in the weak-field limit.

IV. STRONG-FIELD IONIZATION OF ATOMS

While in the case of one-photon ionization the photon
energy necessarily exceeds the ionization potential, we will
now examine the situation where the atomic system is
irradiated by an intense electric field F(¢) with a low photon
energy, i.e., many photons are needed to ionize the atom.

When applying a strong external field [see Eq. (8)] the
effective potential seen by an electron gets tilted (see Fig. 2).
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FIG. 2. (Color online) The pure Coulomb potential of the helium
atom (solid red line) tilted in the presence of the electric field (dashed
green line). The dotted black line denotes the field-free ground-state
energy.

Therefore, a barrier of finite height is created through which
the electron can tunnel. (If the electric field is so strong that
the electron’s energy lies above the barrier, the electron can
just leave the atom without tunneling. This effect is called
above-barrier ionization [38,39].) This tunneling picture of
a tilted potential relies on the length form of the light-
matter interaction, i.e., F(¢) Z. Furthermore, the form of the
Hamiltonian [cf. Eq. (8)] is a result of the dipole approxima-
tion, which holds in our case, because the size of the system
of interest (a few A) is much smaller than the wavelength of
the light pulse (=1 um) [40,41].

In order to describe strong-field ionization dynamics, the
Schrodinger equation of the atom exposed to the field has to be
solved nonperturbatively because perturbation theory fails for
these high-field strengths. As shown in Sec. II in the adiabatic
case the system will follow a given adiabatic state without
making any transition. However, in the presence of a static
electric field, electronically bound states become tunneling
states, which means that there is ionization via tunneling.

In the following, we will study helium as a concrete example
to illustrate tunneling ionization within the framework of the
adiabatic representation.

A. Constructing adiabatic and diabatic states for helium

As already discussed (see Sec. I), in strong-field ionization
the spectrum forms a continuum where a direct application of
the adiabatic representation is inconvenient. To overcome this
problem, a rigorous analytical continuation of the Hamiltonian
can be performed by rotating the electron coordinates about
an angle into the complex plane; this procedure is called
complex scaling [42]. Another way to generate discrete
eigenstates is to add a complex absorbing potential (CAP)
to the Hamiltonian [43]. It can be shown that the latter
method, which is conceptually easier, is closely connected
to the complex scaling approach [44]. The key idea here is that
for every tunneling state, i.e., every adiabatic atomic state that
allows the electron to tunnel through the field-induced barrier,
there exists a discrete eigenstate—a so-called Gamow vector
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FIG. 3. (Color online) The real part of the energy of the first
adiabatic eigenstates as a function of a static electric field. The inset
magnifies avoided crossings for small electric fields.

[45] or Siegert state [46]—of the instantaneous Hamiltonian.
A Siegert state is associated with a complex energy and
lies outside the Hermitian domain of the Hamiltonian. In
fact, the associated wave function is exponentially divergent
for large distances from the atom. Complex scaling or the
use of a CAP eliminates the divergent behavior and renders
the tunneling wave function square integrable. Thus, by
making the Hamiltonian non-Hermitian, it becomes possible
to calculate, within Hilbert space, the complex Siegert energies
of tunneling states. The imaginary part of the Siegert energy
E provides the tunneling rate I' of each Siegert state by the
relation I' = —2 Im(E) [47,48].

In order to obtain the instantaneous eigenstates we solve
Eq. (2) with the Hamiltonian in Eq. (8) including a CAP.
This yields the adiabatic eigenstates and corresponding
eigenenergies of the atom shown in Fig. 3. A more detailed
description of the methods used is given in the Appendix. We
observe many avoided crossings among the higher adiabatic
eigenstates for field strengths in the range below 0.01 a.u.
(1 au. = 5.14 x 10° V/cm), while the ground-state energy
does not change significantly. One might wonder whether for
sufficiently slow ramping of the electric field the atom follows
the adiabatic ground state. Indeed, for field strengths up to
0.02 a.u. the adiabatic ground-state energy seems to remain
constant. But we know that the electric field can mix a whole
manifold of excited states into the field-free states. When this
happens, the adiabatic ground state loses the character of the
field-free ground state (cf. Fig. 1). Analyzing the avoided
crossings involving the adiabatic ground state around the field
strength of 0.02 a.u., we find that the ramping of the field has to
be so slow that it lies in the radio frequency regime. Therefore,
the system does not follow the adiabatic ground state for the
frequency range of light usually employed in experiments
(typically around 800 nm, corresponding to 4 x 10'4 Hz).

The electronic state follows the instantaneous eigenstate
that has the maximal overlap with the field-free ground state.
This is exactly the diabatic behavior described in Sec. II,
where the electronic state jumps from one adiabatic state to
the other, keeping its field-free character. Here, we employ
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the diabatization method already alluded to in Sec. II, where
we construct the diabatic state |\Dl-(d) (1)) from the adiabatic
basis {|W,(¢))} using the criterion of maximal overlap with the
field-free state |\Ili(0) ), i.e.,

(W O0) = [,()),
(@) > (@@ W), Vm £ .

where
(13)

This can be done as long as there is one distinct adiabatic
state with a prominent character of the corresponding field-free
state, so that the (orthogonal) complement of adiabatic states
which are mixed in is small and can be ignored. The procedure
works in principle also for excited states. However, for excited
states the condition of a small admixture breaks down already
at low-field strengths, such that this construction method
works best for the field-free ground state. The overlap of the
corresponding diabatic state |\Il(()d)) with the field-free ground

state |\I/(()O) ) is always larger than 90% for field strengths
considered here [see Fig. 4(c)]. Figures 4(a) and 4(b) show
the real part of the energy and the tunneling rate of |\IJ(()d) )
as a function of the electric field. The shift of the real part
of the energy is well approximated by a quadratic behavior;
for low-field strengths below 0.1 a.u. the prefactor is in
accordance with the literature value of the polarizability of the
helium ground state [49,50]. As expected, the tunneling rate
increases considerably for sufficiently high-field strengths. For
field strengths larger than 0.07 a.u. the ionization rate is well
captured by the analytic expression derived in the tunneling
limit of the strong-field approximation [7].

Studying the adiabatic eigenstates and the avoided crossings
reveals the suitability of the diabatic state constructed as
shown above for the description of strong-field ionization. The
advantage of the diabatic basis is that the system follows one
single diabatic state, which gives a clear and intuitive picture
for the explanation of the physics in the tunneling regime.
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FIG. 4. (Color online) (a) The real part of the energy of the
diabatic state |\IJéd>) and (b) its tunneling rate, I’ = —2Im(E), shown
as a function of the electric field. (c) The overlap of |\IJ(()‘1)) with the
field-free ground state.
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B. Ionization dynamics

So far, the analysis was performed for the spectrum of
adiabatic eigenstates, i.e., for static electric fields. Now we in-
troduce dynamics by considering a Gaussian pulse of the form

F(t) = f(t) cos(wt) = Foe /> cos(wt),  (14)

where Fy is the peak strength of the electric field, 7 is
connected to the full width of the pulse at half maximum by
72 = (FWHM)?/(8In 2), and w is the field frequency.

We want to calculate the ionization probability out of the
diabatic state |lIJ(()d)) when applying this pulse. Let us assume
that we have found a diabatic basis in which this particular
diabatic state can be described by a coefficient a(()d). Then
the exact wave function reads W(r) =), ai(d)(t)\lli(d)(t). In
analogy to the case of the adiabatic representation, equations
of motion can be obtained for the coefficients in the diabatic
basis where now coupling elements between the diabatic states
imply nondiabatic transitions [cf. Eq. (3)]. If, in a “diabatic
approximation,” the nondiabatic transitions are neglected we
obtain the following equation of motion for the coefficients:

re
a0 = | B =i o), (15)

where Fl@ is the ionization rate of the diabatic state i. From the
ionization rate of our distinguished diabatic state its population
evolution Péd)(t) = |oz(()d)(t)|2 during the pulse can be inferred.
To this end, the equation of motion for the probability
of remaining in this particular diabatic state is calculated
(we omit indices for the sake of readability):

dp

dt
Inserting Eq. (15) in this equation the following rate equation
for the population is obtained (cf. [40]):

= %la(r)ﬁ = o*()au(t) + a*()a(t). (16)

P(1) = =T[F(1)] P(1), a7)
which can be analytically solved by separation of variables:
t
P(t) = exp {—/ dr’ F[F(t’)]} , (18)
—00

with the initial condition P(ft =—o00)= 1. Note that the rate
depends on the external field. Inserting the tunneling rate of the
diabatic state in Eq. (18) we calculate the diabatic ionization
dynamics. Thereby we observe how much is ionized out of
|\l/(()d)). Deviations from Eq. (18) in the population dynamics
can be attributed to nondiabatic behavior, i.e., transitions to
other diabatic states.

The results for four selected photon energies are shown
in Fig. 5 for an electric-field amplitude of Fy = 0.25 a.u.
The pulse duration is kept constant so that we can study
the ionization regime from few- to multicycle pulses. The
exact result refers to the numerical solution of the Schrédinger
equation [see Eq. (1)], where all dynamics are included, while
the calculation of the diabatic curve via Eq. (18) involves
only the diabatic state |‘~IJ(()d)). The gray-shaded areas in the
background indicate the pulse intensity. In the frequency range
shown, the evolution of the ground-state population is well
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FIG. 5. (Color online) Comparison of the ground-state popula-
tions calculated via numerical solution of the Schrodinger equation
and via the rate equation (18) for the distinguished diabatic state for
four different photon energies. The pulse intensities are highlighted
in the background: the pulse amplitude is Fy = 0.25 a.u., and the
pulse duration is 400 a.u. (*10 fs).

described by considering only the single diabatic state. For
w = 0.3-0.8 eV [see Figs. 5(a)-5(c)] the difference between
the numerically exact and the diabatic calculation is insignif-
icant, while for w = 1.5 eV [see Fig. 5(d)] the discrepancy
between the two methods becomes more noticeable. This is ex-
actly the difference which gives us a measure of nondiabaticity.
To clarify this further, a comparison between the two methods
is shown in Fig. 6 for a peak field strength of 0.2 a.u. by
depicting the populations [Fig. 6(a)] and the relative difference
[Fig. 6(b)] between them after the end of the pulse. One can
clearly see that for sufficiently low energies the total ionization
probability is reproduced exactly by considering only the
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FIG. 6. (Color online) (a) Ground-state population after the end
of the pulse calculated via numerical solution of the Schrodinger
equation and from the single diabatic ground state as a function of
the photon energy and (b) relative difference between the two results,
corresponding to the degree of nondiabaticity of the ionization. The
peak field strength is F; = 0.2 a.u., and the pulse duration is 400 a.u.
The corresponding Keldysh parameter y is shown for different
regions.
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diabatic state (region I). For higher energies around 1 eV
(region II), the difference increases significantly, indicating
that nondiabatic effects start to become important.

C. Nondiabaticity and the special case of few-cycle pulses

In order to find a common way of speaking we incorporate
the Keldysh parameter in our considerations, which has been
used as an adiabaticity parameter. Following our language of
the adiabatic representation, the ionization in the tunneling
regime, y < 1, is diabatic rather than adiabatic. We conclude
from Fig. 6 that in the region where y &~ 1 the relative
difference between the results calculated from the diabatic
ionization rate via Eq. (18) and from the solution of the
Schrodinger equation is greater than 10%. This is a clear sign
of nondiabatic behavior. Already for y ~ 0.17 the diabatic
ionization probability starts to differ slightly from the total
ionization probability. For a fixed pulse duration we can also
divide the frequency range according to the number of cycles
in the pulse. Starting from the highest frequencies studied here
we have multicycle pulses, until we reach few-cycle pulses at
a photon energy of ~0.8 eV.

The dynamics for few-cycle pulses is commonly considered
to be nonadiabatic (in our language this translates to nondi-
abatic) [12,25]. We find that even for few-cycle pulses the
tunneling is completely diabatic. In the framework of ADK
theory and other approaches [51] the ionization rate T'(¢) is
obtained by integrating over one period of the field [6]:

_ 1 2
I'(1) = E/ de I'[f(1) cosg], (19)
0

where I'[F] is the instantaneous ionization rate. Hence, the
fact that the ADK theory of tunneling ionization and similar
approaches cannot reproduce the correct (diabatic) ionization
rate for few-cycle pulses is not due to coupling to higher
states [24,25] but rather because the pulse envelope changes
dramatically within one cycle. In this limit the rate cannot be
averaged over one period as was done in Eq. (19), whereas for
multicycle pulses it can be used in combination with Eq. (18),
yielding

P(t) %exp{ — / dr' T[ f(t’)]}. (20)

Analyzing region I in Fig. 6 further, we observe that the
ionization probability is not constant as a function of photon
energy. But the population loss in region I is well described by
the ionization out of |\IJ(()d)). According to our argument above,
the apparent frequency dependence is rather a dependence
on the form of the pulse or analogously on the relation
between the cycles and the pulse envelope, which appears
in a pronounced way for few-cycle pulses. Preferably, to avoid
confusion, it could be called form dependence. As we have
seen, the ionization behavior for few-cycle pulses can be well
understood from the dynamics of a single diabatic state.

V. CONCLUSION

We have studied the dynamics of tunneling ionization in
atoms and have found that, within the framework of the

043422-6



ADIABATICITY AND DIABATICITY IN STRONG-FIELD ...

adiabatic representation, it is diabatic rather than adiabatic.
We have identified two distinct ionization regimes depending
on their diabatic behavior. In particular we have charac-
terized the transition from the diabatic to the nondiabatic
regime.

In the low-frequency limit the total ionization probability
is reproduced by the contribution of the tunneling probability
of one single diabatic state. This means that in this regime
there are no significant transitions to other diabatic states.
For few-cycle pulses, the ionization probability depends on
the frequency for a fixed pulse duration. However, this is
not a nondiabatic effect, but the effect stems from the form
dependence of the pulse and the consequent fact that the rate
cannot be averaged any longer over one period.

When nondiabatic transitions start to happen, the difference
between the diabatic state ionization probability and the total
probability increases dramatically. For frequencies in the range
of the binding energy of the atom one-photon absorption
can occur, which is a completely nonadiabatic and even
nondiabatic process. Already for parameters y = (.17 the
diabatic ionization probability starts to differ noticeably from
the total ionization probability, even though the perturbative
multiphoton regime is not yet entered. From the perspective of
the adiabatic representation, the Keldysh parameter is found
to be an approximate measure of diabaticity.
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APPENDIX: PROPAGATION METHODS

This short section provides supplementary details on the
technical features involved in our calculations. We need to find
the exact solution of the Schrodinger equation [see Eq. (1)]
for the time-dependent Hamiltonian [see Eq. (8)]. Via the
propagation of the wave function in time, where the full
dynamics are considered (adiabatic and nonadiabatic), we
obtain the numerically exact solution. In the adiabatic approach
the instantaneous Hamiltonian for different field strengths
(corresponding to different time steps) is diagonalized. In the
latter case the adiabatic eigenstates are obtained, so that the
adiabatic dynamics are studied.

For both methods we employ the time-dependent configura-
tion interaction singles (TDCIS) scheme [52,53]. Starting with
the Hartree-Fock ground state [54] as the field-free ground
state, |®(), we include one-particle—one-hole configurations
[55], describing the excitations of the system. The TDCIS
wave function reads

(W(5)) = ag(t) | Po(1)) + Y _ e ()| (1)),

i,a

(AL)

where the index i symbolizes an initially occupied orbital,
whereas a denotes a virtual orbital to which the particle can
be excited. This means that we consider only configurations
where one particle is singly excited, thereby creating one
hole. We use the software packages ARPACK [56] and
LAPACK [57] to calculate the adiabatic eigenstates. The two
methods used permit us to compare the explicitly adiabatic
dynamics with the exact calculation, where all dynamics are
included.
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