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Motional sideband excitation using rotating electric fields
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A form of motional sideband excitation is described in which a rotating dipole electric field is applied
asymmetrically onto a Penning-type trap in the presence of a mechanism for cooling the axial motion of the
trapped particles. In contrast to the traditional motional sideband excitation, which uses an oscillating electric
field, the rotating field results in only one active sideband in each sense of rotation and so avoids accidental
excitation of the other sideband making it applicable to Penning-type traps with a large degree of anharmonicity.
Expressions are derived for the magnetron radius expansion and compression rates attainable, and approximations
are made for the case of strong and weak drives. A comparison is made with data, taken using a two-stage
positron accumulator presented by Isaac et al. [C. A. Isaac, C. J. Baker, T. Mortensen, D. P. van der Werf,
and M. Charlton, Phys. Rev. Lett. 107, 033201 (2011)], showing good agreement between the model and
experiment.

DOI: 10.1103/PhysRevA.87.043415 PACS number(s): 37.10.De, 37.10.Ty, 52.27.Jt

I. INTRODUCTION

Penning-type traps are cylindrically symmetric instruments
used for the confinement and study of ions (the term ion is
used here to refer to any charged particle, including subatomic
particles). A uniform magnetic field, parallel to the trap
axis, provides radial confinement while an electric potential
minimum, often produced by either a set of hyperbolic
electrodes or a series of cylindrical electrodes, is used for axial
confinement. Carefully designed Penning traps are capable
of exceptionally long confinement times, making them ideal
for precision measurements with excellent statistics (see, e.g.,
[1,2]). In addition to this, Penning-type traps are used for the
accumulation and storage of rare and exotic species such as
antiparticles and highly charged ions (e.g., [3–5]).

The most harmonic, and hence ideal, region of a Penning-
type trap is near the center and so for precision measurements,
or simply to produce dense clouds in a Penning trap, limiting
motion to near the axis of the trap is desirable. Such
axialization results in a reduction in the kinetic energy of the
trapped particles and hence the particles are cooled. Cooling
is used in this sense only to mean a reduction in kinetic
energy and does not imply that when more than one particle is
trapped that they are in thermal equilibrium nor that they have
a well-defined temperature.

When a sufficiently dense and cold cloud of ions is held in
a Penning trap, their mutual interactions cannot be neglected
and the ensemble must be treated as a non-neutral plasma. It
has been found that the radial extent of such a plasma may
be controlled by the application of a rotating electric field,
often referred to as the rotating wall technique. This was first
demonstrated for ions [6], then electrons [7], and subsequently
positrons [8]. Provided a large enough drive amplitude is
used, it has been found that the final density of the plasma
is dependent on the rotating wall frequency [9,10]; this is the
so-called strong-drive regime. The undesirable heating caused
by the rotating electric field may be counteracted by collisions
with a suitable buffer gas or, in the case of light particles
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in a strong magnetic field, by the emission of cyclotron
radiation.

In the single-particle regime the trapped ions are considered
noninteracting, and thus the compression of a cloud of such
particles may be described by the transport of the individ-
ual ions towards the trap axis; so-called axialization. The
method of sideband excitation, first suggested by Wineland
and Dehmelt [11,12], uses an inhomogeneous oscillating
electric field at specific frequencies to axialize ions in a
Penning trap. This technique has been used for a number
of measurements [13–15] with various cooling mechanisms
employed, including compression of a cloud of antiprotons
using a non-neutral buffer gas of electrons [16].

Further to the work of Cassidy et al. [17], Greaves and
Moxom have shown that it is possible to compress a cloud of
positrons in the single-particle regime by the application of an
axially asymmetric rotating electric field [18]. They attributed
this to the phenomenon of asymmetric bounce resonance,
though this effect has only been investigated theoretically and
experimentally in the plasma limit [19–22].

Isaac et al. [23] have recently demonstrated that a rotating
electric field can be used to compress a cloud of positrons
and they derived compression rates at various amplitudes and
frequencies of the applied field. They also outlined a theoretical
model which showed good agreement with the experimental
data, though aspects of their trap and technique resulted in
effects beyond the scope of the model treatment.

This paper provides a more complete treatment of the effect
of an axially asymmetric rotating dipole electric field on the
motion of a charged particle within a Penning trap with the
presence of a cooling term described by a Stokes viscous drag
than is presented in [23], along with some additional results. To
begin, a review is presented of the theory of the ideal Penning
trap followed by the case of an oscillating dipole electric field
as described in [13]. Comparisons are drawn between the
cases of the oscillating and rotating dipoles showing that the
axializing effects are of a similar origin, but with the latter
being applicable to a wider range of traps as it results in
only one active sideband in each direction of rotation. Finally,
the predictions of this model are compared with experimental
data.
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II. THE IDEAL PENNING TRAP

The ideal Penning trap electric potential is a quadratic
minimum along the trap axis and, subject to Laplace’s
equation, may be written in cylindrical coordinates (r ,θ ,z) as

φ = ω2
zm

2q

(
z2 − r2

2

)
, (1)

where ωz is the bounce frequency of the trapped particle of
mass m and charge q. Superimposed on this is a magnetic field
conventionally parallel to the trap axis, B = B0ẑ, and so the
Lorentz force gives the axial equation of motion for a charged
particle as a harmonic oscillator,

d2z

dt2
+ ω2

zz = 0, (2)

and the radial equation of motion as

d2r
dt2

+ �ẑ × dr
dt

− ω2
z

2
r = 0, (3)

where � = qB0/m is the cyclotron frequency as exhibited by
a charged particle in a uniform magnetic field. A large number
of texts give a thorough treatment of the Penning trap (see,
e.g., [24]). Using a set of coordinates1 defined by

V± = dr
dt

+ ω∓ẑ × r, (4)

where

ω± = 1

2

(
� ±

√
�2 − 2ω2

z

)
, (5)

allows the radial equation of motion to be written as

d

dt
V± = −ω±ẑ × V±, (6)

which has the solutions

V± = A±
(

sin (ω±t − φ±)
cos (ω±t − φ±)

)
. (7)

A± and φ± are amplitudes and phases which are dependent
on the initial conditions. Taking the difference V+ − V− and
crossing with ẑ returns the radial coordinate:

r =
(

x

y

)
= ẑ × (

V+ − V−)
ω+ − ω−

. (8)

Thus the radial motion of the particle is given by a superpo-
sition of two circular motions: one with an angular frequency
ω+ termed the modified cyclotron motion, and one with an
angular frequency of ω− called the magnetron motion. In
a Penning trap the frequencies typically have the hierarchy
ω+ � ωz � ω−.

The energy stored in the cyclotron motion is almost purely
kinetic, while in the axial motion it oscillates between kinetic
and potential. In contrast to these, the energy stored in the
magnetron motion is almost purely potential. The magnetron
motion of the ion may be thought of as rolling around the top

1In [13] a negative sign is used for the second term in Eq. (4) such
that the magnetic field lies antiparallel to the trap axis.

of a potential hill and so removing energy will result in the
orbit expanding.

Damping of the ion motion may be modeled by a Stokes
viscous drag force; F = −κv, where κ is a drag coefficient.
Such damping is achievable by the use of a background buffer
gas (neglecting the associated Langevin force) where κ is
related to the mobility of the trapped ion in the gas. The viscous
drag force modifies the axial motion, given by Eq. (2), to that
of a damped harmonic oscillator with a damping rate κ . The
motion in the radial plane is modified to [16]

V± = A±eα±t

(
sin (ω±t − φ±)
cos (ω±t − φ±)

)
, (9)

where

α± ≈ ∓κ
ω±

ω+ − ω−
. (10)

Given the typical frequency hierarchy in a Penning trap, both
the axial and modified cyclotron motions are damped at a rate
≈κ , however, the magnetron motion will slowly expand at a
rate ≈κ (ω−/ω+) until the particle is lost from the trap. This
expansion can be counteracted by coupling the three different
motions by the addition of typically rf electric fields which
are applied either to segments of the existing electrodes, or by
the inclusion of additional electrodes to the Penning-type trap
assembly.

III. EXCITATION BY AN OSCILLATING DIPOLE

The normally decoupled radial and axial motions may be
coupled by the application of an inhomogeneous oscillating
electric field. Given that V± resonates at frequencies ω± it may
be seen that near the bounce frequency ωz only the magnetron
motion V− will contribute significantly. Thus for the remainder
of this paper the cyclotron motion is neglected (V+ = 0) and
we set V− = (Vx,Vy). The time scale for the expansion of the
magnetron motion is also considered large enough such that
only the damping in the axial direction is of significance.

This cooling model approximation makes the derivation
which follows applicable when resistive cooling is used. Here
the energy of the trapped particle is dissipated in a resistor
connected between the trap electrodes producing a cooling
term which is proportional to the ion velocity (see [13] for a
full discussion).

The electric potential of an axially asymmetric oscillating
dipole with frequency ωr may be written in Cartesian coordi-
nates as

φosc = a
m

q
zx cos (ωrt) , (11)

where a is the oscillating field amplitude. With the addition of
a Stokes viscous drag term to simulate a cooling mechanism
along the axis of the trap, the superposition of the oscillating
potential onto the ideal Penning trap potential given in Eq. (1)
modifies the equations of motion as(

d2

dt2
+ κ

d

dt
+ ω2

z

)
z = −ax cos (ωrt) , (12)

dVx

dt
= ω−Vy − az cos (ωrt) , (13)
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and

dVy

dt
= −ω−Vx. (14)

The time derivative of Eq. (14) substituted into Eq. (13)
gives (

d2

dt2
+ ω2

−

)
Vy = aω−z cos (ωrt) . (15)

Also, using Eqs. (8) and (12) yields(
d2

dt2
+ κ

d

dt
+ ω2

z

)
z = − a

ω+ − ω−
Vy cos (ωrt) , (16)

which closes the equations of motion.
An insight into the mechanism responsible for the compres-

sion or expansion of the magnetron motion may be obtained
by inserting the short-term magnetron behavior (neglecting the
phase and amplitude) Vy ∼ cos (ω−t) into Eq. (16):(

d2

dt2
+ κ

d

dt
+ ω2

z

)
z ∼ − a

ω+ − ω−
{cos[(ωr − ω−)t]

+ cos[(ωr + ω−)t]}. (17)

This is a harmonic oscillator with two driving frequencies. Let
one of these frequencies be resonant with the oscillator, which
is the case when ωr = ωz ± ω−, giving(

d2

dt2
+ κ

d

dt
+ ω2

z

)
z ∼ −{cos (ωzt) + cos [(ωz ± 2ω−) t]} .

(18)

Under a narrow resonance approximation (κ � ω−) the sec-
ond term will have a negligible effect, such that the resonantly
driven axial motion behaves as

z ∼ − cos
(
ωzt − π

2

)
≡ − sin (ωzt) . (19)

Inserting this solution into Eq. (15) gives(
d2

dt2
+ ω2

−

)
Vy ∼ ω− {± sin (ω−t) − sin [(2ωz ± ω−) t]} .

(20)

Given the typical frequency hierarchy, the second term is
highly nonresonant with the oscillator and so neglecting it
yields(

d2

dt2
+ ω2

−

)
Vy ∼ ∓ [−ω− sin (ω−t)] ≡ ∓dVy

dt
, (21)

which behaves as a damping force in the case of the upper sign
and an antidamping force in the case of the lower sign.

To derive an equation governing the magnetron radius
expansion and compression rates, the drive frequency must
be allowed to deviate away from resonance by a small
amount, ε, such that ωr = ωz ± ω− + ε, and a solution is
sought in which the magnetron behavior is Vy = Ae−iωt with
ω ≈ ω− and A a constant. Using this behavior in Eq. (16)

gives(
d2

dt2
+ κ

d

dt
+ ω2

z

)
z

= − aA

2 (ω+ − ω−)
(ei[±ωz+(ω−−ω)±ε]t + ei[∓ωz−(ω−+ω)∓ε]t )

≈ − aA

2 (ω+ − ω−)
ei[±ωz+(ω−−ω)±ε]t (22)

and so, since this is a driven oscillator, the axial motion behaves
as

z = Bei[±ωz+(ω−−ω)±ε]t , (23)

with B another constant. Inserting z back into Eq. (15) gives(
d2

dt2
+ ω2

−

)
Vy = aω−B

2
(e−iωt + ei(±2ωz+2ω−−ω±2ε)t )

≈ aω−B

2
e−iωt (24)

as desired. Thus, the two second-order differential equations
have been transformed into an algebraic pair. With some
further approximations based on the frequency hierarchy these
may be written in matrix form Mx = 0 as

⎛
⎝±

(
(ω − ω−) − ε + i

κ

2

) a

4ωz (ω+ − ω−)
a

4
(ω − ω−)

⎞
⎠ (

B

A

)
= 0,

(25)

which will only have a solution if the determinant of the matrix
M vanishes. This condition is met when

(ω − ω−)2 + (iγ − ε) (ω − ω−) ∓ δ2
osc

4
= 0, (26)

where γ = κ/2 and

δ2
osc =

(a

2

)2 1

ωz (ω+ − ω−)
. (27)

Equation (27) governs the magnetron behavior and it will
be shown in the next section that an equation of the same
form holds for a rotating dipole electric field applied to a
particle in a Penning trap. These equations will be solved in
Sec. V to derive an analytic expression for the compression
and expansion rates.

IV. EXCITATION BY A ROTATING DIPOLE

The electric potential of an axially asymmetric rotating
dipole may be written as

φr = a
m

q
z [x cos (ωrt) − y sin (ωrt)] . (28)

With the addition of a Stokes viscous drag term, as in the
previous section, the superposition of this potential onto the
ideal Penning-trap potential modifies the equations of motion

043415-3



C. A. ISAAC PHYSICAL REVIEW A 87, 043415 (2013)

as(
d2

dt2
+ κ

d

dt
+ ω2

z

)
z = −a [x cos (ωrt) − y sin (ωrt)] ,

(29)

dVx

dt
= ω−Vy − az cos (ωrt) , (30)

and
dVy

dt
= −ω−Vx + az sin (ωrt) . (31)

Substituting the time derivative of Eq. (31) into Eq. (30) gives(
d2

dt2
+ ω2

−

)
Vx = a [(ωr + ω−) z sin (ωrt) − ż cos (ωrt)] .

(32)

Similarly the substitution of the time derivative of Eq. (30) in
Eq. (31) produces(

d2

dt2
+ ω2

−

)
Vy = a [(ωr + ω−) z cos (ωrt) + ż sin (ωrt)] .

(33)

Finally, combining the results given in Eqs. (8) and (29) yields(
d2

dt2
+ κ

d

dt
+ ω2

z

)
z

= − a

ω+ − ω−
[Vy cos(ωrt) + Vx sin(ωrt)], (34)

closing the equations of motion. Again, an insight into the
compression and expansion mechanisms may be obtained
using the short-term magnetron behavior (neglecting phase and
amplitude), Vy ∼ cos (ω−t) and Vx ∼ sin (ω−t), in Eq. (29):(

d2

dt2
+ κ

d

dt
+ ω2

z

)
z ∼ − a

ω+ − ω−
cos (ωr − ω−) t. (35)

This equation highlights an important difference between the
case of the oscillating and rotating dipoles. In contrast to the
result given in Eq. (17), the short-term magnetron behavior has
resulted in a driving force on the axial motion at only a single
frequency, thus removing the requirement, in the rotating case,
for traps with narrow resonances to prevent overlap of the
two sidebands. Examining this term shows that a drive at the
lower sideband frequency (ωr = ωz − ω−) does not produce
a resonant response; the sideband is inactive. A resonant
response is, however, obtained at the drive frequencies2 ωr =
±ωz + ω− giving a resonant axial response:

z ∼ − cos
(
ωzt − π

2

)
≡ − sin (ωzt) . (36)

Inserting this axial behavior into Eq. (32) gives(
d2

dt2
+ ω2

−

)
Vx

∼ ∓2ω− cos (ω−t) + 2 (ωz ± ω−) cos (±2ωz + ω−) t,

(37)

2For the oscillating dipole, a frequency of ±ωz is equivalent
irrespective of the sign as the field does not have a sense of rotation.

which, neglecting the nonresonant second term, gives(
d2

dt2
+ ω−

)
Vx ∼ ∓ω− cos (ω−t) ≡ ∓dVx

dt
. (38)

The upper sign corresponds to a damping term, while the lower
gives an antidamping force on the magnetron motion. A similar
result can be obtained for Vy using the resonant axial behavior
in Eq. (33).

Following the analysis used to derive the equation gov-
erning the expansion and compression rates in the case of the
oscillating dipole, as given in the previous section, we allow the
drive frequency to deviate away from the resonant frequencies
by a small amount ε such that ωr = ±ωz + ω− + ε, and look
for a solution in which the magnetron motion is Vx = iAe−iωt

and Vy = Ae−iωt with ω ≈ ω−. Substituting this behavior into
Eq. (34) gives(

d2

dt2
+ κ

d

dt
+ ω2

z

)
z = −A

a

ω+ − ω−
ei(±ωz+ω−−ω+ε)t , (39)

and so the axial motion, as a driven oscillator, is given by

z = Bei(±ωz+ω−−ω+ε)t . (40)

Inserting this result into Eq. (32) gives the desired behavior,(
d2

dt2
+ ω−

)
Vy = B

a

2
[(ω− + ω)e−iωt + (±2ωz + 3ω−

+ 2ε − ω)ei(±2ωz+2ω−+2ε−ω)t ]

≈ B
a

2
(ω− + ω) e−iωt . (41)

Again, a similar expression may be obtained for Vx by inserting
the axial behavior into Eq. (33). Thus, we have transformed the
second-order differential equations into algebraic equations.
The algebraic equations relating to Eqs. (32) and (33) are
self-consistent and so only one is needed. With some further
approximations, analogous to the previous section, the result
may be written in matrix form Mx = 0 as⎛

⎝±
(
ω − ω− − ε + i

κ

2

) a

2ωz (ω+ − ω−)
−a

2
(ω− − ω)

⎞
⎠ (

B

A

)
= 0.

(42)

The determinant of the matrix will vanish when

(ω − ω−)2 + (iγ − ε) (ω − ω−) ∓ δ2
r

4
= 0, (43)

where γ = κ/2 and

δ2
r = a2 1

ωz (ω+ − ω−)
. (44)

This is an identical condition to that given in Eq. (26) for the
oscillating dipole electric field, but with δr = 2δosc. In the next
section Eqs. (26) and (43) will be solved giving an analytic
expression for the expansion and compression rates.

V. COOLING AND HEATING RATES

It has been shown that in the case of the oscillating dipole,
applied with ωr = ωz ± ω− + ε, and the rotating dipole,
applied with ωr = ±ωz − ω− + ε, the magnetron motion is
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governed by Eqs. (26) and (43), respectively, both of which
are of the form

(ω − ω−)2 + (iγ − ε) (ω − ω−) ∓ δ2

4
= 0, (45)

the solution of which is given by

ω = ω− − 1
2 (−(iγ − ε) ±s

√
(iγ − ε)2 ± δ2). (46)

The notation ±s is used to distinguish between the ±
of the root and the ± of ωr . The real part of ω corresponds
to an adjusted magnetron frequency and the imaginary part
to a magnetron radius compression and expansion rate. The
solution of interest gives ω → ω− in the limit a → 0 and so
±s = −1. (For a discussion of the other limit, corresponding
to an axial excitation, see [13].)

Given this, the compression and expansion rate of the
magnetron radius � may be written in a dimensionless form
as

2�

γ
= 1 −

√
2ξ 2√

ξ 4 + 2(±η2 + 1)ξ 2 + (±η2 − 1)2 + ξ 2 ± η2 − 1
, (47)

where η = δ/γ is a measure of the drive strength to damping
radio and ξ = ε/γ is a measure of the detuning to damping
ratio; this is shown graphically in Fig. 1. A weak drive
limit may be taken in which η � 1 by performing a Taylor
expansion of � in η giving a Lorentzian line shape as

2�

γ
= η2

2(1 + ξ 2)
. (48)
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2
γ

γ

FIG. 1. (Color online) The normalized line shape for the compres-
sion rate (top) and for the expansion rate (bottom) of the magnetron
orbit as given by Eq. (47), 2�/γ , as a function of the detuning
frequency ε, where δ/γ is 3 (navy blue solid), 2 (red dotted), 1 (yellow
dot-dashed), and 0.5 (green dashed). γ is the damping strength and
δ is given by Eqs. (27) and (44) for the case of the oscillating and
rotating dipole electric fields, respectively.

This equation is valid for both the expansion and compression
rates of the magnetron radius. The strong drive limit in which
η � 1 may be taken for the case of compression as

2�

γ
= 1 −

√
ξ 2

ξ 2 + η2
. (49)

Both these limits are shown graphically in Fig. 2. The limit
for the expansion rate of the magnetron motion under a strong
drive cannot be taken.
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2
γ

4 2 0 2 4
0.0
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0.4

0.6

0.8

1.0

γ

4
δ2

δ

FIG. 2. (Color online) The normalized line shapes for the expan-
sion and compression rates as a function of the detuning frequency
ε with a strong drive δ/γ � 1 (upper) and a weak drive δ/γ � 1
(lower). The weak drive approximation is valid for both compression
and expansion, however, the strong drive approximation is only valid
in the case of compression.
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γ

FIG. 3. (Color online) The normalized maximum compression
(top) and expansion (bottom) rates 2�/γ , which are achieved on
resonance (ε = 0). Shown is the full solution (navy blue solid), the
strong drive δ/γ � 1 (red dotted), and the weak drive δ/γ � 1 (blue
dashed).

An investigation into the maximum compression and
expansion rates which is obtained on resonance limε→0(�)
shows that for a weak drive both the maximum compression
and expansion rates � are equal to δ2/(4γ ), while for a strong
drive the maximum compression rate is fixed at γ /2. These are
shown graphically in Fig. 3. In a poorly designed Penning trap,
given that the two sidebands in the case of the oscillating dipole
are only separated by 2ω−, the compression and expansion
line profiles may overlap and so expansion will most likely
overcome compression resulting in heating of the ion. This
is not a problem for the rotating dipole as compression and
expansion occur with the electric field rotating in opposite
directions, and so accidental heating can be avoided.

VI. COMPARISON WITH EXPERIMENT

A separate paper has been published [23] showing ex-
perimental data taken with a two-stage positron accumulator
which shows good agreement with this model, although the
specifics of the trap complicate the detail. The trap used a
series of cylindrical electrodes to produce the electric potential
minimum. To one side of the potential minimum one of the
electrodes was divided azimuthally into four equal sectors
and a sinusoidal voltage applied to each successive sector,
in quadrature, producing a rotating, predominantly dipolar,
electric field near the center of the trap. Cooling was provided
by collisions on SF6 gas in the trap.

A cloud of positrons was accumulated, compressed, and the
radial extent measured. Fitting an exponential to this parameter
as a function of compression time allowed a compression

9.3 9.4 9.5 9.6 9.7
0

200

400

600

fr (MHz)

Γ
(s

−1
)

FIG. 4. (Color online) Experimental data from [23] showing the
measured compression rate � as a function of the applied rotating
electric field frequency fr = ωr/(2π ). The solid line is a fit of the
form given by Eq. (49) for the strong drive approximated compression
rate.

rate to be determined for each applied rotating electric field
frequency. The results of a series of such measurements are
shown in Fig. 4 together with a fit of the form predicted by
Eq. (49). As can be seen, the experimentally determined and
the predicted line shapes are in good agreement.

The effect described in this paper may qualitatively account
for the compression observed by Greaves and Moxom [18] and
Cassidy et al. [17]. Direct comparison of their experimental
data with this model cannot be made as they measured the cen-
tral density of a distribution of particles. Such measurements
would seem to represent a convolution of the compression of
their cloud with any effects which could cause a change in their
trapped particle number, such as heating and axial resonance.
In addition to this, the anharmonicities in both of these traps
may distort the compression rate line shapes significantly.

VII. SUMMARY

A mechanism has been suggested for the axialization of
particles in Penning-type traps by the application of an axially
asymmetric rotating dipole electric field in the presence of
a suitable cooling mechanism, and appropriate magnetron
radius expansion and compression rates have been derived.
An important difference between the oscillating and rotating
cases has been found: The requirement for very narrow
resonances to prevent overlap of the upper and lower sidebands
is removed in the latter as only one of the sidebands is active
in each direction of rotation and so accidental heating caused
by excitation of the wrong sideband can be avoided. This
opens the possibility of using this technique for traps with a
large degree of anharmonicity, including two-stage positron
accumulators [25–27], provided the ion density is kept below
the plasma limit.
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