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The interference minimum in the high-order harmonic spectrum of H2
+ is studied by solving the full three-

dimensional time-dependent Schrödinger equation for the electronic motion keeping the nuclei fixed. The two-
center interference model works well when the internuclear distance is around its equilibrium value where also
recombination to the 2�+

g (1sσg) ground state dominates. As the internuclear distance is increased, the minimum
first shifts in position compared with the prediction of the two-center interference model and subsequently
disappears. These effects are caused by the excited 2�+

u (2pσu) state, partly due to the interference between the
amplitudes of recombination to the ground and excited states, but also partly due to the signal associated with
recombination to the excited state alone. We find that at internuclear distances beyond R � 3 a.u. the signal close
to the harmonic cutoff may be completely dominated by recombination into the excited 2�+

u (2pσu) state.
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I. INTRODUCTION

When matter interacts with an intense femtosecond laser
pulse, emission of coherent uv or xuv radiation may follow
through the process of high-order-harmonic generation (HHG)
[1,2]. The semiclassical three-step model is typically used to
explain the main physics in this process [3–5]. First, an electron
escapes into the continuum due to the presence of the external
field. Then, the electron is accelerated in the electric field,
initially away and then back towards the parent ion. Finally,
the electron may recombine with the parent ion with emission
of high-frequency coherent radiation. Apart from the interest
in HHG as a source for coherent radiation extending into the
xuv regime, HHG can be used to generate attosecond pulses
[6–10] and to obtain information about molecular structure
and orbitals (see, e.g., Refs. [11–23].)

A characteristic of harmonic spectra is the presence of a
minimum. The numerical investigation of H2

+ has shown that
the minimum position of the HHG spectrum depends on the
molecular alignment, β, with respect to the laser polarization
direction [13]. The minimum is ascribed to an interference
between the radiation emitted from the two nuclear centers
based on a description of the ground state in terms of a linear
combination of atomic orbitals and of the electronic continuum
in terms of plane waves [14,16]. The interference structure in
this two-center interference model is related to the internuclear
distance R, the angle β, and the symmetry of the highest
occupied molecular orbital (HOMO). For a HOMO of gerade
symmetry, the two-center interference is governed by

I (k) = e−ik·R/2 + eik·R/2 = 2 cos(k · R/2), (1)

where R describes the position of the nuclei and k is the
wave vector of the returning electron before recombination.
Two-center interference minima are expected to occur when
the argument of the cosine in Eq. (1) is an odd multiple of π/2,
i.e., following the formula (here and throughout atomic units

are used)

kR cos β = (2n + 1)π, n = 0,1,2, . . . ,

Nmin-TIω0 = k2/2, (2)

where k is the electron momentum, Nmin-TI is the harmonic
order of the two-center interference minimum, and ω0 is the
center angular frequency of the laser field. The two-center
interference model was, for example, used to explain the
minima in the HHG spectrum of H2

+ calculated by the
time-dependent Schrödinger equation (TDSE) [14,16] and
the model was extended to take nuclear motion into account
[15,17]. In the conventional two-center interference model, it
is assumed that the electron escapes from the HOMO and later
recombines to the HOMO. In addition to the effects relating
to the HOMO, it was found for multielectron molecules
that the states lying energetically below the HOMO can
contribute to the HHG spectrum [18–22]. We previously
demonstrated that the electronic bound states lying energet-
ically above the HOMO can also influence the HHG spec-
trum, and the interference between the amplitudes describing
recombination into the electronic ground and excited states,
respectively, may give rise to a minimum in the HHG spectrum
[24]. Effects of excited states in the cation in many-electron
molecules have also been investigated and shown to modify the
spectra [25,26]. The relation between two-center interference
minima and ellipticity of the generated light was investigated
in Ref. [27]. The role of the lowest unoccupied orbital
was investigated in Ref. [28] in a modified version of the
strong-field approximation.

In this work, we investigate the effect of the excited states in
H2

+ with varying internuclear distance on the HHG spectrum.
Taking H2

+ as an example, we perform full three-dimensional
(3D) (for β �= 0) TDSE calculations for the electronic part. We
vary the internuclear distance from equilibrium to somewhat
larger distances, while adjusting β according to the two-center
interference formula of Eq. (2) to keep fixed the same position
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of the predicted interference minimum. We find that the
two-center interference model works well in the vicinity of
the equilibrium, where there is no strong coupling between
the 2�+

g (1sσg) ground state (σg in short) and the 2�+
g

(2pσu) first excited state (σu in short), while with increasing
internuclear distance the coupling becomes more important,
and recombination into the σu state and the interference
between the amplitudes for recombination to the σg and the σu

states need to be accounted for. In a recent one-dimensional
study of H2, a similar decomposition for the H2

+ states was
used [29].

The paper is organized as follows. In Sec. II, we describe
the theoretical model used to explain the effect of excited states
on the harmonic spectrum. In Sec. III, we discuss the results,
and in Sec. IV we present our conclusions.

II. THEORY

The HHG spectrum is modeled by the signal from a single
molecule. This signal is related to the absolute square of the
Fourier transform of the dipole acceleration and by invoking
Ehrenfest’s theorem; an expression for the spectrum reads
[30,31]

Stot(ω) =
∣∣∣∣
∫

ê · 〈d̈(t)〉eiωtdt

∣∣∣∣
2

=
∣∣∣∣
∫

ê · {〈ψtot(r,t)|∇V (r)|ψtot(r,t)〉+ F(t)}eiωtdt

∣∣∣∣
2

,

(3)

where ê denotes the polarization direction, V (r) is the
molecular potential at the electronic coordinate r , and F(t)
is the electric field. The last line in Eq. (3) shows that the
spectrum is mainly dependent on the first term of the right-hand
side, i.e., the time-dependent expectation value of the gradient
of the potential, 〈ψtot(r,t)|∇V (r)|ψtot(r,t)〉.

We consider the TDSE in the length gauge to obtain the
wave packet, ψtot(r,t), at time t (see Ref. [32] for a discussion
of the calculation of HHG in the velocity gauge):

i
∂

∂t
ψtot(r,t) =

(
−∇2

2
+ V (r) + r · F(t)

)
ψtot(r,t). (4)

We substitute ψtot(r,t) = 1
r
ϕtot(r,t) into Eq. (4) and obtain for

the reduced wave function

i
∂

∂t
ϕtot(r,t) =

(
−1

2

∂2

∂r2
+ L2

2r2
+ V (r) + r · F(t)

)
ϕtot(r,t),

(5)

with L2 being the square of the angular momentum operator.
We expand ϕtot(r,t) in spherical harmonics Ylm(θ,φ) with
radial functions flm(r,t), which are found using grid methods
[33,34].

ϕtot(r,θ,φ,t) =
Lmax∑
l=0

l∑
m=−l

flm(r,t)Ylm(θ,φ). (6)

In H2
+ the nuclei are fixed at ±R/2 and the molecule interacts

with a linearly polarized external field.

Our analysis of the role of the excited σu state is facilitated
by splitting ψtot(r,t) into the following components:

ψtot(r,t) = cg(t)ψg(r) + cu(t)ψu(r) + ψres(r,t), (7)

where ψg(r) and ψu(r) denote the orbitals of the σg ground
state and the σu first excited state, respectively. The wave
packet ψres(r,t) represents the residual part of ψtot(r,t),
including other excited states and the electronic two-center
continuum. In Eq. (7) the complex amplitude cg(u)(t) contains
both the energy phase factor, e−iEg(u)t , and the time-dependent
amplitude due to interaction with the external field. We
substitute Eq. (7) into Eq. (3) and maintain what we have
checked are the dominating terms and obtain

Stot(ω) � Sg(ω) + Su(ω) + 2[A∗
g(ω)Au(ω)], (8)

with Sg(ω) = |Ag(ω)|2, Su(ω) = |Au(ω)|2, and

Ag(ω) = ê ·
∫

2Re〈cg(t)ψg(t)|∇V (r)|ψres(t)〉eiωtdt,

(9)
Au(ω) = ê ·

∫
2Re〈cu(t)ψu(t)|∇V (r)|ψres(t)〉eiωtdt.

Equation (8) shows that the HHG spectrum includes re-
combination to the σg state, Sg(ω), recombination to the σu

state, Su(ω), and the interference term between these two
components, 2Re[A∗

g(ω)Au(ω)]. We refer to the interference
term as the orbital interference term. In the two-center
interference model the contribution Su(ω) and the orbital
interference term are absent. In the following, we analyze
the HHG spectra in terms of the components of Eq. (8) for
different internuclear distances to investigate the role of the
excited σu state, and we compare the result for the minimum
by the full TDSE calculation [Eq. (3)] with the prediction by
the two-center interference model.

III. RESULTS AND DISCUSSIONS

Calculations have been performed for a pulse with an
800 nm wavelength (angular frequency, ω0 = 0.057), a trape-
zoidal shape, and a total duration of 7 optical cycles and
linear ramps of 1.5 optical cycles. The laser peak intensity
was 1.7 × 1014 W/cm2. We varied the internuclear distance
R and the alignment angle β together according to Eq. (2) to
fix the two-center interference minimum at Nmin-TI = 29. We
consider the spectrum along the laser polarization direction
(see Refs. [27,35,36] and references therein for a discussion of
polarization properties of HHG radiation). In the calculation,
we used an equidistant grid with 1536 points that extended
up to 125 a.u. and an angular basis set with Lmax = 41. The
calculations were repeated in a larger box (2048 points in
160 a.u.) with a larger angular basis (Lmax = 46), and the
results were converged.

In the left panels of Fig. 1, the HHG spectra calculated
by Eq. (3) are shown for R = 2.0, 2.5, 3.0, and 3.25 a.u.,
with β correspondingly taken to be 30◦, 46◦, 55◦, and 58◦.
We calculated the smoothed spectrum

∫
S(� ) exp(−(� −

ω)2/σ 2)d� , with σ = 3ω0 [14], as shown by the solid red
curves to obtain a good estimate of the minimum position.
The position of the interference minimum coincides with
the anticipation of the two-center interference formula, i.e.,
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FIG. 1. (Color online) The HHG spectrum of H2
+ (left panels)

and the corresponding time-dependent populations in the σg and σu

states (right panels). The internuclear distance R and the alignment
angle β are as follows: (a) R = 2.0 a.u. and β = 30◦, (b) R = 2.5 a.u.
and β = 46◦, (c) R = 3.0 a.u. and β = 55◦, and (d) R = 3.25 a.u.
and β = 58◦. The arrow points to the location of the interference
minimum. The peak intensity of the seven-cycle laser pulse is 1.7 ×
1014 W/cm2, and the wavelength is 800 nm.

Nmin-TI = 29 in Figs. 1(a) and 1(b) for R = 2.0 and 2.5 a.u.
Figure 1(c) shows that for R = 3.0 a.u. the minimum occurs
at harmonic order 33 which is larger than expected by
Eq. (2). Figure 1(d) shows that at R = 3.25 a.u. the minimum
can hardly be observed. So the two-center interference model
gradually fails to explain the actual form of the harmonic
spectrum with increasing internuclear distance.

We turn back to a consideration of the physics included in
the full TDSE calculation, but left out in the analysis leading
to the two-center interference model, in order to understand
these results. The coupling between the ground and the first
excited states becomes increasingly important for increasing
internuclear distance [37], and hence the first excited state
plays a more and more decisive role, and in addition, the
residual wave packet ψres(r,t) in Eq. (7) contains more high-

excited states as well as the multicenter Coulombic continuum,
which cannot be simply treated as a plane wave assumed
in the derivation of the two-center interference formula (2).
As a result, the increase of the internuclear distance finally
leads to the failure of the two-center interference model. The
following analysis based on an inspection of the populations
and the behavior of the components in Eq. (8) confirms these
conclusions.

The time-dependent populations in the σg and the σu states,
Pg(u)(t) = |〈ψg(u)(r)|ψtot(r,t)〉|2, are shown in the right-hand
panels of Fig. 1 for the cases corresponding to the spectra
in the left column. Nonresonant variations in the populations
are seen during the pulse, and the amplitude of these changes
increases with the internuclear distance. This behavior results
from the increase of the transition dipole moment between the
σg and σu states [37]. Figure 1 shows that the population at the
beginning and the end of the pulse mainly resides in the σg

state. During the pulse, however, when recombination occurs
and harmonics are emitted, the σu state plays a role, and it
becomes increasingly important with increasing internuclear
distance. The temporary population of σu is small compared to
the population of the σg state, but we now show that the effect
of the recombination into the σu state is important, especially
for the plateau region of the HHG spectrum, where it may
dominate the spectrum.

In order to elucidate the detailed information contained
in the HHG spectrum, we perform a component analysis
according to Eqs. (8) and (9) for the spectra of Fig. 1. Figure 2
shows the corresponding smoothed spectra components. The
notation Stot(ω) [see legend in Fig. 2(a)] is used to represent the
total HHG spectrum, which is dominated by three components:
Sg(ω), representing the contribution of the recombination
to the σg state; Su(ω), representing the contribution of the
recombination to the σu state; and the third component is the
orbital interference term, 2Re[A∗

g(ω)Au(ω)] in Eqs. (8) and (9).
So, by comparing Stot(ω) with Sg(ω) + Su(ω), we demonstrate
the effect of the third component, the orbital interference term.

Figures 2(a) and 2(b) show that Sg(ω) dominates the HHG
spectrum in the vicinity of the equilibrium distance. Both Sg(ω)
and Stot(ω) present minima at Nmin-TI = 29, in accordance with
the expectation based on the two-center interference formula
of Eq. (2), while the Su(ω) component does not affect the
shape. Accordingly, the effect of the orbital interference term
is negligible, and the spectra of Stot(ω) and Sg(ω) + Su(ω) are
almost on top of each other.

The ionization probability increases and the recombination
into the σu state becomes more important at R = 3 a.u. due
to the increase of the temporary population of the σu state.
Figure 2(c) shows that the contributions of Sg(ω) and Su(ω) are
comparable in the plateau region. For the harmonic order from
0 to 30, Sg(ω) is higher than Su(ω), while for the harmonic order
from 30 to 40, Su(ω) is higher than Sg(ω). In addition, in Sg(ω),
the two-center interference minimum cannot be observed. This
is because ψres(r,t) in Eq. (9) cannot be approximated by a
simple plane wave in this case, but contains excited states and
the two-center Coulombic continuum. The minimum shown
in Stot(ω) is located at harmonic order 33, and it comes from
the orbital interference. We also see that the two spectra
corresponding to Stot(ω) and Sg(ω) + Su(ω) are no longer on
top of each other, and a suppression of Stot(ω) around harmonic
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a

FIG. 2. (Color online) The smoothed spectra components of the
HHG spectra of Fig. 1. The arrow points to the location of the orbital
interference minimum.

order 33 can be clearly observed. We can therefore conclude
that, at R = 3.0 a.u., the Su(ω) and the orbital interference
terms play important roles in the HHG spectrum and that the
minimum of the spectrum comes from orbital interference.
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FIG. 3. (Color online) As Fig. 1, except the sets of R and β are as
follows: (a) R = 3.3 a.u. and β = 58.5◦, (b) R = 3.8 a.u. and β = 63◦,
and (c) R = 4.8 a.u. and β = 69◦, corresponding to the distances of the
three-photon, two-photon, and one-photon resonances, respectively,
between the σg and σu states. In panels (d), (e), and (f) the populations
in the ground state, Pg and first excited state, Pu are shown during the
pulse.

The contributions to the spectrum from the different
components are illustrated in Fig. 2(d) for R = 3.25 a.u.
This distance is near the region of the three-photon resonance
between the σg and the σu state, which results in a relatively
stronger coupling between the two bound states. The two-
center interference minimum can hardly be observed from
Sg(ω). This is similar to the case in Fig. 2(c). Although the
orbital interference in the Stot(ω) is not obvious, by comparing
Sg(ω) + Su(ω) to Stot(ω), we can still locate a suppression
of the HHG spectrum around the harmonic order of 31. The
signal associated with recombination to the σu state completely
dominates the spectrum between harmonics 35 and 40.

In Fig. 3, R is increased to 3.3, 3.8, and 4.8 a.u., which
corresponds to the distances of three-photon, two-photon, and
one-photon resonance conditions, respectively, between the σg

and the σu states. The corresponding alignment angles for the
three cases are 58.5◦, 63.0◦, and 69◦. Figure 3 shows that the
two-center interference minimum cannot be observed in the
total HHG spectra for any of these cases. The time-dependent
populations of the σg and σu states are shown in the right-hand
panels of Fig. 3. With the increase of R, the coupling between
the two bound states becomes much stronger, with the most
pronounced Rabi oscillations in the one-photon resonance
case, and in addition, the ionization potential decreases
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a

FIG. 4. (Color online) The smoothed spectrum components of
the HHG spectra shown in Fig. 3. The arrows in panels (a) and (c)
point to the location of the orbital interference minimum.

[38,39]. The ionization and the recombination to the σu state
is enhanced as a result.

In Fig. 4 we show the smoothed spectrum components for
the three cases of Fig. 3. The magnitude of Su(ω) becomes
greater and dominates in the plateau region with increasing
R. This behavior is consistent with the above analysis. In
addition, the effect of the orbital interference varies for

different internuclear distances. At R = 3.0 a.u., the orbital
interference suppresses the HHG spectrum around harmonic
order 31, similar to the case at R = 2.5 a.u.; at R = 3.8 a.u., the
effect of the orbital interference could be ignored; and at R =
4.8 a.u., the orbital interference induces some enhancement of
the HHG spectrum around harmonic order 19.

IV. CONCLUSIONS

In this paper, we studied the role of the internuclear
distance on the interference minimum in the HHG spec-
trum of H2

+ based on full-dimensional TDSE calculations
for the electronic degree of freedom. The contribution to the
HHG spectrum was divided into three components correspond-
ing to (i) recombination to the ground state, (ii) recombination
to the first excited state, and (iii) the interference term between
the amplitudes of the former two components. We compared
the TDSE results and the two-center interference model and
found that the two-center interference model works well when
the internuclear distance is around the equilibrium where the
coupling between the ground state and the first excited state is
weak, such as in the cases for R = 2.0 and R = 2.5 a.u. When
the internuclear distance is increased, recombination into the
first excited state plays a more important role and the orbital
interference term also needs to be taken into account and the
two-center interference formula fails. The orbital interference
could either suppress (e.g., at R = 3.0 a.u. and R = 3.3 a.u.)
or enhance (e.g., at R = 4.8 a.u.) the HHG spectrum, and
at some R (e.g., R = 3.8 a.u.) the orbital interference does
not affect the shape of the spectrum. In general for larger
internuclear distances and close to the cutoff in the harmonic
spectra, the contribution associated with recombination to the
σu state dominates.

We have found that the harmonic spectra of H2
+ contains

much information of the excited σu orbital, especially for larger
internuclear distances with large dipole coupling between the
ground and excited states. Extrapolating to many-electron
systems, we expect an increased participation of excited states
even in the nuclear equilibrium geometry for systems with high
polarizability. In an adiabatic picture, this effect is equivalent
to orbital distortion [40].
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