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Trapping ions from a fast beam in a radio-frequency ion trap: Exploring the energy exchange with
the longitudinal radio-frequency field
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The possibility of injecting ions from an initially fast moving beam into a multipole radio-frequency (RF) ion
trap without the use of buffer gas is described. The chosen trap geometry gives rise to an oscillating electric
field along the direction of the incoming ions, and through an analytical model as well as numerical simulations
it is demonstrated that the energy exchange between the injected ions and this oscillating field governs the
trapping dynamics. Most notably, if ions arrive at the trap during specific phases of the RF field, they can be
effectively decelerated and stored with low kinetic energy even if their kinetic energy initially exceeds the depth
of the trapping potential well. An experimental apparatus for trapping ions from a fast beam is described, and
experimental investigations demonstrating the described trapping dynamics are presented.
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I. INTRODUCTION

The development and characterization of ion traps has been
essential to several modern experiments seeking to understand
the most basic properties of atoms and molecules on the
quantum level. These investigations often entail preparing sys-
tems in well-defined quantum states which are subsequently
manipulated, an approach that relies heavily on the ability to
trap the studied species over long time.

Since the introduction of ion traps in the 1950s [1],
the field of ion trapping has developed strongly, and the
scientific scopes of today’s ion trapping experiments are very
diverse, including, for instance, studies of strong interactions
between single ions and photons in cavity QED [2,3] and
of quantum logic and coherent control [4], studies of cold
chemistry with either single ions or ensembles of ions [5–7],
as well as spectroscopy of small molecular ions [8] and
of large biomolecular ions [9–12]. Most studies represent
in-trap experiments, but ion traps are also frequently used
for storage and accumulation of ions between injections into
other experimental setups like storage rings [13,14], other ion
traps [15], or photoelectron spectrometers [16].

Several experiments use the radio-frequency (RF)
quadrupole ion trap devised by Paul et al. [1,17]. The special
field geometry of this trap allows for an analytical description
of the ion motion and furthermore offers the advantage of
in-trap mass analysis of the stored species [18]. A disadvantage
of the Paul trap is the extension of the confining RF field over
most of the trapping volume implying that the ion micromotion
driven by the time-varying field is significant except very
close to the trap center. This effect becomes problematic
for experiments striving to obtain internally cold molecular
ions [19,20] by letting trapped ions collide with a cold
buffer gas. In these cases, the combination of the RF-driven
micromotion and the ion-gas collisions leads to heating of both
the external and the internal degrees of freedom of the trapped
ions [19,20]. This effect can be avoided with higher-order
multipole traps as pioneered by Gerlich [21]. In such traps,
the micromotion is strongly suppressed, and ions can hence
be cooled both translationally and internally to temperatures

of ∼10 K with the sacrifice of the mass-selectivity and the
analytical description of the ion motion [19].

A central issue in experiments with RF traps is the method
of loading ions into the trap. Ions can be created inside the
trap volume by electron impact or chemical- or laser-induced
ionization of the background gas. Evidently, only a limited
number of ionic species can be created in this manner and
thus more universal methods of injecting ions generated by
external ion sources have been developed [22]. One approach
is to inject ions into the trap in the presence of a He
buffer gas which dissipates the ion kinetic energy through
collisions. This method is used extensively, e.g., in the case
of multipole traps and requires He densities of the order of
1014 cm−3 [∼6–400 × 10−5 mbar depending on temperature
(4 K–300 K)] to dissipate enough kinetic energy on the
required time scale. Advantageously, collisions with the He
buffer gas can bring the ion internal degrees of freedom into
thermal equilibrium with the buffer gas, and by controlling the
temperature of the trap specific internal temperatures of the
ions can thus be achieved. The presence of the buffer gas might
also lead to disturbing effects: If ions are to be extracted from
the trap and injected into another part of the experimental setup
for further studies, collisions with He during the extraction
phase can lead to heating. The buffer gas may be pumped away
before extraction, but this is usually a slow process since the
gas density has to change by several orders of magnitude [23].
Experiments can be performed inside the trap, but this rules
out the detection of neutral fragments and electrons emerging
from, for example, photoexcitation or -ionization experiments.
Furthermore, dynamical information, like the kinetic energy
released in the fragmentation process, is lost during trapping
due to collisions between the buffer gas and the fragments.
Finally, the fragmentation process itself or fluorescence might
be quenched due to the removal of internal energy in the
interaction with the buffer gas.

In this paper, the possibility of injecting ions from an
initially fast moving beam into a multipole RF trap without
the use of buffer gas is explored. The chosen trap geometry
gives rise to a component of the confining RF field along
the direction of the injected ions, and the energy exchange
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between the ions and this longitudinal field component
facilitates stable trapping of low-energy ions though their
kinetic energy initially exceeds the depth of the trapping
potential. In Sec. II, the description of ion trapping within
the adiabatic approximation is summarized, and an expression
for the depth of the trapping potential is derived for the
chosen trap geometry. In Sec. III, a formulation to describe
the trapping mediated by the longitudinal field is developed,
and the introduction of a few approximations results in a simple
analytical expression that describes the dependance of ion
trapping on relevant parameters like the kinetic energy of the
incoming ions and the RF amplitude. The trapping mechanism
emerging from the model is demonstrated, and in Sec. IV it
is validated through comparison with numerical simulations.
Furthermore, the influence of the longitudinal field on the
properties of the trapped ions, i.e., in particular the final ion
kinetic energy, is illustrated and discussed on the basis of the
presented model and simulations.

An experimental setup to trap ions from a fast-moving beam
is described in detail in Sec. V, and an experimental investiga-
tion of the described injection mechanism and properties of the
trapped ions is presented in Sec. VI. In Sec. VII, the findings
are discussed and compared to previous studies.

II. ADIABATIC ION TRAPPING IN RADIO-FREQUENCY
FIELDS

A. Adiabatic ion motion in RF fields

The equation of motion of an ion in an RF field is

m �̈u = qe �E0(�u) cos(ωt), (1)

where �u is the ion position, m and qe the ion mass and
charge, respectively, �E0(�u) the electric field amplitude at the
ion position, and ω the angular frequency of the time-varying
electric field. In general, this equation cannot be solved
analytically. In the adiabatic approximation [19,24], the ion
motion is assumed to separate into a rapidly oscillating
component, �ξ (t), the so-called micromotion following the RF
field, and a slower drift motion, �R(t), implying that the ion
position can be written as

�u(t) = �R(t) + �ξ (t). (2)

By further assuming that the electric field amplitude only
varies slightly over the distance traveled by the ion during one
period of the micromotion, the following equation of motion
for the drift coordinate is obtained [19]:

m �̈R(t) = −�∇Ueff( �R), (3)

where the effective potential, Ueff , is given by

Ueff( �R) = q2e2

4mω2
| �E0( �R)|2. (4)

The equation for the drift motion [Eq. (3)] describes the ion
motion under a time-averaged force which originates from the
inhomogeneity of the electric field. In particular, the time-
averaged force is conservative as it can be expressed as the
gradient of a potential energy function [Eq. (4)] which can
be shown [19] to represent the time-averaged kinetic energy
stored in the micromotion. Thus, these equations imply that

the time-average of the ion energy is a constant of motion. If,
however, the electric field amplitude experienced by the ion
changes significantly during one period of the micromotion,
the adiabatic approximation breaks down and the electric field
can exchange energy with the ion. The regime within which
the adiabatic approximation remains valid can be quantified
through the adiabaticity parameter given as [19]

η = 2|qe �∇| �E0||
mω2

. (5)

For the adiabatic approximation to hold and for ion motion to
be stable, simulations reveal that η must fulfill the requirement
η < ηmax = 0.30 [19], whereas recent experiments suggest
that η < 0.36 is sufficient [25].

To achieve trapping of an ion at rest, a potential well must be
created. This is not possible using purely electrostatic fields
because ion motion in this case is governed by the electric
potential which does not exhibit local minima or maxima as a
direct consequence of Laplace’s equation [26]. As discussed
above, ion motion in RF fields is governed by the effective
potential [Eq. (4)], which in general can have local minima
since it depends only on the magnitude of the electric field and
not on its direction. Consequently, ions can be trapped in RF
fields by choosing appropriate field geometries.

B. The ring electrode trap

A special realization of an RF ion trap is the ring electrode
trap [19]. This trap consists of a series of coaxial ring electrodes
as shown in Fig. 1(a). To trap ions in the radial direction,
RF potentials of opposite phase, ±V0 cos(ωt), are applied to
the ring electrodes in an alternating fashion. For the ideal
configuration satisfying the boundary condition V (r̂0,ẑ) =
V0 cos ẑ, the electric field amplitude is given by [19]

�E0 = (Er,Ez) = V0

z0I0(r̂0)
(−I1(r̂) cos ẑ,I0(r̂) sin ẑ). (6)

Here, 2πz0 is the distance between ring electrodes of the same
phase and r0 the inner radius of the ring electrodes as shown in
Fig. 1(a). Furthermore, ẑ = z′/z0 and r̂ = r/z0 gives the axial
and radial position in units of z0, r̂0 = r0/z0 is the reduced
inner radius, and Ii the ith modified Bessel function. Inserting
Eq. (6) into Eq. (4) yields the following expression for the
effective potential:

Ueff(r̂ ,ẑ) = q2e2V 2
0

4mω2z2
0I

2
0 (r̂0)

[
I 2

1 (r̂) cos2(ẑ) + I 2
0 (r̂) sin2(ẑ)

]
.

(7)

This expression is plotted in Fig. 1(c) for a Si2− ion (m =
56 amu) with parameters relevant for the present experimental
setup. For this trap geometry, trapping in the axial direction is
obtained by applying static electric potentials to electrodes
at each end of the ring electrode array (end-cap and lens
electrodes). A typical trapping potential along the trap axis
created by these end electrodes with the ring electrode array on
ground potential is shown in Fig. 1(b). For the ring electrode
trap, the adiabaticity parameter [Eq. (5)] can be expressed
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analytically as

η(r̂ ,ẑ) = 2|q|V0

mω2z2
0I0(r̂0)

√√√√[
I1(r̂)I0(r̂) − I 2

1 (r̂) cos2 ẑ/r̂
]2 + [

I 2
0 (r̂) − I 2

1 (r̂)
]2

cos2 ẑ sin2 ẑ

I 2
1 (r̂) cos2 ẑ + I 2

0 (r̂) sin2 ẑ
. (8)

Figure 1(d) displays the adiabaticity parameter for a Si2−
ion (m = 56 amu) as a function of the radial position at
two positions along the trap axis. The graph illustrates that
η increases with the radial position, thereby implying that
adiabatic ion motion occurs in the interior of the trap volume,
where η < 0.3.
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FIG. 1. Characteristics of the ring electrode trap used in this work.
(a) Schematic of the ring electrode trap showing the geometrical
quantities characteristic for the ring electrode trap, r0 = 5 mm and
2πz0 = 4 mm. [A three-dimensional (3D) representation of the trap
assembly can be see in Fig. 11.] (b) The potential energy of an ion of
charge −1e along the center axis of the trap when only static potentials
are applied to the end caps and lenses. For the shown configuration,
the lens potentials are +10 V while the end-cap potentials are set to
−25 V. (c) Effective potential energy [Eq. (7)] in the radial direction
for Si2

− at an RF amplitude of 25 V with a frequency of ω = 2π ×
4 MHz. The solid and dashed lines show the effective potential at the
z′ positions indicated by the solid and dashed lines in (a). (d) The
adiabaticity parameter, η [Eq. (8)], in the radial direction for Si2

− at
an RF amplitude of 25 V with a frequency of ω = 2π × 4 MHz. The
solid and dashed lines show η at the z′ positions indicated by the solid
and dashed lines in (a).

C. The concept of trap depth

An important property of any trap is the depth of its
confining potential, the so-called trap depth. For an RF trap, the
trap depth is not necessarily determined only by the effective
potential, as ion motion might not be stable in regions of
high effective potential due to the breakdown of the adiabatic
approximation. For a 22-pole trap, Mikosch et al. [25] instead
identified the trap depth as the effective potential at the edge
of the trapping volume. Thus, for a given RF trap, we define
the trapping volume as the volume within which ion motion
is stable according to the adiabatic approximation, namely the
region where η � ηmax. For the ring electrode trap, η and Ueff

depend on both the axial and the radial positions, ẑ and r̂ ,
and the trapping volume is bounded by the (r̂ ,ẑ)-contour line
corresponding to η(r̂ ,ẑ) = ηmax. The trap depth is then the
minimum of the effective potential along this line:

model 1, Utrap = min{Ueff(r̂ ,ẑ) |η(r̂ ,ẑ) = ηmax}. (9)

An alternative and simpler approach for the ring electrode trap
is to define the trapping volume as the maximum cylindrical
volume over which η � ηmax, implying that its radius, r̂max, is
the maximum radius at which η(r̂max,ẑ) � ηmax for all ẑ. The
trap depth is then defined as the minimum of Ueff(r̂max,ẑ) over
all ẑ:

model 2, rmax = max{r̂ |η(r̂ ,ẑ) � ηmax ∀ ẑ},
(10)

Utrap = min
ẑ

Ueff(r̂max,ẑ).

The trapping volume boundary, the effective potential along
this boundary, and the trap depth obtained from the two
definitions are illustrated in Figs. 2(a) and 2(b). Similar results
for the trap depth as a function of the RF amplitude are
obtained for the two models, but the latter, model 2, offers
the advantage that analytical expressions can be derived for
essential quantities. Consequently, only the trap depth arising
from the latter definition is discussed in the following, whereas
the trap depths arising from both models are plotted in Fig. 2(d)
for comparison.

To evaluate explicitly the trap depth within model 2, the
maximum radius, rmax, such that η(r̂max,ẑ) � ηmax is fulfilled
for all ẑ must be found. At a constant radius, the maximum
value of η along ẑ occurs at ẑ = (2k + 1)π/2, where k is an
integer, and hence the maximum radius is obtained by solving
the equation η(r̂max,π/2) = ηmax, which reduces to

ηmax = 2qeV0

mω2z2
0I0(r̂0)

|I1(r̂max)| . (11)

r̂max cannot be expressed analytically and must be determined
numerically. At low RF amplitudes, r̂max is larger than the
geometrical trap radius, r̂0, implying that the radius of the
trapping volume, r̂trap, has to be taken as the minimum of

043410-3



ANNETTE SVENDSEN et al. PHYSICAL REVIEW A 87, 043410 (2013)

5

4

3

2

1

0

r tr
ap

 [m
m

]

300250200150100500
RF amplitude, V0 [V]

(c)

Vk

1.1

1.0

0.9

0.8

0.0

Eff
ec

�v
e 

po
te

n�
al

 [e
V]

0 π/2 π 3π/2 2π
z / z0

Utrap

model 2

Utrap

model 1

(b)

1.00

0.75

0.50

0.25

0.00Eff
ec

�v
e 

tr
ap

 d
ep

th
 [e

V]

300250200150100500
RF amplitude, V0 [V]

(d)model 1

model 2

22-pole trap

0.362

0.360

0.358

0.356

0.354

0.000

r [
m

m
]

0 π/2 π 3π/2 2π
z / z0

(a)

rmax

model 2

model 1

model 2

η(r,z/z0) = ηmax

η(rmax,z/z0) < ηmax

FIG. 2. Trapping volume and trap depth for the ring electrode
trap according to two different models. (a) Boundary of the trapping
volume for the two models at an RF amplitude of 200 V. The dashed
line represents the boundary of the trapping volume of model 1 and
the solid line that of model 2. (b) The effective potential along the
boundary of the trapping volume for model 1 (dashed line) and model
2 (solid line) at an RF amplitude of 200 V. Drawn also is the trap depth
for the two models. (c) The radius of the cylindrical trapping volume,
z0r̂trap, for model 2. (d) The solid line represents the trap depth given
by Eqs. (13) and (15) as a function of the RF amplitude, whereas the
dashed line shows the trap depth arising from model 1, not discussed
in detail. The dash-dotted line represents the trap depth of a 22-pole
trap with an inscribed radius, r0, of 5 mm [25]. The parameters used
in all cases were m = 56 amu, ω = 2π × 4 MHz, and ηmax = 0.30.

the two radii:

r̂trap = min (r̂max,r̂0) , (12)

Thus, for RF amplitudes below a certain characteristic value,
Vk, the radius of the trapping volume is simply r̂trap = r̂0, and
in this regime the trap depth is the minimum of the effective
potential at the electrode surface along ẑ. Since Ueff for a
constant radial position exhibits minima at ẑ = kπ , where k is
an integer [see Fig. 2(b)], the trap depth is then given by

Utrap = Ueff(r̂0,π ) = q2e2I 2
1 (r̂0)

4mω2z2
0I

2
0 (r̂0)

V 2
0 , V0 � Vk. (13)

At RF amplitudes above the characteristic value, Vk, the ion
motion is unstable in the outer regions of the trap, implying
that r̂trap < r̂0, and the trap depth is no longer given by the
expression above [Eq. (13)]. The RF amplitude at which this
regime is entered is found by solving the equation ηmax =
η(r̂0,π/2), yielding

Vk = ηmaxmω2z2
0I0(r̂0)

2qe |I1(r̂0)| . (14)

Above this amplitude, the trap depth is the minimum of the
effective potential along ẑ for r̂ = r̂max which gives

Utrap = Ueff(r̂max,π ) = q2e2I 2
1 (r̂max)

4mω2z2
0I

2
0 (r̂0)

V 2
0

(15)

= η2
maxmω2z2

0

16
= Utrap,max, V0 � Vk,

where Eq. (11) has been used to eliminate I1(r̂max) and
the maximum trap depth, Utrap,max, has been introduced.
According to the above equations, Eqs. (13) and (15), the
trap depth increases quadratically with the RF amplitude until
Vk, after which point it remains constant at the value Utrap,max.
The trapping radius, z0r̂trap, and the trap depth are plotted in
Figs. 2(c) and 2(d), respectively, with parameters relevant to
the experiments with Si2− presented here. In this example, the
trap depth becomes constant at an amplitude of Vk = 24 V
at which point r̂max becomes equal to the geometrical radius.
For comparison, the trap depth emerging from model 1 is also
shown. The two models give similar results, though the trap
depth is somewhat larger and increasing slightly for V0 � Vk

in the case of model 1. The functional dependence of the
trap depth on the RF amplitude is characteristic of the trap
geometry, and in the case of the ring electrode trap, the trap
depth remains constant at RF amplitudes above Vk. In contrast,
the trap depth for a 22-pole trap [25] is decreasing above the
characteristic RF amplitude at which the radius of the trapping
volume equals the geometrical radius [see Fig. 2(d)].

The equations presented above are applicable during
storage of ions in the trap and reveal that the translational
energy of ions injected into the trap must be lower than ∼1 eV,
the radial trap depth, in order to be stored.

III. ANALYTICAL DESCRIPTION OF ION INJECTION
FROM A FAST ION BEAM

A. Ion injection from a fast ion beam

In this section, it is described how fast ions of keV energies
can be loaded into a ring electrode trap. As only ions with
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energies of a few eVs are confined, the overall potential of the
trap, Vtrap, is offset from ground potential in order to decelerate
ions before entering the trap. The shallow trap depth would
imply that the matching between the initial ion energy and the
ion potential energy at the trap center (qeVtrap) is critical. This
turns out, however, not to be the case for the ring electrode
trap. The special geometry of the ring electrode trap gives rise
to a longitudinal RF field in the region between the entrance
end cap and the first ring electrode, and this longitudinal field
modulates the ion energy when entering the trap (see Fig. 3).
Consequently, the ion potential energy in the trap need not be
carefully matched to the initial ion beam energy.

The situation encountered here is similar to passing ions
through a linear RF accelerator (linac) [29] in which ions
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FIG. 3. The longitudinal RF field and its influence on the ion
kinetic energy. (a) The electric potential along the trap axis when
a potential of +100 V × cos ωt is applied to the ring electrode set
containing the first electrode (light gray electrodes) while −100 V ×
cos ωt is applied to the other ring electrode set (black electrodes). All
other electrodes are kept at ground potential. The potential is shown
at different times such that ωt = k × π/4, where k is 0 (solid line), 1
(dotted line), 2 (dashed line), or 3 (dash-dotted line). The zero point
of the z axis is chosen at the position of the peak potential on the
entrance side. The trap center, zc, is at approximately 20 mm. (b) The
electric potential (dashed curve) and the corresponding longitudinal
electric field (solid curve) on the trap axis due to the RF field at the
RF phase φ = 0. Also shown are the points, z1 and z2, at which the
electric field peaks. (c) The influence of the longitudinal field on the
ion kinetic energy when the ion crosses z = 0 at two different RF
phases. The simulation (see details in Sec. IV) is done for a Si2

−

ion with a nominal kinetic energy of Kstat = 10 eV and at an RF
amplitude of V0 = 200 V.

are accelerated or decelerated depending on the RF phase
upon their arrival. Hence, the approach taken to describe the
operation of a linac [29] may be suited to estimate the effect
of the longitudinal RF field on the ion kinetic energy in the
case of the ring electrode trap. In the following, this route is
pursued to derive analytical expressions for conditions for ion
trapping and their dependence on the RF amplitude and phase.

In classical mechanics, the energy exchange between the
ion and the electric field is described through the work-energy
theorem stating that the change in kinetic energy, �K , of an
ion arriving at the trap center, zc, is equal to the net work done
by the field, i.e.,

�K =qe

∫ zc

−∞
�E(�r,t) · d�r = qe

∫ zc

−∞
[ �Estat(�r) + �ERF(�r,t)] · d�r

= �Kstat + �KRF. (16)

Here, �Estat(�r) is the static component of the electric field, in
the present case stemming from the static potentials applied to
the various electrodes in the trap assembly, and �ERF(�r,t) is the
time-dependent component of the electric field arising from
the RF potentials applied to the ring electrodes. �Kstat and
�KRF are the changes in kinetic energy due to the static and
time-dependent fields, respectively. For an ion to be trapped,
it is necessary that it reaches the trap center and that its kinetic
energy at this point is lower than the trap depth resulting in the
following criterion:

0 � K0 + �K � Utrap. (17)

Here, K0 is the ion kinetic energy far from the trap center and
Utrap the trap depth from Eqs. (13) and (15). Equation (17) thus
states the general criterion for whether or not an injected ion
becomes trapped, and this expression is now analyzed in more
detail.

First, the contribution to the kinetic energy change from
the static field alone is examined. For simplicity, only the
longitudinal energy loss of an ion on the trap axis (the z axis)
is considered. In absence of the RF field, the change in kinetic
energy for an ion arriving at the trap center, zc, is

�Kstat = qe

∫ zc

−∞
�Estat(z) · d�z = −qe�V = −qeVtrap, (18)

yielding a kinetic energy at zc of

Kstat = K0 + �Kstat = K0 − qeVtrap, (19)

where again K0 is the ion beam energy far from the trap, and
Vtrap the overall electric potential of the trap which is offset
from ground potential. Hence, Kstat is the resulting kinetic
energy for a conservative force and is referred to as the nominal
kinetic energy.

Second, when the RF field is also present, the ions
are in addition subjected to a nonconservative force, and
consequently their kinetic energy at the trap center now
deviates from Kstat. Snapshots of the RF potential along the
trap axis are shown in Fig. 3(a), and the zero point of the z axis
is chosen at the position where this potential peaks. As an ion
traverses the region around z = 0, the potential is oscillating,
and the kinetic energy change thus depends on the detailed
oscillation of the potential during the traversal. This fact is
illustrated in Fig. 3(c), which shows the change in kinetic
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energy due to the RF field for two ions that cross z = 0 at
different RF phases. The details of the energy oscillations are
hard to describe analytically, but an approximate expression for
the total kinetic energy change due to the RF field, �KRF, can
be derived following the approach of Weiss [29] and Wadlinger
and co-workers [30]. Thus, for an ion traveling on the z axis,
the RF-induced kinetic energy change when arriving at the
trap center is given by

�KRF = qe

∫ zc

−∞
ERF,z(z,t)dz

= qe

∫ zc

−∞
ERF,z(z,0) cos[ωt(z)]dz, (20)

where ERF,z is the z component of the RF field. Generally, the
equation of motion cannot be solved analytically, implying that
an analytical expression for t(z) cannot be given. To proceed,
the ion velocity during the passage through the entrance RF
field is approximated by a constant, vion. This approximation,
which is also introduced in the case of linacs [29], seems crude,
but the final result provides a good description of the simulated
results, as demonstrated in Sec. IV A. Consequently, the ion
velocity, vion, is considered a constant and taken to be the
mean velocity during the passage. A value for vion may thus
be determined by solving the ion equation of motion and then
extracting the mean velocity through this region of interest. At
t = 0, the ion crosses z = 0 at a particular phase, φ0, of the RF
field, implying that ωt(z) = ωz/vion + φ0, and Eq. (20) can
therefore be written as

�KRF ≈ qe

∫ zc

−∞
ERF,z(z,0) cos

(
ωz

vion
+ φ0

)
dz. (21)

This expression may be elaborated upon by considering the
properties of the electric field displayed in Fig. 3(b) along
with the RF potential. As seen, the electric field exhibits two
extrema analogous to the situation encountered in a double-gap
acceleration cell [30]. This implies that the total kinetic energy
change, �KRF, contains two contributions: one contribution,
I1, from the kinetic energy change achieved during the traversal
of the first peak in the electric field, and another contribution,
I2, from the traversal of the second peak [see Fig. 3(c)]. The
integration in Eq. (21) is therefore split into these two parts,
yielding

�KRF = qe

∫ 0

−∞
ERF,z(z,0) cos

(
ωz

vion
+ φ0

)
dz

+ qe

∫ zc

0
ERF,z(z,0) cos

(
ωz

vion
+ φ0

)
dz

≡ I1 + I2. (22)

The two integrals may be brought to a more accessible form
by introducing the two points, z1 and z2, at which the electric
field exhibits its extrema [see Fig. 3(b)]. By doing so, the first
contribution to the energy change, I1, may be written as

I1 = qe

∫ 0

−∞
ERF,z(z,0) cos

(
ω(z − z1)

vion
+ φ0 + ωz1

vion

)
dz

= qe

∫ 0

−∞
ERF,z(z,0) cos

(
ω(z − z1)

vion
+ φ1

)
dz

= qe

∫ 0

−∞
ERF,z(z,0) cos

ω(z − z1)

vion
cos φ1dz

− qe

∫ 0

−∞
ERF,z(z,0) sin

ω(z − z1)

vion
sin φ1dz, (23)

where φ1 = φ0 + ωz1/vion is the phase of the RF field when the
ion crosses z = z1. From Fig. 3(b), it is seen that the electric
field along the trap axis for z < 0 is approximately an even
function with respect to z − z1, wherefore the last integral in
Eq. (23) vanishes, thereby yielding

I1 ≈ qe cos φ1

∫ 0

−∞
ERF,z(z,0) cos

ω(z − z1)

vion
dz. (24)

To express explicitly the dependence of I1 on the RF amplitude,
V0, and the phase, φ1, the so-called transit-time factor, T ′

1, is
introduced:

T ′
1 = 1

V0

∫ 0

−∞
ERF,z(z,0) cos

ω(z − z1)

vion
dz. (25)

T ′
1 describes the influence on the energy change due to the

finite time it takes the ion to traverse the region around the
first peak of the RF field. Since VRF(�r,t) ∝ V0 and �ERF(�r,t) =
−�∇VRF(�r,t) [31], it follows directly that �ERF(�r,t) ∝ V0, and T ′

1
therefore depends on V0 only indirectly through the influence
of the RF field on the ion velocity [33]. If the velocity change
due to the RF field is small compared to vion, the dependence
of T ′

1 on V0 can then largely be neglected (the simulations
presented in Sec. IV A and Fig. 6 reveal that the velocity
change is of the order of 10% of the mean ion velocity in this
spatial region, indicating the validity of this approximation).
The final expression for I1 is then written as

I1 ≈ qeV0T
′

1 cos φ1. (26)

Similarly, by introducing the point, z2 [see Fig. 3(b)], the
RF phase, φ2 = φ0 + ωz2/vion, at which the ion crosses
this point, and by exploiting that the RF electric field for
z > 0 is approximately symmetric around z = z2, the second
contribution to the kinetic energy change, I2, is expressed as

I2 ≈ qeV0T
′

2 cos φ2, (27)

where T ′
2 is the transit-time factor for traversing the second

peak of the electric field:

T ′
2 = 1

V0

∫ zc

0
ERF,z(z,0) cos

ω(z − z2)

vion
dz. (28)

The total change in kinetic energy due to the RF field now
reads

�KRF = qeV0[T ′
1 cos φ1 + T ′

2 cos φ2]. (29)

The mean velocity through the longitudinal field is to a great
extent controlled by the potential applied to the entrance end
cap and, provided this potential is chosen such that the ion
velocity, vion, fulfills the relations ω|z1|/vion � ω|z2|/vion �
π , Eq. (29) is further reduced to

�KRF = qeV0[T ′
1 cos(φ0 − π ) + T ′

2 cos(φ0 + π )]

= −qeV0 cos φ0[T ′
1 + T ′

2] = −qeV0T
′

eff cos φ0, (30)

where T ′
eff = T ′

1 + T ′
2 is the effective transit-time factor for

traversing both peaks of the electric field.
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The behavior of the simulated kinetic energy change
illustrated in Fig. 3(c) can now be examined in light of the
derivation above. In the simulations (see Sec. IV for further
details), ω = 2π × 4 MHz and the mean ion velocity, vion, is
17 mm/μs, with the result that ω|z1|/vion � ω|z2|/vion � π ,
implying that Eq. (30) should provide a fair description of the
energy change. From Fig. 3(b), it is seen that ERF,z(z,0) < 0
for z < 0, resulting in T ′

1 < 0 from Eq. (25). As the simulations
presented in Fig. 3(c) were done for a negative ion, q = −1
and as cos φ0 = 1 for φ0 = 0, Eq. (26) predicts that I1 < 0
for the ion that crosses z = 0 at φ0 = 0. This corresponds
to an initial deceleration of the ion in agreement with the
simulations shown in Fig. 3(c). The second contribution to the
energy change, I2, is of the opposite sign since ERF,z(z,0) > 0
for z > 0, implying that T ′

2 > 0 for φ0 = 0 in which case this
same ion is accelerated during the traversal of the last part of
the region, also in agreement with the simulations. Figure 3(b)
shows that the absolute value of the electric field is higher at
z1 than z2, resulting in |T ′

1| > |T ′
2|. Consequently, the initial

deceleration is larger than the following acceleration, and the
net effect is therefore a deceleration of the ion (corresponding
to T ′

eff < 0) in accordance with the observations. If, instead,
the ion crosses z = 0 at the phase φ0 = π , the sign of both
terms, I1 and I2, is changed as cos φ0 = −1 and the ion is now
initially accelerated and then decelerated to a lesser extent,
yielding an overall acceleration for φ0 = π .

With Eq. (30), the general criteria, Eq. (17), for trapping
ions that have traversed the longitudinal RF field can be
analyzed. Using Eqs. (16), (19), and (30) in Eq. (17), the
criteria for trapping now reads

0 � Kstat + �KRF � Utrap
(31)

⇐⇒ −Kstat � −qeV0T
′

eff cos φ0 � Utrap − Kstat.

If the nominal kinetic energy is larger than the trap depth, that
is Kstat > Utrap, it follows from this equation that �KRF � 0,
and trapping only occurs provided the RF field dissipates the
excess kinetic energy. In this case, the ion must cross z = 0
at φ0 = 0 to be trapped according to the analysis above. If
instead Kstat < 0, that is, the ion potential energy at the trap
center is larger than the initial ion energy, �KRF � 0, in which
case the RF field must accelerate the ions to obtain trapping.
Correspondingly, ions must now arrive at z = 0 at the phase
φ0 = π .

The consequences of the above inequalities are illustrated
in Fig. 4(a) in the case of a fixed nominal kinetic energy at
which Kstat > Utrap. As seen, an incoming ion is accelerated
or decelerated by the RF field of amplitude V0 depending on
the RF phase when the ion crosses z = 0. Consequently, the
above inequalities for fixed Kstat and V0 are fulfilled only for
certain phase intervals depicted by the gray areas in Fig. 4(a),
and trapping is hence only achieved for ions arriving at these
phases. To describe how these trapping phase intervals change
with RF amplitude, an expression for the mean phase, φ0,m,
shown in Fig. 4(a) is sought. At this phase, the energy change
equals the mean required energy change to obtain trapping,
�KRF,mean. Equation (31) states the upper and lower limits
of the energy change, and from these extremes, �KRF,mean is
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FIG. 4. Illustrations of the criteria for trapping mediated by the
longitudinal RF field. (a) The thick black curve represents at a fixed
RF amplitude the ion kinetic energy at zc as a function of the RF
phase experienced at z = 0. The curve is dashed in the phase interval,
yielding negative kinetic energies corresponding to phases where the
ion after traversal of the longitudinal field does not carry enough
energy to reach the trap center. The short-dashed and long-dashed
lines represent the lower and upper bounds of the first inequalities
of Eq. (31), respectively. The gray areas highlight the phase interval
over which these inequalities are fulfilled and over which trapping is
hence achieved. (b) The relationship between the RF amplitude and
phase that results in the energy change necessary for trapping. The
black line shows the relationship predicted by Eq. (33) while the gray
area shows the phase interval within which Eq. (31) is fulfilled. The
short-dashed and long-dashed lines represent the lower and upper
bounds of the first inequalities of Eq. (31), respectively, that is setting
C in Eq. (33) to −Kstat and Utrap − Kstat. (c) The solid line shows
the fractional phase width of the gray phase area in (b), whereas the
dashed line represents the fractional phase width over which ions can
be trapped as a function of RF amplitude as described by Eq. (35).

found to be

�KRF,mean = 1
2 [−Kstat + (Utrap − Kstat)]

= 1
2Utrap − Kstat ≡ C. (32)

As Utrap only depends on the RF amplitude for small
amplitudes [see Fig. 2(d)], �KRF,mean is roughly independent
of V0 and is for now considered to be a constant, C, for fixed
Kstat. Setting �KRF = C in Eq. (30) and rearranging yields
the following relationship between the RF amplitude and the
RF phase leading to the mean required energy change:

− C

qeT ′
eff

= V0 cos φ0,m. (33)

The left side of this equation is merely a constant since T ′
1 and

T ′
2, and thereby T ′

eff , are roughly independent of V0 as already
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mentioned. As | cos φ0,m| � 1, this equation is fulfilled only if

V0 � |Vmin| =
∣∣∣∣ − C

qeT ′
eff

∣∣∣∣. (34)

This implies that for a given nominal kinetic energy, Kstat,
a minimum RF amplitude, |Vmin|, is needed to change the
kinetic energy by the required amount. At this minimum
amplitude, ions are trapped at either cos φ0,m = 1 or cos φ0,m =
−1, depending on the sign of C, which indicates whether
ions must be decelerated or accelerated to achieve trapping.
These features are illustrated in Fig. 4(b), which depicts the
relationship between the RF amplitude and phase predicted
by Eq. (33). As argued above, ions can be trapped provided
their kinetic energy at the trap center is between 0 eV
and the trap depth. Correspondingly, trapping is still achieved
for amplitudes, V0, and phases, φ, fulfilling Eq. (33) with
φ0,m = φ and C in the range between −Kstat [short-dashed line
in Fig. 4(b)] and Utrap − Kstat [long-dashed line in Fig. 4(b)],
resulting in trapping within the gray area of Fig. 4(b).

Figures 4(a) and 4(b) illustrate that the finite width of
the required kinetic energy change, �C, leads to trapping in
some phase interval. The width of this phase interval, �φ0,
is indicative of the trapping probability for ions traversing the
field at random phases at z = 0. The relative phase width,
�φ0/2π , of the gray area in Fig. 4(b) is plotted in Fig. 4(c) as
a function of the RF amplitude (solid line). As seen, the phase
width is initially zero, implying that at low RF amplitudes the
RF field is not strong enough to induce the required energy
change. At the RF amplitude where the upper limit in Eq. (31)
is reached, the phase width begins to increase until the RF
amplitude at which the lower limit in Eq. (31) is reached. After
this point, the phase width is constantly decreasing, implying
that trapping occurs only for two narrow phase windows at
large RF amplitudes.

A simple expression for the asymptotic behavior of the
phase width is obtained by differentiation of Eq. (33):

�φ0 � 2�C

∣∣∣∣∂φ0,m

∂C

∣∣∣∣ = 2�C

∣∣∣∣ ∂

∂C
arccos

−C

qeT ′
effV0

∣∣∣∣
= 2�C

|qeT ′
eff|

√
V 2

0 − V 2
min

, (35)

where the factor of 2 is introduced since the arccos function
used here describes only one branch of the otherwise multi-
valued function. The expression is plotted as the dashed line
in Fig. 4(c) and yields a good description of the asymptotic
behavior of the phase width.

B. Trapping efficiency

The trapping efficiency, ε, here defined as the fraction of
incoming ions that become trapped, can be estimated within
the analytical model developed in the previous section. In
doing so, two assumptions are made: (1) the incoming ions
cross z = 0 at phases uniformly distributed over the entire
phase of the RF field and (2) ions are trapped with 100%
probability provided their kinetic energy when first arriving at
the trap center is between 0 eV and the trap depth. In this case,
the trapping efficiency is simply equal to the fractional phase

width (�φ0/2π ) defined above:

ε = �φ0/2π. (36)

Its functional dependence on both the RF amplitude, V0, and
the nominal kinetic energy, Kstat, is determined by calculating
the fractional phase width over which Eq. (31) is fulfilled.
At some fixed nominal kinetic energy where Kstat > Utrap,
the RF amplitude dependence of the fractional phase width,
and hence the trapping efficiency, was already shown by the
solid line in Fig. 4(c). Thus, it is likely concluded that the
trapping efficiency as a function of the RF amplitude for fixed
Kstat always exhibits a behavior similar to that in Fig. 4(c).
However, in the derivation of Eq. (33), which was used to
determine the fractional phase width, Utrap was assumed to be
a constant independent of the RF amplitude. This assumption
is valid provided that trapping occurs only at RF amplitudes in
the range where the trap depth is constant, that is, Vmin > Vk

[see Fig. 2 and Eq. (34)]. If trapping occurs at RF amplitudes
lower than Vk, this assumption is no longer valid, in which case
the gray area of Fig. 4(b) has a more complicated shape (see
Fig. 7 and comments relating to this figure). As a result, the
fractional phase width, and hence the trapping efficiency, for
fixed Kstat does not merely behave as the solid line in Fig. 4(c)
if trapping is achieved at low RF amplitudes. Therefore, the
dependence of Utrap on V0 described by Eqs. (13) and (15)
must generally be taken into account when determining the
fractional phase width over which Eq. (31) is fulfilled.

When calculating the trapping efficiency, also T ′
eff must be

considered. To a first approximation, T ′
eff is independent of V0

as already argued. It does, however, depend on Kstat. This is
true since Kstat depends on the trap potential, Vtrap [Eq. (18)],
which in turn influences the mean ion velocity, vion, entering
into T ′

eff . The mean ion velocity is furthermore affected by the
potentials applied to the entrance end cap and lens. It turns
out that for the potentials applied in the present experiments
these electrodes to a very large extent solely control the mean
ion velocity over the relevant Kstat range. Consequently, T ′

eff
is considered to be a constant when determining the trapping
efficiency.

Figure 5 shows the resulting trapping efficiency as a
function of both the RF amplitude and the nominal kinetic
energy where the only free parameters, T ′

eff and ηmax, are
chosen to obtain the best agreement with the simulations
presented in Sec. IV A (T ′

eff = −0.035 and ηmax = 0.64; see
Sec. IV A1 for comments regarding the value of ηmax). As
indicated by the solid white lines, the RF amplitude at which
maximum trapping efficiency is achieved for a given Kstat

changes linearly with Kstat except in the region of low kinetic
energy and low RF amplitudes where the lines are now dashed.
This is a manifestation of Eq. (34) in which C depends linearly
on Kstat, as seen from Eq. (32), and the slope is inversely
proportional with T ′

eff as seen from Eq. (34). Consequently, the
opening angle, θ , of the “<”-shaped contour lines indicated on
the figure is controlled by T ′

eff , which depends on the ion energy
upon entering the longitudinal RF field. As already argued, this
energy is dependent on the potentials applied to the entrance
end cap and lens, and hence changing these potentials affects
this opening angle. Furthermore, the outermost contour lines
exhibit linear behavior with RF amplitude for Kstat < 0 but
display a kink around V0 = 50 V for Kstat > 0, which is a result
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FIG. 5. (Color online) The trapping efficiency, ε [Eq. (36)],
obtained within the analytical model as a function of the nominal
kinetic energy and the RF amplitude. In the calculations, T ′

eff was
assumed to be a constant independent of V0 and Kstat and was set to
−0.035 and ηmax to 0.64 to obtain good agreement with simulations
presented in Sec. IV A (see Fig. 8). Solid white lines display the
relationship between V0 and Kstat, leading to maximum trapping
efficiency.

of the increasing trap depth for low RF amplitudes. Finally,
it is noted that maximum trapping efficiency is achieved for
Kstat > 0, which is a natural consequence of the boundaries
put on the kinetic energy from Eq. (31). When traversing the
longitudinal field, half of the incoming ions are decelerated
while the other half are accelerated according to Fig. 4.
Maximum trapping efficiency therefore occurs when both
these classes of ions can still be trapped, in which case
Kstat � 1

2Utrap.

IV. NUMERICAL SIMULATIONS

To validate and explore the approximate analytical model
developed in Sec. III, Monte Carlo simulations were performed
using the SIMION software [34]. The Laplace equation for
the electric potential of the electrode configuration of the
ring electrode trap was solved on a grid with a spatial
resolution of 0.25 mm. Ion motion in the obtained potential
was subsequently investigated by propagating ions from a
randomized sample. Thus, 5000 ions of mass 56 amu and
charge qe = −1e, simulating Si2− ions, were initialized on
ground potential at a fixed axial distance from the trap.
Spatially, the ions were distributed evenly around the trap
axis according to a Gaussian radial distribution with a FWHM
radius of 2 mm, and they were started with equal velocities
having only a nonzero component in the axial direction towards
the trap. The initial ion kinetic energy, K0, was set to 3 keV,
and, in the absence of nonconservative forces (that is, only
static electric fields are present), the nominal kinetic energy
of the ions arriving at the trap center, Kstat, is given as

Kstat = K0 − qeVtrap [Eq. (19)], where Vtrap is the trap platform
potential. The start time of the ions (the ion time of birth) was
distributed uniformly in the time window between 0 and 30 μs,
during which time the potential of the entrance electrode was
kept positive with respect to the platform potential to let the
negative ions enter the trap. After 30 μs, the entrance potential
was switched instantaneously to a negative value in order to
trap ions for 500 μs, whereafter the potential of the exit end
cap was switched to extract ions from the trap. Ions were
considered to be stably trapped if they remained trapped during
the whole 500-μs-long trapping period, and the trapping
efficiency was then obtained as the ratio of stably trapped ions
to the total number of injected ions. Similar simulations were
performed for different amplitudes of the radially confining RF
potential and for different nominal kinetic energies, Kstat, by
varying the trap platform potential, Vtrap, while the potentials
of the remaining electrodes were set to the values used in the
experiments presented later.

A. Simulated trapping dynamics and comparison
to the analytical model

1. The loading principle

Figure 6 shows the distribution of ion kinetic energies at
z = 0 [see Fig. 3(a)] as a function of RF amplitude, V0, for
a fixed nominal kinetic energy of Kstat = 6 eV. Note that the
kinetic energy at this point is much larger than the nominal
kinetic energy as it is influenced by the potentials applied to
the entrance end cap and lens (see Fig. 1). The results clearly
demonstrate that the RF field perturbs the energy distribution
and that it effectively accelerates or decelerates the ions.

The white line in Fig. 6 outlines the energy region within
which the kinetic energy of ions that become trapped appears.
For the presented results, the nominal kinetic energy of 6 eV
is somewhat higher than the trap depth [see Fig. 2(d)], and,
consequently, ions must be decelerated to achieve trapping.
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FIG. 6. (Color online) Effect of the RF field on the kinetic energy
of the injected ions: Simulated distribution of ion kinetic energies at
z = 0 plotted as a function of the RF amplitude when the nominal
kinetic energy was set to 6 eV. The region bounded by the white line
is the energy region of ions that become trapped.
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individual graphs. The white curves represent the relationship between the phase and the RF amplitude for which the mean required energy
change is achieved, according to Eq. (33).

This agrees well with the observation that the region leading
to trapping is centered around an energy lower than the average
ion energy of ∼58 eV at zero RF field. Ions are not trapped
at low RF amplitudes in this case since the RF field cannot
dissipate enough energy at low amplitudes.

More details on the relationship between the RF phase and
the RF amplitude needed to obtain trapping are shown in Fig. 7,
which illustrates the trapping efficiency in dependencies of φ0,
V0, and Kstat. When Kstat � Utrap, ions must be decelerated to
obtain trapping in which case trapped ions pass z = 0 around
φ0 = 0, whereas they instead pass this point around φ0 = π

if they need to be accelerated (Kstat < 0). The simulated
relationship between the RF phase and amplitude for the
trapped ions is very well reproduced by Eq. (33) shown as
the white lines in Fig. 7. This clearly verifies that energy
exchange between the ions and the longitudinal RF field is the
key to understanding the trapping dynamics for ions injected
into the ring electrode trap at energies of the order of several
tens of eV.

In Fig. 7, it should be noted that the RF amplitude-RF
phase contours for Kstat = 1 eV have a slightly different
shape than those plotted for the three other values of Kstat:
First, the trapping efficiency is close to zero in the region
around φ0 = 0 for low RF amplitudes, unlike the case for
Kstat = 4 eV. Second, at RF amplitudes around 100 V the
contour lines around φ0 = π/2 extend further towards π than

for Kstat = 4 eV. Overall, the shape is somewhat different from
the shape depicted in Fig. 4(b). This is a manifestation of the
trap depth changing with RF amplitude which gives rise to
more complicated shapes than the one illustrated in Fig. 4(b),
which was derived assuming a constant trap depth.

The simulated trapping efficiency as a function of the
nominal kinetic energy and the RF amplitude is shown in
Fig. 8(a) in comparison to the analytical trapping efficiency
shown in Fig. 5. As mentioned in Sec. III B, the two free
parameters entering into the analytical trapping efficiency,
namely ηmax and T ′

eff , have been chosen to best match the
simulations yielding values of 0.64 and −0.035, respectively.
Notably, the value of ηmax is significantly higher than the
0.3 or 0.36 mentioned earlier. However, the value of 0.3 has
been empirically determined as a criterion for safe operating
conditions, but possibly several islands of stability may be
localized at higher values of η [19]. In the injection scheme
presented here, the RF field modulates the kinetic energy [see
Fig. 4(a) and Fig. 9] of the incoming ions, which may lead
to a population of stable or pseudostable trajectories with η

in higher-lying stability regions. This circumstance is then
reflected by the high ηmax value. Most interesting, simulations
by Gerlich [19] show a stable region at η = 0.65 in good
correspondence with the ηmax determined here.

The resemblance of the simulation and analytical model is
quantified by the cross-sectional plots of Figs. 8(b) and 8(c),
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FIG. 8. (Color online) The simulated trapping efficiency in comparison to the analytical model. (a) Simulated trapping efficiency as a
function of the nominal kinetic energy and the RF amplitude. The dashed lines mark the positions of the cross-sectional plots shown below and
to the right. (b) Trapping efficiency as a function of the nominal kinetic energy when the RF amplitude is fixed at 280 V. Open circles represent
the simulated results and the line the analytical trapping efficiency. A scaling factor was used for the analytical trapping efficiency to match the
simulated results. (c) Trapping efficiency as a function of the RF amplitude when the nominal kinetic energy is 4 eV. Open circles represent
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efficiency to match the simulated results. The dashed line is the curve obtained from Eq. (35), while the dash-dotted line shows the scaling of
the square of the effective trapping radius which represents the decreasing behavior of the trapping volume [see Fig. 2(c)].

where the simulated results (open circles) are plotted together
with the analytical model (lines). Despite the approximations
made, the analytical model clearly describes the essence of
the simulated trapping dynamics. The decrease of the trapping
efficiency for high RF amplitudes [Fig. 8(c)] in the present
case is thus verified to arise from the decreasing phase interval
over which ions exchange with the RF field the energy needed
to become trapped. Consequently, the decreasing behavior is
very well reproduced by Eq. (35), as illustrated by the dashed
line in Fig. 8(c).

In conclusion, the simulations verify the result of the analyt-
ical model, namely that the trapping efficiency is determined
by an interplay between the trap depth and the ability of
the longitudinal RF field to bring the ion kinetic energy into
the energy acceptance region of the trap. However, the trap
depth only depends on the RF amplitude for low amplitudes,
which effectively means that the trapping efficiency is largely
governed by the energy exchange between the ions and the
longitudinal field.

2. Properties of the trapped ions

The previous sections demonstrated how the longitudinal
RF field controls the kinetic energy of the ion arriving at the
trap center and thereby enables trapping. The significance for

the energy distribution of trapped ions is illustrated in more
detail in Fig. 9, which shows the simulated energy distribution
of ions when first arriving at the trap center and the simulated
energy distribution of the stored ions for two different RF
amplitudes. As seen in Figs. 9(a) and 9(b), the longitudinal RF
field induces an energy distribution at the trap center, and this
distribution becomes wider with increasing RF amplitude. In
order to be trapped, the simulations show that the ion energy
must fall to the left of the dash-dotted line marked in the
figure, and ideally, this cutoff energy should correspond to
the trap depth. The maximum trap depth is controlled by ηmax

[Eq. (15)], which must be set to a value of 0.64 to obtain the
best agreement between the simulated and analytical trapping
efficiency, as stated earlier. As marked by the long-dashed line
in Figs. 9(a) and 9(b), the trap depth in this case is 3.8 eV, which
is close to the simulated energy cutoff. For the simulation in
Fig. 9(a), the RF field is just strong enough to bring part of the
energy distribution into the range that allows for trapping, and
the time-averaged energy distribution during trapping in this
case is depicted in Fig. 9(c). This distribution clearly peaks
around approximately 2.4 eV as a result of the low-energy
peak in the energy distribution at the trap center. When the RF
amplitude is increased, the energy distribution at the trap center
becomes wider, and the peak at low energies no longer appears
as this class of ions does not have enough kinetic energy to
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FIG. 9. The effect of the longitudinal RF field on the ion energy
distribution. (a),(b) Simulated ion energy distribution when first
arriving at the trap center for two different RF amplitudes. The
region to the left of the dash-dotted line indicates the energy range
of incoming ions that potentially can be trapped. For comparison,
the trap depth corresponding to ηmax = 0.64 is shown as the long-
dashed line. The short-dashed line represents the analytical energy
distribution given by Eq. (37). (c),(d) Simulated instantaneous energy
distribution of trapped ions for the two different RF amplitudes. The
dashed line indicates the mean energy. In the simulations, the trap
potential was set such that Kstat = 6 eV.

reach the trap center [Fig. 9(b)]. The energy distribution in
the energy range that leads to trapping is now essentially flat.
Consequently, the instantaneous energy distribution of stored
ions shown in Fig. 9(d) is peaked at lower energies, implying
that more low-energy trajectories are populated. Note that the
energy distributions in both cases have a tail that extends
beyond the trap depth of 3.8 eV. Within the adiabatic model,
the maximum transverse energy, Em, stored in the drift motion
must be smaller than the trap depth for the ion to be stored, but
the instantaneous kinetic energy, that is, the sum of the kinetic
energy stored in the drift motion and micromotion, which is the
quantity plotted in Figs. 9(c) and 9(d), is oscillating between
0 and roughly 3Em [19].

The observation of the peaks at high and low energies in the
energy distribution at the trap center can, in fact, be rationalized
from Eq. (30). In the simulations, ions enter the trap at
times evenly distributed over the entire phase of the RF field,
meaning that φ0 is uniformly distributed on the interval [0,2π ),
corresponding to a distribution function of f (φ0) = 1/2π . The
distribution of the energy change at the trap center, f (�KRF)
can now be derived by requiring conservation of probability,
f (�KRF)d�KRF = f (φ0)dφ0, with the result

f (�KRF) = f (φ0)
dφ0

d(�KRF)
∝ d

d(�KRF)
arccos

−�KRF

qeV0T
′

eff

= 1√
(qeV0T

′
eff)

2 − �K2
RF

. (37)

This expression is plotted in Figs. 9(a) and 9(b) as the dashed
line, and it represents well the energy distribution thereby

explaining the origin of the peaks. The above equation predicts
that as the RF amplitude is increased, the energy distribution at
the trap center becomes wider and quite flat in a large central
region. Therefore, the energy distribution in the energy window
for trapping will look the same for all RF amplitudes above a
certain limit. Consequently, the ion energy distribution during
storage converges towards some fixed distribution for high RF
amplitudes.

In summary, the longitudinal RF field determines the energy
distribution of the stored ions. As a consequence, also ions of
low kinetic energies become trapped even without the use of
buffer gas since a class of ions is effectively exchanging energy
with the field thereby entering the trap with low kinetic energy.

V. INSTRUMENTATION

Figure 10 shows the layout of a newly realized experimental
setup that can be used to investigate the injection and trapping
of ions in a ring electrode trap. The apparatus consists of an
accelerator equipped with an ion source, a 90◦ bending magnet
for mass analysis, a transfer beamline, a RF ion trap situated
on a high-voltage platform, and finally an MCP detector with
a phosphor screen for ion detection. On the accelerator, which
is of the isotope separator type [35], various ion sources can be
mounted, thereby allowing for the production of a large range
of ions. The transfer beamline comprises several electrostatic
quadrupoles for focusing and deflectors for steering ions
towards the central part of the setup, namely the ion trap which
is followed by an MCP detector for ion detection.

The remainder of this section describes the details of the
ion trap, the high-voltage platform, and the experimental
procedure and can be skipped without loss of understanding
of the results presented afterwards.

Ion source 
on isotope separator

Magnet for 
mass analysis

Electrodes for 
chopping ion beam

To other
experiments

Radio-frequency
ion trap

MCP detector

Steering and focusing elements

FIG. 10. (Color online) Schematic overview of the experimental
setup.
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FIG. 11. (Color online) Views of the realized ring electrode trap.
(Left) The trap mounted on the liquid nitrogen tank. (Right) Closeup
of the trap assembly and the ring electrode arrangement.

A. Mechanical setup of the ring electrode trap

The mechanical construction of the RF ion trap is shown
in Fig. 11. The design of the ring electrode trap is based on
that of Gerlich and co-workers [36]. It consists of a stack of 20
1-mm-thick ring electrodes spaced by 1 mm (2πz0 = 4 mm)
and with an inner radius of r0 = 5 mm (see Fig. 1). The
electrode structure is machined out of two solid blocks of
copper such that every second electrode belongs to the same
block as depicted in Fig. 11. The end electrode assemblies
consist of a copper block which acts as an electrode and also
supports two other electrodes. The three electrodes all have
a hole of varying inner diameter (6, 10, and 10 mm going
outwards from the trap center) and depth (2, 6, and 1 mm,
respectively) centered on the trap axis, thereby allowing ions
to enter and exit the trap. The outer two electrodes (end caps) of
this assembly are electrically connected, whereas the potential
of the middle electrode (lens) is controlled independently.
With this configuration, ions are focused into the trap, and by
transiently changing only the potentials of the end caps, ions
can be loaded into and extracted from the trap. Furthermore,
the trap is equipped with four pairs of 9-mm-wide rectangular
electrodes spaced by 1 mm placed just above and below the ring
electrodes, and these make it possible to shape the potential
along the trap axis and thereby manipulate the ion cloud (not
exploited in this study). The ring and end electrode assemblies
are mounted on a copper base plate from which they are
electrically insulated by 0.5-mm-thick sapphire plates. The
entire assembly comprising the base plate, ring electrode, and
end electrode assemblies is kept at high potential relative to
ground to achieve ion deceleration. The high-voltage platform
that supplies the potentials to the trap is described in Sec. V B.

The baseplate assembly is mounted onto a second copper
plate, which in turn is mounted onto a thick copper rod. To
be able to cool the trap, this rod is immersed into a reservoir
that can be filled with liquid nitrogen. The reservoir and the
second copper plate are on ground potential, and the baseplate
assembly is therefore electrically insulated from the second
plate by a 0.5-mm-thick sapphire plate. Also attached to this
second copper plate is a copper housing which surrounds the
trap and which serves a double purpose. First, it screens the
high trap potentials such that ions are only affected by these
potentials when they are close to the trap entrance. Second,
the cover separates the trap volume from the volume of the
surrounding chamber. This is convenient if a reactant gas or a
He buffer gas is introduced into the trap volume as the copper
housing then allows for a high neutral-gas density within the
trap volume, while a relatively low pressure is maintained
in the surrounding vacuum chamber. Gas can be supplied to
the trap via a central hole in the copper rod both of which go
all the way through the reservoir.

The tank is mounted on a vacuum flange which carries elec-
trical feedthroughs for all the trap potentials and feedthroughs
for running liquid nitrogen through the reservoir and for letting
either He buffer gas or a reactant gas into the trap volume.

The trap region is evacuated by a turbomolecular pump
which, without gas load from the trap, maintains a background
pressure of about 10−9 mbar in the surrounding chamber.

B. High-voltage platform

A schematic of the trap high-voltage (HV) platform is
shown in Fig. 12. All electronics mounted in the HV cage
are powered by a 500-W isolation transformer. Line power to
the transformer itself is supplied through an interlock switch
which disables the platform power if the door to the cage
is opened or if the pressure in the chamber is too high.
The platform potential is supplied by a 10-kV power supply
(Spellman MPS Series) with a stability better than 0.02%
per 8 h. The output terminal of this supply is connected to
ground while its own ground terminal is connected to the
secondary windings of the transformer. In this configuration,
the power supply itself is residing in the HV cage and must
be of positive polarity to keep the platform potential negative
with respect to ground. This arrangement is prepared to keep
together all trap-related power supplies and the communication
to these. The potentials applied to the trap end caps, lenses,
and grids are delivered by separate unipolar power supplies
(Spellman MPS series) with voltage ranges ±500 V (end
caps), ±1000 V (lenses), and ±1500 V (grids). To trap
and eject ions, the potentials of the end electrodes and the
lenses can be switched between two static outputs from
the aforementioned supplies. The switches are home-built
metal-oxide-semiconductor field-effect transistor switches in
push-pull configuration, and switching is achieved in less
than 100 ns. The RF signals for the trap ring electrodes
are generated by a homemade 4-MHz RF supply capable
of delivering a maximum peak-to-peak (p-p) amplitude of
1400 V. Communication between the control system and the
electronics in the HV cage is provided by two optical links.
One link is used for communication with a Beckhoff lightbus
system which is equipped with digital-to-analog converters
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FIG. 12. Layout of the trap high-voltage platform.

and analog-to-digital converters for analog programming and
monitoring of all power supplies residing in the cage. The other
optical link is a fast TTL link used to deliver the different
timing signals to the switches controlling the loading and
extraction of ions. All signals are exiting the platform through
coaxial cables with grounded shields such that the vacuum
system itself can be kept at ground potential.

C. Experimental procedure

For the experiments presented here, a sputter ion source [37]
is employed. Negative ions of charge −|q|e are formed on
the surface of a sputtering cathode consisting of silicon and
are subsequently accelerated towards the source exit from the
cathode kept at −2 kV relative to the front of the accelerator.
Ions enter an acceleration tube with an energy of 2|q| keV,
and as the front of the accelerator and the entire ion source are
kept at −1 kV relative to ground, the ions acquire 1|q| keV of
additional energy on their way through the acceleration tube,
resulting in a total beam energy of 3|q| keV. After mass-to-
charge selection in the bending magnet, a continuous current
of 0.5 nA of Si2− is achieved. Further downstream, a set of
fast-switched electrostatic deflectors (the ion chopper) is used
to create a pulsed ion beam by letting the ions pass during
a time span of 100 μs before the chopper potential is switched
to a high level to block the beam. To achieve trapping initially,
the trap HV platform is kept at ground potential while the
pulsed ion beam is steered through the trap and imaged on
the phosphor screen of the MCP detector located behind the
trap. The potential of the trap platform is then slowly changed

so as to decelerate the ions to energies of only a few eV, and
typically the steering and focusing of the ions into the trap must
be adjusted accordingly. At this point, ion trapping is achieved
by applying appropriate potentials to the end electrodes at the
trap entrance and exit. At first, the potential of the entrance
electrode is set to focus ions into the trap while the potential
applied to the exit electrode prevents ions from exiting the
trap. When the last ions arrive at the trap, the potential of the
entrance electrode is switched, and ions are now stored. After
a variable storage time, the potential of the exit electrode is
transiently lowered, and ions are extracted from the trap and
detected at the MCP detector. The timing of the trap electrodes
is synchronized with the timing of the ion chopper plates, and
the former has a period of 51 ms in most experiments presented
here. However, the ion chopper timing is running at a frequency
which is only half of that of the trap timing so that data are
acquired with and without ions alternatingly, thereby allowing
for subtraction of background events.

VI. EXPERIMENTAL INVESTIGATIONS

The theory presented in Sec. III and the numerical simula-
tions presented in Sec. IV A give rise to two main predictions
that can be investigated experimentally. First, the validity of
the injection mechanism that uses explicitly the longitudinal
component of the RF field can be illustrated by observing ion
trapping and investigating the trapping stability and efficiency
in dependence of the RF amplitude and the nominal kinetic
energy. Second, the proposed mechanism leads to ensembles
of trapped ions with a characteristic energy distribution (see
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FIG. 13. (Color online) Operation of trap potentials and the cor-
responding ion time-of-flight (TOF) spectra. (Top) Timing sequence
of the ion chopper and the trap entrance and exit end-cap electrodes.
The high level of each trace corresponds to a potential which blocks
ion passage. The green dashed line represents the operation of the
exit end cap electrode in the case where ions are guided through the
trap. (Bottom) Number of events recorded by the MCP detector as
a function of time. Time zero is chosen to be the time at which the
potential of the entrance electrode is switched to trapping mode.
The dashed line shows the ion time-of-flight (TOF) spectrum when
the exit electrode is statically set to transmission (guiding) (dashed
green line below) while the solid line represents the TOF spectrum
when the exit electrode initially is set to trapping and then later
switched to transmission.

Fig. 9) which is illustrated by examining the ion decay from
the trap and the dependence of the trapping efficiency on the
end-cap potential.

A. Ion injection and extraction

Figure 13(a) summarizes schematically the operation of the
RF trap electrode potentials during injection and extraction of
ions. Figure 13(b) shows the synchronized ion signal recorded
with the MCP detector. Two modes are indicated for the
operation of the exit end-cap electrode. In guiding mode, the
first particles arrive at the detector approximately 40 μs after
the ions have passed the chopper electrodes. Particles continue
to arrive for ∼100 μs corresponding to the time span during
which the chopper allows ions to pass. In trapping mode, a
potential is applied to the exit end-cap electrode to reflect the
incoming ions, and when the last ions of the bunch arrive at
the trap, also the potential of the entrance end-cap electrode
is switched to repel ions and prevent them from leaving the
trap. In the situation illustrated in Fig. 13, ions are extracted
after a storage time of 200 μs and arrive at the detector during
a time span of approximately 100 μs. The fact that it takes
some ions 100 μs to leave the trap either implies that these
ions are stored with low kinetic energies (a round-trip time of
100 μs corresponds roughly to a longitudinal kinetic energy
of 0.25 eV) or that they make a couple of round trips before
exiting the trap.
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FIG. 14. Loading of ions into the RF trap. The open circles
represent the measured intensity of ions released after 15 ms of
trapping recorded as a function of the ion bunch width. The solid
lines show the asymptotical behavior for short and long time scales,
while the dashed lines illustrate the continuations of these functions
outside their range of validity.

To investigate over which time span the trap can be loaded,
the number of ions released after a trapping time of 15 ms
was recorded as a function of the temporal width, wi, of the
injected ion bunch. The continuous ion beam delivered by the
ion source is pulsed only by the chopper electrodes, and hence
the number of ions reaching the trap is directly proportional
to the ion bunch width determined by the pulsing of the
chopper electrodes. Figure 14 shows the resulting intensity of
extracted ions as a function of the ion bunch width. The number
of trapped ions increases linearly with the chopper width
for wi � 30 μs, whereafter it increases slower to an almost
constant level at wi � 300 μs. Consequently, ion trapping is
most efficient during ∼30 μs where the number of stored
ions increases linearly with the bunch width. The deviation
from linearity above 30 μs could intuitively be attributed
to space charge effects, but in the present case only some
hundreds of ions are detected per trap cycle, implying that
another explanation must be sought. During loading of the trap,
there is no potential barrier that prevents ions from leaving the
trap again through the entrance, and this situation naturally
introduces loss of ions during injection. Hence, the linear
increase in ion intensity with ion bunch width cannot continue
indefinitely but will cease once the first injected ions begin to
reach the entrance again. In a simplified model, the number of
ions, N , that are present in the trap during injection and that
have the potential of being trapped, is found by solving the
differential equation,

dN

dwi
= n0 − N/κ, for wi > w0, (38)

where n0 is the rate of ions entering the trap, N/κ the rate of
ions escaping from the trap, and w0 the time at which ion loss
through the entrance sets in. The solution to this differential
equation is

N (wi) = n0κ

[
1 −

(
1 − w0

κ

)
e−(wi−w0)/κ

]
, wi > w0. (39)

Thus, on the time scale where the loss of ions through the
entrance becomes important, the observed ion intensity is
expected to change from a linear dependence on wi to the
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FIG. 15. Ion stability in the RF trap under different conditions of
trapping. The curves show the intensity of extracted ions as a function
of trapping time at an RF amplitude of 110 V. The curve with open
circles was recorded when the entrance end cap was switched to
−25 V in trapping mode, whereas the curve represented by open
triangles was recorded when this same electrode was switched to
−400 V. The solid line represents the best fit of a power law (I ∝
t−0.12) to the data represented by the open circles, whereas the dashed
lines show the best fits to the data represented by the open triangles
by a power law on a short time scale and an exponential decay on a
longer time scale.

exponential dependence described by Eq. (39). The solid line
in Fig. 14 wi > 100 μs represents the best match of this model
to the data in this region, yielding κ = 90 μs and w0 = 60 μs.
These two time scales for ion loss through the entrance are in
good correspondence with the 100-μs time span over which
ions are detected when extracted from the trap (see Fig. 13).
The loss rate is fairly low despite the absence of a potential
barrier at the entrance which is most likely due to the effective
deceleration of a class of ions that are then moving in the trap
with low kinetic energy.

B. Trapping stability

To characterize the stability of the RF trap, the number
of ions remaining in the trap was measured as a function
of trapping time for two different potentials applied to the
entrance end cap in trapping mode as shown in Fig. 15. In
the case of switching on the more shallow axial potential well
(open circles), the ion signal exhibits a time dependence well
represented by a power law, that is I ∝ t−n, where n = 0.12.
In contrast, when switching to a steep repulsive potential
on the entrance end cap (open triangles), the decay initially
still resembles the power-law decay observed for the first
setting, whereas the decay on a longer time scale approaches
exponential behavior (I ∝ e−t/τ , where τ = 24 ms).

To interpret these observations it is first noted that ions
are most likely lost from the trap by escaping over the radial
potential barrier [Eqs. (13) and (15)], which is only a few eV
[see Fig. 2(d)]. Loss of ions from the trap due to electron
detachment by blackbody radiation at 300 K can be ruled out
on account of the high vertical detachment energy of Si2−,
which is 2.23 eV [38]. Likewise, electron detachment through
collisions with residual gas is negligible on the time scale
studied here due to the low background pressure of 10−8 mbar
and the relatively high detachment energy [38].

The power-law decay observed for the shallow axial well
(open circles in Fig. 15) can be understood by considering
the inhomogeneous nature of the injected ensemble of ions.
As a consequence of the energy exchange with the RF field,
injection of even a monoenergetic beam results in trapped ions
with a significant energy spread, as seen in simulations (Fig. 9),
and this leads to an occupation of both stable and quasistable
orbits depending on the ion energy relative to the trap depth
[Eqs. (13) and (15)]. The ensemble of ions then decays with
decay times characteristic of the energy of the trapped ion, and
hence the total observed decay obeys a power law stemming
from a sum over many exponential decays.

The reason for the observed exponential decay when
switching to a high repulsive potential on the end cap (open
triangles in Fig. 15) is that the ion motion inside the trap is
excited by the larger transient field present during the switching
which is sufficient to render the trajectories unstable.

C. Trapping efficiency

The influence of the RF amplitude, V0, and the platform
potential, Vtrap, on the number of trapped ions was studied.
Ideally, the sought quantity is rather the trapping efficiency,
i.e., the ratio of the number of trapped ions to the number
of incoming ions, but this parameter is not easily quantified
as the number of ions reaching the trap entrance when ion
trapping is also applied cannot be recorded during these mea-
surements. Hence, the quantity obtained in experiments is only
proportional to the trapping efficiency. In order to compare the
experimental results with the simulated results in Fig. 8, the
trap-platform potential must be related to the nominal kinetic
energy, Kstat, of the ions through Eq. (19). In this equation,
the ion beam energy, K0, can be approximated by the ion
charge times the sputter potential, Vsputter, from which the ions
are initially accelerated, yielding Kstat = −e(Vsputter − Vtrap).
However, the ions might be emitted from the cathode with
some energy [39,40] that is added to the energy acquired during
the acceleration stage, and hence some uncertainty in the mean
total ion beam energy, K0, is expected. The zero point of the
experimental Kstat scale in Fig. 16 is therefore chosen such
that the best agreement between simulations and experiments
is obtained, implying that an offset must be added to −eVsputter

to obtain the true ion beam energy. Figure 16(b) shows the
trapping efficiency for a fixed trap potential and thereby fixed
ion nominal kinetic energy as a function of RF amplitude,
while Fig. 16(c) displays the trapping efficiency as a function
of nominal kinetic energy for a fixed RF amplitude. The overall
agreement between simulations and experiments is very good
when considering that only an offset in the experimental Kstat

scale and an overall scaling of the trapping efficiency is applied
in the comparison. The fact that the simulations to a high degree
reproduce the experimental results verifies that the loading
dynamics is governed by the energy exchange between ions
and the longitudinal RF field as suggested by the simulations
and the analytical model. However, the experimental features
are more blurred than those obtained from simulations.
This deviation is most likely due to the finite energy spread of
the ion beam which is less than 10 eV (FWHM) [37], and this
spread is not accounted for by the simulations which employed
a monoenergetic ion beam.
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FIG. 16. (Color online) The trapping efficiency obtained from experiments in comparison to the simulated efficiency. (a) Comparison of
experimental and simulated trapping efficiency as a function of the nominal kinetic energy and the RF amplitude. The colored contour plot
represents the simulated trapping efficiency, and the experimental data are plotted on top as gray-scale contour lines. The dashed lines mark the
positions of the cross sectional plots shown below and to the right. (b) Trapping efficiency as a function of the nominal kinetic energy when the
RF amplitude is fixed at 280 V. Open triangles show the experimental results and open circles the simulated results. (c) Trapping efficiency as
a function of the RF amplitude. Open triangles show the experimental results and open circles the simulated results when the nominal kinetic
energy is 4 eV.

D. Energy distribution of injected ions

The energy distribution of the injected ions at different
RF amplitudes was investigated by measuring the fraction of
ions remaining in the trap as the repulsive potential applied
to the entrance end cap during the entire trapping period
was lowered. For a fixed nominal kinetic energy of ∼0.5 eV
[= K0 − qeVtrap, Eq. (19)], Fig. 17(a) displays the results of
such a measurement. To extract information on the ion energy
distribution, the depth of the axial potential well must be
determined since this depth, rather than the end-cap potential,
sets the upper bound on the kinetic energy of ions that remain
trapped. The end caps used to create the axial well have an
opening diameter of 6 mm, and hence, on an absolute scale,
the electric potential close to the trap axis arising from the
end caps is lower than that applied to these electrodes. The
axial well depth therefore exhibits a minimum at the trap axis,
and simulations using the SIMION software were performed
to determine how this minimum depth relates to the potential
applied to the end cap. The ion fraction remaining in the trap
can then be displayed as a function of the axial well depth
as done in Fig. 17(a), where the bottom scale indicates the
axial well depth. To obtain more quantitative information on
the ion kinetic energy distributions, the distribution at a given

RF amplitude was assumed to be Gaussian with mean energy
E0 and spread σ . The quantity probed experimentally is the
cumulative distribution, which is then given by

P (E � Uax) = 1√
2πσ 2

∫ Uax

−∞
e−(E′−E0)2/2σ 2

dE′. (40)

Figure 17(b) displays the measured cumulative distribution
obtained at two different RF amplitudes (solid circles and open
triangles) together with the cumulative Gaussian distributions
[Eq. (40)] that provide the best description of the data (solid
and dashed lines). As seen, the Gaussian distributions give a
fair representation of the data. Figure 17(c) shows the mean
energy, E0, as a function of RF amplitude (solid circles)
while the width of the distribution is indicated by the dashed
lines representing E0 ± σ . The results show that when the RF
amplitude is increased initially, the mean energy and spread
increase. This behavior is attributed to the increasing trap depth
for small RF amplitudes, which enables trapping of ions with
higher energies. At higher RF amplitudes, the mean energy
and spread are decreasing again. This effect can be understood
in terms of the energy distributions shown in Fig. 9. At low
RF amplitudes where ion trapping for a given nominal kinetic
energy is just becoming possible the energy distribution of the
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FIG. 17. (Color online) Energy distribution of injected ions.
(a) Fraction of ions remaining in the trap as the trapping potential
applied to the entrance electrode is lowered. The results for several RF
amplitudes are shown. The dashed lines indicate the RF amplitudes
at which the cross-sectional plots in (b) are shown. (b) Fraction of
ions stored in the trap as a function of the trapping potential applied
to the entrance electrode recorded at two different values of the RF
amplitude. The data represented by the solid circles and the open
triangles are recorded at RF amplitudes of 50 and 250 V as indicated
by the black-and-white dashed lines in (a), respectively. The solid
and dashed curves represent the cumulative Gaussian distribution
functions that best describe the measurements represented by the
solid circles and open triangles, respectively. (c) The mean value, E0

(solid circles), and the mean value plus or minus the spread, σ (dashed
lines), of the cumulative Gaussian energy distribution functions that
best describe the measurements for each value of the RF amplitude.
All of the presented data were recorded at a trap-platform potential
where Kstat ≈ 0.5 eV.

stored ions is peaked around some nonzero value as illustrated
in Fig. 9(c). In this case, the cumulative distribution levels
off only at some high energy and correspondingly a higher
blocking potential must be applied to the end electrode to
retain most ions in the trap. As the RF amplitude is increased,
Fig. 9(d) demonstrates that the energy distribution is now
rather peaked at low energies. In this situation, the cumulative
distribution reaches a high level at lower energies, implying

that now a lower potential on the end electrode is needed
to retain the same fraction of ions. Hence, the behavior of
the experimental data presented in Fig. 17 can be explained
by the energy distribution of the stored ions obtained in the
simulations.

VII. DISCUSSION

The results presented above show that ions can be stored
in an RF trap for seconds without the use of buffer gas to
dissipate kinetic energy and that the decay of the number of
ions remaining in the trap follows a power law. This behavior
is attributed to the inhomogeneous nature of the injected
ensemble of ions that exhibits a distribution of decay times.
The observation is very similar to what has been observed for
fast beams in electrostatic storage devices [41,42]. Power-law
decays are also frequently encountered, for example, in the
unimolecular statistical decay of an ensemble of isolated
clusters or molecules that have a broad internal energy
distribution [43]. Quite generally, such a nonexponential or
power-law decay emerges whenever the decay of some system
is described by a multitude of different decay rates.

Both the simulations and the experimental investigations
clearly demonstrate that the longitudinal RF field plays a
significant role in the trapping of ions which enter the trap
with kinetic energies of the order of 40 eV as formulated in
Sec. III. The longitudinal field is able to decelerate ions and
thereby dissipate kinetic energy leading to trapping of ions
with low energies, even in the absence of buffer gas. In this
regime, trapping occurs only at certain RF phases that depend
on the kinetic energy of the incoming ions, and ions are trapped
with a wide range of kinetic energies. Earlier simulations have
also proposed that this mechanism is responsible for trapping
ions injected into 3D quadrupole traps [44–46], where a strong
dependence on the RF phase was also observed, but no attempts
to describe the findings starting from the work-energy theorem
were done.

A direct implication of the described injection mechanism
is that at high RF amplitudes the trapping efficiency decreases
with increasing RF amplitudes [see Figs. 8(c) and 16]. Sim-
ilarly, the trapping efficiency has been observed to decrease
for high RF amplitudes for octupole ion traps [47] where the
observations were attributed to the diminished spatial region
in which motional stability occurs. The effect of the smaller
spatial region for high RF amplitudes is not significant here,
as the trapping efficiency would then scale as r̂2

trap, which is
clearly not the case as demonstrated by the dash-dotted line in
Fig. 8(c).

The injection mechanism implies that ions can be acceler-
ated by the longitudinal RF field provided they traverse the trap
entrance at the right RF phases. As a consequence, it should, in
fact, be possible to accumulate ions in the trap though a static
repulsive potential is applied to the entrance electrode at all
times. If the ions approach the entrance at the right RF phases,
the longitudinal RF field can “lift” them over the repulsive
barrier, thereby allowing them to enter the trap and be stored.
It would seem that the ion can then escape from the trap again
by the same mechanism. However, for this to happen the ion
must return to exactly the right place at the right time, and
the probability for this event is low since ion motion can be
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considered randomized after entering the trap due to many
“collisions” with the RF field. Using this strategy, ions could
continuously be loaded into the trap, and the simulations show
that such a loading scheme is indeed feasible. This possibility
is to be explored experimentally in future studies.

To improve trapping efficiency in the present setup, a buffer
gas can be introduced, and since several injected ions are
moving along pseudostable trajectories, only a few collisions
are needed to obtain stability. Hence, the buffer gas density can
be kept significantly lower than with other loading schemes
where buffer gas must dissipate the kinetic energy within one
round trip in the trap. This requires the mean-free path to be less
than the trap dimensions, resulting in typical He densities of
1013–1015 cm−3. On account of the lower buffer gas density, it
might therefore be advantageous for some experiments to load
the trap with the aid of the longitudinal RF field as described
above. For example, this could be experiments involving XUV
light where ionization of the He buffer gas would be disad-
vantageous, an effect that is suppressed at lower buffer gas
pressures. Furthermore, collisional quenching which lowers
the fluorescence or fragmentation yield of photoexcited ions
inside the trap can be reduced by this approach, and finally, it
might be possible to retain dynamical information about the
fragmentation process by keeping collisional relaxation of the
translational degrees of freedom at a minimum. For example,
it could be imagined that the energy gained by kinetic energy
release during fragmentation causes an ionic fragment to move
into unstable regions of phase space and the kinetic energy
release would then possibly be mapped into the effective loss
rate of the ionic fragment.

It should be noted that the accelerating or decelerating effect
of the longitudinal RF field is significant only at high injection
velocities. If ions are injected gently into the trap, say with
energies around 1 eV, the longitudinal RF field does not alter
the ion energy significantly. The behavior of the transit-time

factors in Eqs. (25) and (28) reveals that this is the case.
When the ion velocity approaches zero, the cosine function
under the integral varies rapidly with z, and therefore the
integral vanishes in the limit where the oscillations occur on a
much shorter length scale than that on which the electric field
changes. Consequently, T ′

eff , and therefore also the change in
kinetic energy, is negligible for low velocities. In this regime,
trapping occurs with almost unity efficiency provided the
kinetic energy of the incoming ions does not exceed the trap
depth, and in the absence of buffer gas, it is now crucial to
adjust the trap platform potential such that ions enter with
kinetic energies below the trap depth of approximately 1 eV.

VIII. CONCLUSION

An experimental setup involving a RF ion trap for trapping
ions from a fast beam was presented, and the mechanism for
loading fast ions into the trap without the use of buffer gas was
studied in detail. A simple analytical model to describe the
loading of ions was developed and validated by numerical
simulations. These results indicate that energy exchange
between the ions and the longitudinal RF field at the trap
entrance plays the decisive role in the initial trapping of ions,
and this hypothesis is further supported by the experimental
investigations.

Presently, several routes involving the trap are being
followed, both in terms of exploring fundamental properties
of the trap and in terms of extending the system towards XUV
photofragmentation studies of trapped ions.
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