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We analyze the time-optimal control of spin-1/2 particles with bounded field amplitudes in the presence
of dissipative and radiation damping effects. Using tools of geometric optimal control theory, we determine
different optimal syntheses for specific values of the system parameters. We show the nontrivial role of the
effective radiation damping effect on the optimal control law.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) [1–3] is one of the
most promising fields of applications of quantum control
[4–7]. In this domain, optimal control techniques can be used
to design magnetic fields to control the dynamics of spin
systems with applications extending from quantum computing
to spectroscopy [8]. Numerical optimization procedures such
as the GRAPE algorithm (gradient ascent pulse engineering
algorithm) [9,10] or the Krotov algorithm [11] have been
developed to solve such control problems. Recently, methods
of geometric optimal control theory [12–14] have also been
applied with success in this field [15–21]. This approach,
which is based on strong mathematical tools coming from
differential geometry and Hamiltonian dynamics, has a rapid
development permitting to attack problems of increasing
difficulty. In this context, we have derived in Refs. [22–24]
the complete solution of the optimal control of two-level
dissipative quantum systems whose dynamics is governed by
the Lindblad equation [25,26]. We have applied this analysis in
[19] to control the saturation a spin-1/2 particle in a dissipative
environment. In this paper, we propose to extend this work by
studying the role of the radiation damping effect on the optimal
control of the dynamics of a spin-1/2 particle [27–37]. In
this setting, a preliminary experimental and numerical study
has been done in [38] for the saturation control of a spin in
minimum time.

Before entering into mathematical details of the analysis,
we recall that, in NMR, the radiation damping effect arises
during the measurement process of the magnetization [27–29].
This magnetization is measured by a coil, but the measured
signal in this coil produces another magnetic field that
influences the dynamics. This effect can be modeled by a
nonlinear term in the Bloch equations of the dynamics. In
this context, the question that naturally arises is the positive
or negative role of these new terms on the optimal law. To be
complete, we will analyze the double contribution of relaxation
and radiation damping effects. The nonlinear effect is generally
characterized by a positive radiation damping parameter. How-
ever, using radio-frequency feedback [30,31,33,39–41], the
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effect of radiation damping can be enhanced [32], suppressed
[31,39], or even overcompensated [32], resulting in arbitrary
effective radiation damping parameters that can be positive or
negative. It is this general situation which will be considered
in this work.

The paper is organized as follows. We first introduce the
model for the dynamics of a spin-1/2 particle with relaxation
and radiation damping effects. In Sec. III, we formulate the
Pontryagin maximum principle (PMP) with a time minimum
cost functional and we introduce the different geometric tools
needed to solve the optimal control problem. Section IV is
devoted to the computation of different optimal syntheses
for specific values of the relaxation and radiation damping
parameters. Conclusions and prospective views are given
in Sec. V. Some technical computations are reported in
Appendix.

II. THE MODEL SYSTEM

In this section, we introduce the nonlinear Bloch equation
that is used in this paper. This model describes the magneti-
zation of a sample in an NMR experiment with a nonlinearity
arising from the interaction of the sample with the coil and
experimental feedback. Assuming that the radio-frequency
magnetic field is resonant with respect to the frequency of
the spin-1/2 particle, the nonlinear Bloch equation is given in
the corresponding rotating frame by [27,28]

dMx

dt
= ω1yMz − Mx

T2
− MxMz

τrM0
,

dMy

dt
= −ω1xMz − My

T2
− MyMz

τrM0
, (1)

dMz

dt
= −ω1yMx + ω1xMy − Mz − M0

T1
+ M2

x + M2
y

τrM0
,

where the Mi values are the coordinates of the magnetization
vector �M in the i direction and ω1i the two components of the rf
control field �ω, which satisfies the constraint | �ω| � ωmax. The
two constants T1 and T2 are two relaxation rates describing
the interaction of the system with the environment. M0 is
the thermal equilibrium magnetization, and τr is the effective
radiation damping rate which can be positive or negative.
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Note that without dissipation the norm of the magnetization
vector is constant. To simplify the notations, we introduce the
normalized coordinates �x = �M/M0, the normalized control
field �u = 2π �ω/ωmax, and the normalized time τ = (ωmax/2π )t
[19]. The dynamics is then ruled by the following system of
differential equations:

ẋ = −�x + u2z − kxz

ẏ = −�y − u1z − kyz (2)

ż = γ (1 − z) + u1y − u2x + k(x2 + y2),

where � = 2π/(ωmaxT2), γ = 2π/(ωmaxT1) and k =
2π/(ωmaxτrM0). As mentioned above, we assume that
the parameter k can be positive or negative [39], while
the dissipative parameters are positive. We will see that
completely different behaviors are obtained according to the
sign of the parameter k.

The goal of this work consists in solving the time-optimal
control problem in the presence of relaxation and radiation
damping effects. The initial state will be the thermal equi-
librium point, while the final state can be any point of the
reachable set. We will construct the optimal synthesis, i.e.,
the set of all the optimal solutions starting from the initial
point and reaching any final state. We begin the analysis by
first using the symmetry of revolution of the system around
the z axis. Observe that the nonlinear term does not break this
symmetry. Roughly speaking, if the initial state is on the z axis,
which is usually the case in NMR when the initial point is the
equilibrium point, then all the meridian planes containing the
z axis are equivalent. This point is rigorously shown in [22,23]
in the situation where only the relaxation rates are taken into
account and can be straightforwardly extended to the radiation
damping case.

Since the optimal dynamics is confined in a plane, we can
assume without loss of generality that u2 = 0. We finally get
the equations

ẏ = −�y − kyz − uz
(3)

ż = γ (1 − z) + ky2 + uy,

where u ≡ u1 is the control. The dynamical system can also
be rewritten in a vectorial form as follows:

�̇X = �F ( �X) + u �G( �X), (4)

where the vectors �X, �F , and �G have respectively the coor-
dinates (y,z), [−�y − kyz,γ (1 − z) + ky2], and (−z,y). The
vector fields �F and �G are associated to the uncontrolled and
controlled parts of the dynamics.

III. METHODOLOGY

A. Fixed points and vector fields

We give in this section a global geometric description of the
dynamics. Whereas the standard Bloch equation admits only
one fixed point corresponding to the north pole (y = 0,z = 1)
of the Bloch sphere if u = 0, the main consequence of the
introduction of the nonlinearity is the creation of new fixed
points. The dynamics can have at most three fixed points for
some values of the parameters. These fixed points are given by

the equations

−�y − kyz − uz = 0
(5)

γ − γ z + ky2 + uy = 0,

where u is constant. Using Eqs. (5), one deduces that the
solutions are given by the following polynomial of order 3:

k2

γ
y3 + 2ku

γ
y2 +

(
� + kγ + u2

γ

)
y + u = 0. (6)

The complete resolution of Eq. (6) is detailed in Appendix.
In particular, we give sufficient conditions for the existence of
three fixed points. This case is illustrated in Fig. 1 for u = 0,
2π, and −2π . The vector field �F + u �G is also represented by
means of small arrows showing its direction and its intensity
in the (y,z) plane. Note the different local structures around
the three fixed points.

B. Pontryagin maximum principle

Powerful mathematical tools have been developed [14] to
study controlled systems on two-dimensional manifolds. In
this section, we briefly introduce the main results needed to
solve the time-optimal control problem. We recall that the con-
trol field satisfies the constraint |u| � 2π , which is equivalent
in the reduced coordinates to the constraint | �ω| � ωmax. Since
the geometrical study of the linear system has already been
carried out in [22–24], we focus in this paper on the changes
induced on the geometrical sets by the nonlinear term.

The main tool used here is the Pontryagin maximum
principle (PMP) [42], which states that the optimal trajectories
are solutions of the system

�̇x = ∂H

∂p
(�x, �p,v), �̇p = −∂H

∂x
(�x, �p,v),

H (�x, �p,v) = max|u|�2πH (�x, �p,u), (7)

H (�x, �p,v) = 0,

where H (�x, �p,u) = �p · ( �F (�x) + u �G(�x)) + p0 with �p and
p0 � 0, the adjoint states, which are not simultaneously equal
to zero. In our case, the Hamiltonian is

H = −py(�y + kyz + uz) + pz(γ − γ z + ky2 + uy) + p0.

Introducing the switching function

�(�x) = �p · �G(�x)

and applying the PMP, one can deduce that if � �= 0, i.e., in
the regular case, the control solution of Eq. (7) is v = 2π ×
sgn[�]. The field v is said to be bang if � does not change sign
and bang-bang if � vanishes in an isolated point with a nonzero
derivative. On the other hand, if � vanishes on an interval
[t1,t2], the corresponding singular control us can be computed
by imposing that the first and second derivatives of � with
respect to time are zero. For the first derivative, one gets that

�̇ = �p · [ �F, �G],

where the commutator of two vector fields is defined
by [ �F, �G] = d �F/d �x · �G − �F · d �G/d �x. Straightforward
computations lead to

[ �F, �G] = ( − γ − (� − γ )γ z − kz2,(γ − �)γ z + kyz),
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FIG. 1. (Color online) Global geometrical structure of the vector
field �F + u �G and distributions of the fixed points for u = 2π (top),
u = 0 (middle), and u = −2π (bottom). The small arrows represent
the direction and the modulus of �F + u �G in the (y,z) plane. The dot
corresponds to the fixed points of the controlled system. The solid
line delimits the boundary of the reachable set for |u| � 2π . The
different parameters are taken to be γ = 5.027, � = 3.770, and k =
−18.850.

which depends on the parameter k. The functions � and �̇

can be simultaneously equal to 0 if and only if the vector

fields �G and [ �F, �G] are parallel, giving the condition

det( �G,[ �F, �G]) = y[γ + 2(� − γ )γ z] = 0,

independent of k. Finally, one obtains that the singular arcs,
i.e., the trajectories for which the control is singular, belong
to the set

S = {�x ∈ R2/ det( �G,[ �G, �F ])(�x) = 0}.
The set S is the union of the two lines of equation y = 0
and z = −γ /[2(� − γ )]. The singular control field can be
computed from the second time derivative of �:

�̈ = [ �G,[ �G, �F ]] + us[ �F,[ �G, �F ]] = 0.

It can be shown that it depends on k:

us = 2yz(�2 − γ 2) + γy(2γ − �)

2(� − γ )(y2 − z2) − γ z

+ k
γyz + 2yγ (z2 − y2)(� − γ )

2(� − γ )(y2 − z2) − γ z
. (8)

Note that the singular control is equal to zero on the vertical
singular line and depends on k only along the horizontal
singular line:

us = γ (γ − 2�)

2γ (� − γ )

1

y
+ ky. (9)

On the horizontal line, the domain where us is admissible,
i.e., |us | � 2π , is given by∣∣∣∣γ (γ − 2�) + 2ky2(γ − �)

2(� − γ )y

∣∣∣∣ � 2π. (10)

In the linear regime, the admissibility region is composed of
two segments delimited by the extremity of the Bloch ball and
by the point of coordinates (y = ±a, z = −γ /[2(� − γ )]),
where a = γ (γ−2�)

2γ (�−γ ) . In the nonlinear case, the two limit points
of admissibility close to the z axis transform into two points
of coordinates:

y± = ε
2π ± √

4π2 − 4ak

2k
; z = − γ

2(� − γ )
, (11)

where ε = ±1 on the left and right parts of the z axis,
respectively. For k � 1, the y− solution tends to the limit
points of admissibility of the linear case, y = ±a, while the
y+ solution leaves the Bloch ball.

In the abnormal case where p0 = 0, the condition � = 0
leads to the fact that the vectors �F and �G are collinear, which
occurs on the set

C = {�x ∈ R2/ det( �F, �G)(�x) = 0}.
This collinear set, which satisfies

−�y2 + γ z(1 − z) = 0,

does not depend on k.
Every optimal trajectory is a concatenation of regular and

singular arcs. We recall that the solutions computed from the
PMP are only extremal solutions. Other tools have to be used
to get global optimality results, like those introduced in [24]
(see also [14] for a complete mathematical overview). Some
examples will be given in Sec. IV.
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IV. EXAMPLES OF OPTIMAL SYNTHESES

Optimal syntheses in the case of the dissipation alone
(k = 0) have been completely described in [22–24]. We
analyze here the changes produced by the nonlinear term in
two specific examples of optimal syntheses, with k > 0 such
that the system has only one fixed point and k < 0 such that
the system has three fixed points. Other situations could be
analyzed along the same lines. Note that some positive (resp.
negative) values of k can be found for which the dynamics has
three (resp. one) fixed points (see Appendix for the details).

We first consider a standard case studied for k = 0 in [19]
and with k �= 0 in [38]. This example corresponds to the
saturation process in NMR, that consists in vanishing the
magnetization vector �M of a sample by using an adequate
pulse sequence. As can be seen in Fig. 2, the optimal trajectory
is a bang-singular-bang-singular pulse sequence, the singular
control belonging to the vertical and the horizontal singular
lines. The optimality character of this structure is proved
mathematically in [23] and experimentally implemented in
[19]. Here, we show the perturbative effect of the nonlinear
term of the Bloch equation. The structure of the pulse sequence
is unchanged and only a small deviation is observed between
the two trajectories. This small difference has been obtained
in all the other examples with the relevant physical positive
parameter k that we have studied. This means that the radiation
damping effect can be considered as a smooth perturbation if
k > 0. This is no more the case when the system has three fixed
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FIG. 2. (Color online) Optimal control for saturating a spin-1/2
particle (see the text for details). The dashed-blue (dark gray) and
solid-green (light gray) lines depict, respectively, the cases k = 0
and k = 2.260. The relaxation parameters are set to � = 1.346 and
γ = 0.015. The labels (a), (b), (c), and (d) indicate the different parts
of the optimal trajectories. The inset is a zoom of the optimal curves
near the center of the Bloch ball. The zone in gray is the exterior part
of the Bloch ball. The different quantities are unitless.
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FIG. 3. (Color online) Optimal synthesis for the same set of
parameters as Fig. 1. Different line types have been used to distinguish
specific trajectories. The collinear set is plotted in red (dark gray).
The blue diamonds, red dots, and green stars indicate the positions
of the fixed points of the dynamics for u = −2π , u = 2π , and u = 0.
The large black solid lines represent the boundary of the reachable set.
The zone in gray is the exterior of the Bloch ball. The arrows indicate
the direction in which the trajectories travel. The letters correspond
to specific points which are used to describe the optimal curves (see
the text for details).

points. The influence of the new fixed points on the structure
of the optimal control can be seen in Fig. 3, which has a
rich complexity explained below. The numerical parameters
are set to be γ = 5.027, � = 3.770, k = −18.850. Using the
results of Appendix, one deduces that this dynamical system
has three fixed points for each constant value of u such that
|u| � 2π . Moreover, since � � γ , the horizontal singular line
of equation z = −γ /[2(� − γ )] does not belong to the Bloch
ball. This means that the optimal control field will be the
concatenation of bang pulses and singular ones along the
vertical axis. The optimal synthesis is represented in Fig. 3.
The boundary of the reachable set is made of two bang-bang
trajectories, a commutation occurring on the collinear locus as
shown in [14]. Note that the center of the Bloch ball cannot
be reached. Nine fixed points are plotted, the blue diamonds,
the red dots, and the green stars corresponding to u = 2π , 0,
and −2π , respectively. We also observe two particular lines,
a switching curve in a red-dashed-dotted line and an overlap
locus in green-dashed and blue-dotted lines. A switching curve
is a curve such that the control field switches from ±2π to
∓2π when the trajectory crosses this locus. An overlap curve is
characterized by the fact that two different trajectories intersect
with the same time duration on this curve. To highlight the
role of this line, we consider two particular examples, which
are depicted in Fig. 4. For instance, on the green-dashed
curve, we use a bang-bang control along the AJI trajectory,
while a bang-bang-bang-bang sequence corresponds to the
AGHI curve. On the blue dotted overlap curve, we observe
a bang-bang trajectory (points: AFK) which intersects with
a bang-bang-singular-bang curve on the other side (points:
AEDLK). The singular control here is a zero control along
the vertical line. Due to the complexity of the analytical
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FIG. 4. (Color online) Same as Fig. 3 but only for the overlap
curve. The two types of overlapping trajectories are plotted in the
top panel (on the left and right sides of the z axis). Middle and
bottom panels depict the control fields associated to the left and
right trajectories, respectively. The same lines have been used for
the trajectories (top) and the control fields (middle and bottom). The
different quantities are unitless.

computations, note that we have found numerically all these
optimal structures.

Some general comments can be made about the optimal
synthesis. The first remark is based on the nature of the fixed
points which can be hyperbolic as the one near the F point (blue
diamond) [30]. In a neighborhood of this unstable equilibrium
point, we observe the stable and unstable lines. The richness
of the synthesis can also be seen from the different structures
of optimal control extending from bang, bang-bang sequences
with two or three switches and bang-bang-singular-bang.

V. CONCLUSION

We have investigated in this paper the time-optimal control
of a spin-1/2 particle in the presence of radiation damping
and relaxation effects. For different values of the system
parameters, we have computed the optimal control laws, which
shows the richness and the complexity of this optimal control
problem. Such nontrivial behaviors are generally obtained in
the case of a negative radiation damping effect, i.e., in the
presence of a feedback magnetic field. It has been recently
shown that the intensity and the phase of this field can be
controlled [30]. In this framework, we have analyzed here the
case of an arbitrary phase. This additional degree of freedom
opens up in principle possible generalizations of our analysis.

This work can also be seen as an illustrative example of
the efficiency of geometric optimal control theory to solve
optimal control problems of low dimensions. When applicable,
this approach is particularly interesting since it gives the
global optimal solution for any point of the reachable set.
This analysis completes the preceding works done in the
past few years for which similar tools have been used to the
control of dissipative two-level quantum systems [22–24] and

to the control of a single spin-1/2 particle in the presence of
relaxation. At this point, a natural question to ask is to which
extent, in terms of size of the quantum system, this method
could be applied. A first step in this generalization has been
done for two uncoupled spins in [20,21]. We intend to pursue
our efforts in this direction in the near future.
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APPENDIX: THE DYNAMICAL FIXED POINTS

We derive in this section the conditions satisfied by the
fixed points of the nonlinear Bloch equation. We recall that
such fixed points are solutions of

k2

γ
y3 + 2km

γ
y2 +

(
� + kγ + m2

γ

)
y + m = 0, (A1)

where the constant value of the field u is set to m. Dividing the
left-hand side member of Eq. (A1) by k2/γ , we introduce the
three coefficients b = 2m/k, c = (kγ+m2+γ�)

k2 , and d = mγ/k2

of the polynomial and we denote by P the corresponding
polynomial function. P has three real roots if the following

k

γ
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FIG. 5. (Color online) Set of parameters in red (dark gray) with
three fixed points in the (γ,k) plane. The light-gray region represents
the forbidden values of γ , and the white area depicts the set of
parameters with only one fixed point. All the other lines correspond
to conditions of existence of the three fixed points (see the text for
details). The dashed and dashed-dotted lines are, respectively, the
curves of equation γ = m2/(3(k + �)) and γ = γ±. The vertical
black lines are, respectively, of equations k = −�, k = 0, and
k = 8�. The insert is a zoom of the figure near the three fixed points
area with positive k values (this zone is indicated by the arrow). � is
set to 3.770 and m to 2π . The cross corresponds to the parameters
used in Figs. 1, 3, and 4.
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conditions are satisfied:

b2 − 3c � 0, (A2)

P (y+)P (y−) � 0, (A3)

where y± = (−b ± √
b2 − 3c)/3 are the roots of the derivative

of P . The first condition is equivalent to

γ � m2

3(k + �)
if k � −�,

(A4)

γ � m2

3(k + �)
if k � −�.

The equation of the dashed line of Fig. 5 is γ = (m2)/[3(k +
�)]. The equation P (y+)P (y−) = 0 can be written as follows:

27γ (a1γ
2 + a2γ + a3)/k6 = 0, (A5)

with

a1 = 4(� + k)3

a2 = −20m2�k + 8m2�2 − m2k2 (A6)

a3 = 4m4�.

Let γ± and γ0 be the three complex roots of the polynomial
a1γ

3 + a2γ
2 + a3γ . The three roots are real if the discriminant

of a1γ
2 + a2γ + a3 is positive, i.e., if −m4k(8� − k)3 � 0.

This condition is equivalent to k �∈ [0,8�]. If γ � k, the
parameter a1 is negative and one deduces that the condition
P (y+)P (y−) � 0 is fulfilled if γ �∈ [γ−,γ+]. If γ � k, the pa-
rameter a1 is positive and the relation P (y+)P (y−) � 0 is satis-
fied if γ ∈ [γ−,γ+]. We have therefore three fixed points if γ �
k and γ �∈ [γ−,γ+] or if γ � k and γ ∈ [γ−,γ+]. Note that, in
the case γ = γ±, there is one fixed point and two degenerate
fixed points. To summarize, we have the following results:

� Two fixed points if:

γ = γ± and k ∈ [−∞,−�] ∪ [8�,+∞]
� Three fixed points if:

γ � m2

3(k + �)
, k � −� and γ �∈ [γ−,γ+]

γ � m2

3(k + �)
, k ∈ [−�,0] ∪ [8�,+∞] and γ ∈ [γ−,γ+]

The region for which three fixed points exist is displayed
in red (dark gray) in Fig. 5.
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Glaser, J. Magn. Reson. 172, 296 (2005); T. E. Skinner, T. O.
Reiss, B. Luy, N. Khaneja, and S. J. Glaser, ibid. 163, 8 (2003);
172, 17 (2005); T. E. Skinner, K. Kobzar, B. Luy, R. Bendall,

W. Bermel, N. Khaneja, and S. J. Glaser, ibid. 179, 241 (2006);
N. I. Gershenzon, K. Kobzar, B. Luy, S. J. Glaser, and T. E.
Skinner, ibid. 188, 330 (2007).

[10] P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and I. Kuprov,
J. Magn. Reson. 212, 412 (2011).

[11] M. S. Vinding, I. I. Maximov, Z. Tosner, and N. C.
Nielsen, J. Chem. Phys. 137, 054203 (2012); I. Maximov,
J. Salomon, G. Turinici, and N. C. Nielsen, ibid. 132, 084107
(2010).

[12] B. Bonnard and M. Chyba, Singular Trajectories and their Role
in Control Theory (Springer-Verlag, Berlin, 2003), Vol. 40.

[13] V. Jurdjevic, Geometric Control Theory (Cambridge University
Press, Cambridge, UK, 1996).

[14] U. Boscain and B. Piccoli, Optimal Syntheses for Control
Systems on 2-D Manifolds (Springer-Verlag, Berlin, 2004),
Vol. 43.

[15] U. Boscain and P. Mason, J. Math. Phys. 47, 062101 (2006).
[16] N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev. A 63,

032308 (2001).
[17] X. Chen, E. Torrontegui, D. Stefanatos, J.-S. Li, and J. G. Muga,

Phys. Rev. A 84, 043415 (2011); D. Stefanatos, J. Ruths, and
J.-S. Li, ibid. 82, 063422 (2010).

[18] D. Stefanatos, Phys. Rev. A 80, 045401 (2009); D. Sugny and
M. Joyeux, J. Chem. Phys. 112, 31 (2000).

[19] M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. Sugny, Phys.
Rev. Lett. 104, 083001 (2010); 82, 063418 (2010).

[20] M. Lapert, Y. Zhang, M. Janich, S. J. Glaser, and D. Sugny, Sci.
Rep. 2, 589 (2012).
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