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Improving shortcuts to adiabaticity by iterative interaction pictures
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Different techniques to speed up quantum adiabatic processes are currently being explored for applications
in atomic, molecular, and optical physics, such as transport, cooling and expansion, wave-packet splitting, or
internal state control. Here we examine the limitations and capabilities of superadiabatic iterations to produce a
sequence of shortcuts to adiabaticity. The general formalism is worked out as well as examples for population
inversion in a two-level system.
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I. INTRODUCTION

There is currently much interest in speeding up quantum
adiabatic processes in fields such as fast cold-atom or ion
transport, expansions, wave-packet splitting, or internal state
population and state control [1]. Accelerating adiabatic pro-
tocols is also of interest beyond the quantum domain, for
example to engineer robust mode converters of reduced length
in optical waveguides [2,3]. For many of these applications,
several formal solutions to finding a shortcut to adiabatic dy-
namics are known, but the resulting operation may in practice
be too costly energetically, or difficult to implement because of
the structure or the values of the driving Hamiltonian matrix
elements. This motivates the search for shortcut-generating
methods that improve the applicability of the speeding-up
protocols iteratively or otherwise [4]. Iterative methods in
which the energy of the system or the external resources
needed decrease with each iteration, at least up to some critical
iteration, are particularly appealing in this regard. The main
aim of this paper is precisely to develop further and explore
the limits and capabilities of an iterative scheme that produces
sequences of shortcut-driving Hamiltonians, based on nested,
“superadiabatic” interaction pictures [5–10].

To understand the method, we shall now delve into a more
detailed description of the concepts involved and the immedi-
ate precedents. Demirplack and Rice [5–7] and Berry [9] pro-
posed the addition of a suitable “counterdiabatic” term H

(0)
cd (t)

to the time-dependent Hamiltonian H0(t), such that the system
follows exactly the adiabatic dynamics of H0(t). The coun-
terdiabatic term suppresses transitions in the instantaneous
eigenbasis {|n0(t)〉} of H0(t), H0(t)|n0(t)〉 = E(0)

n (t)|n0(t)〉,
but allows for transitions in the instantaneous eigenbasis of
the full Hamiltonian H0 + H

(0)
cd . Experiments that implement

these ideas have been recently performed in different two-level
systems [11,12]. The same H

(0)
cd (t) also appears naturally when

studying the adiabatic approximation of the reference system,
the one that evolves with H0(t); see, e.g., [13]. The reference
system behaves adiabatically, following the eigenstates of
H0(t), when the counterdiabatic term is negligible, and the
adiabatic approximation is close to the actual dynamics.
This is made evident in an interaction picture (IP) based on
the unitary transformation A0(t) = ∑

n |n0(t)〉〈n0(0)|. [The
“parallel-transport” condition 〈n0(t)|ṅ0(t)〉 = 0 is assumed
hereafter to define the phases.] From the Schrödinger equation
ih̄∂t |ψ0(t)〉 = H0(t)|ψ0(t)〉 and defining |ψ1(t)〉 = A

†
0|ψ0(t)〉,

the IP equation ih̄∂t |ψ1(t)〉 = H1(t)|ψ1(t)〉 is deduced, where
H1(t) = A

†
0(t)[H0(t) − K0(t)]A0(t) is the effective IP Hamil-

tonian and K0(t) = ih̄Ȧ0(t)A†
0(t) is a coupling term. If K0(t)

is zero or negligible, H1(t) becomes diagonal in the basis
{|n0(0)〉}, so that the IP equation becomes an uncoupled system
with solutions

|ψ1(t)〉 = U1(t)|ψ1(0)〉, (1)

where

U1(t) =
∑

n

|n0(0)〉e− i
h̄

∫ t

0 E
(0)
n (t ′)dt ′ 〈n0(0)| (2)

is the unitary evolution operator for the uncoupled system.
Correspondingly, from |ψ0(t)〉 = A0(t)|ψ1(t)〉,∣∣ψ (1)

0 (t)
〉 =

∑
n

|n0(t)〉e− i
h̄

∫ t

0 E
(0)
n (t ′)dt ′ 〈n0(0)|ψ0(0)〉, (3)

where we have used |ψ1(0)〉 = |ψ0(0)〉 since A1(0) = 1 by
construction. The same solution, which, for a nonzero K0(t),
is only approximate, may become exact by adding to the IP
Hamiltonian the counterdiabatic term A

†
0(t)K0(t)A0(t). This

requires an external intervention and changes the physics of the
original system, so that U1(t) describes the evolution exactly.
In the IP, the modified Hamiltonian is H (1)(t) = H1(t) +
A

†
0(t)K0(t)A0(t) = A

†
0(t)H0(t)A0(t), and in the Schrödinger

picture (SP) the additional term becomes simply K0. The mod-
ified Schrödinger Hamiltonian is H

(1)
0 (t) = H0(t) + K0(t), so

we identify H
(0)
cd (t) = K0(t). A “small” coupling term K0(t)

that makes the adiabatic approximation a good one also implies
a small counterdiabatic manipulation, but, irrespective of the
size of K0(t), H

(1)
0 (t) provides a shortcut to slow adiabatic

following because it keeps the populations in the instantaneous
basis of H0(t) invariant, in particular at the final time tf .
Moreover, if K0(0) = 0 and K0(tf ) = 0, then H

(1)
0 = H0 at

t = 0 and t = tf . This is useful in practice to ensure the
continuity of the Hamiltonian at the boundary times: usually
H0(t < 0) = H0(0) and H0(t > tf ) = H0(tf ), so K0(t < 0) =
K0(t > tf ) = 0, i.e., H0(t) is the actual Hamiltonian before
and after the process.

The previous formal framework may be repeated iteratively
to define IPs further by diagonalizing the effective Hamil-
tonians of each IP. These iterations were used to establish
generalized adiabatic invariants and adiabatic invariants of
nth order by Garrido [10]. Berry also used this iterative
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procedure to calculate a sequence of corrections to Berry’s
phase for cyclic processes with finite slowness, and introduced
the concept of “superadiabaticity” [8]. For later developments
and applications, see, e.g., [4,7,11,14–21].

Superadiabatic iterations are best understood by working
out explicitly the next interaction picture:1 let us start with
ih̄∂t |ψ1(t)〉 = H1(t)|ψ1(t)〉 and treat it as if it were, formally,
a Schrödinger equation. The diagonalization of H1(t) pro-
vides the eigenbasis {|n1(t)〉}, H1(t)|n1(t)〉 = E(1)

n (t)|n1(t)〉,
which we fix again with the parallel transport condition,
〈n1(t)|ṅ1(t)〉 = 0. A unitary operator A1 = ∑

n |n1(t)〉〈n1(0)|
plays now the same role as A0 in the first (adiabatic) IP. It
defines a second interaction picture wave function |ψ2(t)〉 =
A

†
1(t)|ψ1(t)〉 that satisfies ih̄∂t |ψ2(t)〉 = H2(t)|ψ2(t)〉, where

H2(t) = A
†
1(t)[H1(t) − K1(t)]A1(t) and K1 = ih̄Ȧ1A

†
1. If K1

is zero or “small” enough, i.e., if a (first-order) superadiabatic
approximation is valid, the dynamics would be uncoupled in
the second interaction picture, namely,

|ψ2(t)〉 = U2(t)|ψ2(0)〉, (4)

where

U2(t) =
∑

n

|n1(0)〉e− i
h̄

∫ t

0 E
(1)
n (t ′)dt ′ 〈n1(0)| (5)

is the approximate evolution operator in the second IP for
uncoupled motion. It may happen that a process is not adia-
batic, since K0(t) may not be neglected, but (first-order) su-
peradiabatic when K1(t) can be neglected. Transforming back
to the Schrödinger picture, |ψ (2)

0 (t)〉 = A0(t)A1(t)U2(t)|ψ2(0)〉
becomes∣∣ψ (2)

0 (t)
〉 =

∑
n

∑
m

|m0(t)〉〈m0(0)|n1(t)〉e− i
h̄

∫ t

0 E
(1)
n (t ′)dt ′

× 〈n1(0)|ψ0(0)〉, (6)

and |ψ2(0)〉 = |ψ0(0)〉 since A0(0) = A1(0) = 1. Garrido dis-
tinguished two different aspects [10]:

(i) Generalized adiabaticity: The evolution operator
A0(t)A1(t)U2(t) provides an approximation to the actual
(Schrödinger) dynamics up to a correction term of order 1/t2

f .
This is so without imposing any boundary conditions (BCs) at
t = 0 and t = tf on the Hamiltonian H0.

(ii) Higher-order adiabaticity: A0(t)A1(t)U2(t) does not
guarantee in general that |n0(0)〉 evolves into |n0(tf )〉, up
to a phase factor. If this is the objective, in other words,
if a superadiabatic approximation should behave, at final
times, like the adiabatic approximation, up to phase factors,
then some BCs have to be imposed. Garrido discussed
how generalized adiabaticity implies higher-order adiabaticity
when BCs at the boundary times are imposed on the derivatives
of H0. [Garrido’s distinction does not apply in [8], since there

1The first IP and iteration just described, with dynamics governed
by H1(t), generates the modified dynamics based on H

(1)
0 in the

SP. This iteration may be naturally termed “adiabatic” since the
unitary transformation used, A0, relies on the usual adiabatic basis.
Moreover, this is the IP used to perform the adiabatic approximation
by neglecting K0. The second iteration may be considered as the first
“superadiabatic” one.

it is assumed from the start that all the derivatives of the
Hamiltonian H0 vanish at the (infinite) time edges.]

The second aspect is crucial to designing shortcuts to
adiabaticity for finite process times using the superadia-
batic iterative structure, so let us be more specific. First
notice that Eq. (6) becomes exact if the term A

†
1K1A1 is

added to the IP Hamiltonian, so that now the modified IP
Hamiltonian is H (2) = H2 + A

†
1K1A1 = A

†
1H1A1. Then the

modified SP Hamiltonian becomes H
(2)
0 (t) = H0(t) + H

(1)
cd (t),

where H
(1)
cd (t) = A0(t)K1(t)A†

0(t). However, quite generally
the populations of the final state (6) in the adiabatic basis
{|n0(tf )〉} will be different from those of the adiabatic process,
unless (a) {|n0(0)〉} = {|n1(tf )〉}, up to phase factors, and
(b) {|n0(0)〉} = {|n1(0)〉}, also up to phase factors. (a) is
satisfied when K0(tf ) = 0. This makes H1(tf ) diagonal in
the basis {|n0(0)〉} and [H1(tf ),H0(0)] = 0. (b) is satisfied
when K0(0) = 0, which implies H1(0) = H0(0). In summary,
the requirement is that the eigenstates of H1(t) at t = 0 and
t = tf coincide with the eigenstates of H0(0). If, in addition,
K1(0) = K1(tf ) = 0, not only the populations but also the
initial and final Hamiltonians are the same for the “corrected”
and for the reference processes, namely H

(2)
0 (0) = H0(0) and

H
(2)
0 (tf ) = H0(tf ).
Further iterations define higher-order superadiabatic frames

with IP equations ih̄∂t |ψj (t)〉 = Hj |ψj (t)〉, where

Hj = A
†
j−1(Hj−1 − Kj−1)Aj−1, (7)

Kj = ih̄ȦjA
†
j , (8)

with Aj (t) = ∑
n |nj (t)〉〈nj (0)| and Hj (t)|nj (t)〉 =

E
(j )
n (t)|nj (t)〉. As the Aj (0) = 1 by construction, there

is a common initial state |ψj (0)〉 = |ψ0(0)〉 for all iterations.
The general form for the modified IP Hamiltonians is
H (j ) = Hj + A

†
j−1Kj−1Aj−1 = A

†
j−1Hj−1Aj−1. Thus, the

form of the modified Hamiltonians in the SP is

H
(j )
0 = H0 + H

(j−1)
cd , (9)

where the SP counterdiabatic term is

H
(j )
cd = BjKjB

†
j = ih̄Bj ȦjA

†
jB

†
j , (10)

with Bj = A0 · · · Aj−1 and B0 = I . If Kj−1(t) is small or
negligible, Hj (t) becomes diagonal in the basis {|nj−1(0)〉} and
the IP equation becomes an uncoupled system with solutions
|ψj (t)〉 = Uj (t)|ψj (0)〉, where

Uj (t) =
∑

n

|nj−1(0)〉e− i
h̄

∫ t

0 E
(j−1)
n (t ′)dt ′ 〈nj−1(0)| (11)

is the approximate evolution operator in the j th IP. Corre-
spondingly, the approximate solution in the SP is given by
|ψ (j )

0 (t)〉 = A0(t)A1(t) · · ·Aj−1(t)Uj (t)|ψ0(0)〉. This solution
becomes exact if the H

(j−1)
cd term is added to H0, where

in general the populations of |ψ (j )
0 (tf )〉 in the adiabatic

basis {|n0(tf )〉} will be different from those of the adiabatic
process, unless appropriate BCs are imposed. These boundary
conditions are made explicit in the next section, and correspond
partially to the conditions discussed by Garrido in [10] to
define “higher-order adiabaticity.”

Is there any advantage to using one or another counter-
diabatic scheme? There are several reasons that could make
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higher-order schemes attractive in practice: one is that the
structure of the H

(j )
cd may change with j . For example,

for a two-level atom population inversion problem, H
(0)
cd =

h̄(�̇0/2)σy , whereas H
(1)
cd = h̄(�̇1/2)(cos �0σx − sin �0σz),

where the �j are the polar angles corresponding to the
Cartesian components of the Hamiltonian Hj , and the σu, with
u = x,y,z, are Pauli matrices [4]. (We shall use the Cartesian
decomposition Xσx + Yσy + Zσz for different Hamiltonians
below.)

A second reason is that, for a fixed process time, the cd terms
tend to be smaller in norm as j increases, up to a value in which
they begin to grow [18]. An optimal iteration may thus be
set [14,18]. The “asymptotic character” of the superadiabatic
coupling terms and the eventual divergence of the sequence
can be traced back to the existence of nonadiabatic transitions,
even if they are small [8].

To generate shortcuts, one should pay attention not only to
the size of the cd terms but also to the feasibility or approximate
fulfillment of the required BCs at the boundary times. Thus, it
may happen that an “optimal iteration,” of minimal norm for
the cd term, fails to provide a shortcut because of the BCs, as
illustrated below in Sec. IV.

II. BOUNDARY CONDITIONS FOR SHORTCUTS TO
ADIABATICITY VIA SUPERADIABATIC ITERATIONS

In this section, we set the boundary conditions that
guarantee that H

(j )
0 (t) provides a shortcut to adiabatic-

ity. We have seen that for j = 1 no conditions are re-
quired. For j = 2 we need that {|n1(tf )〉} = {|n0(0)〉} and
{|n1(0)〉} = {|n0(0)〉} (as before in these and similar ex-
pressions in brackets, the equalities should be understood
up to phase factors), i.e., K0(tf ) = K0(0) = 0. For the
iterations j > 2 we need that (a) {|nj−1(0)〉} = {|n0(0)〉},
which occurs when Kj−2(0) = Kj−3(0) = · · · = K1(0) =
K0(0) = 0 and (b) {|nj−1(tf )〉} = {|nj−2(0)〉}, {|nj−2(tf )〉} =
{|nj−3(0)〉}, {|nj−3(tf )〉} = {|nj−4(0)〉}, . . ., and {|n1(tf )〉} =
{|n0(0)〉}. This amounts to imposing Kj−2(tf ) = Kj−3(tf ) =
· · · = K1(tf ) = K0(tf ) = 0. The vanishing of Kj ′(0) for j ′ �
j − 2 implies that H0(0) = H1(0) = · · · = Hj−1(0), so (a) and
(b) combined may be summarized as {|nj ′ (0)〉} = {|nj ′(tf )〉} =
{|n0(0)〉} for all j ′ � j − 1. Garrido showed that canceling
out the first lth time derivatives of H0(0) and H0(tf ) makes
Kj (0) = 0 and Kj (tf ) = 0 for j = 1, . . . ,l − 1, respectively
[10]. However, canceling out the derivatives of H0 is a
sufficient but not a necessary condition to cancel the coupling
terms, so we find it more useful to focus instead on the
coincidence of the bases. This is exemplified in Sec. IV.

III. ALTERNATIVE FRAMEWORK WITH
A CONSTANT BASIS

An alternative to the formal framework described so far
provides computational advantages. It was implicitly applied
by Demirplak and Rice for a two-level system [7]. We shall
generalize here and formulate this approach explicitly. We
shall also show its essential equivalence to the former. The
main idea is to use instead of the Aj a different set of unitary
operators, Ãj (t) = ∑

n |ñj (t)〉〈n|, to define the sequence of

interaction pictures, where |ñj (t)〉 are eigenstates of the new IP
Hamiltonians H̃j (t), such that H̃j (t)|ñj (t)〉 = Ẽ

(j )
n (t)|ñj (t)〉,

and {|n〉} is a constant orthonormal basis equal for all j ,
which in principle does not necessarily coincide with |nj (0)〉.
Similarly to Eq. (7),

H̃j = Ã
†
j−1(H̃j−1 − K̃j−1)Ãj−1, (12)

where K̃j = ih̄ ˙̃AjÃ
†
j = ih̄

∑
n | ˙̃nj (t)〉〈ñj (t)|. The counterdia-

batic terms in the SP are introduced as before, H̃ (j )
cd = B̃j K̃j B̃

†
j ,

where B̃j = Ã0 · · · Ãj−1 with B̃0 = I . We shall next show
that these cd terms are independent of the chosen constant
basis, so that H̃

(j )
cd (t) = H

(j )
cd (t). Therefore, it is worth using

Ãj (t) instead of Aj (t) since they are simpler operators and
significantly facilitate the manipulations as a common basis is
used.

Let us start with the first iteration. Since H̃0(t) = H0(t),
then Ẽ(0)

n (t) = E(0)
n (t), |ñ0(t)〉 = |n0(t)〉, and K̃0 = K0, so

H̃
(0)
cd = H

(0)
cd . In addition, from Eq. (7), H0 − K0 = A0H1A

†
0,

and substituting it in Eq. (12) leads to

H̃1 = u0H1u
†
0, (13)

where we have defined a constant unitary operator

u0 = Ã
†
0A0 =

∑
n

|n〉〈n0(0)|,

u̇0 = 0.

Using

Hj (t) =
∑

n

|nj (t)〉E(j )
n (t)〈nj (t)| (14)

and

H̃j (t) =
∑

n

|ñj (t)〉Ẽ(j )
n (t)〈ñj (t)| (15)

for j = 1 in Eq. (13), we get that Ẽ(1)
n (t) = E(1)

n (t) and
|ñ1(t)〉 = u0|n1(t)〉, while |n〉 = u0|n0(0)〉. Expanding H̃

(1)
cd =

Ã0K̃1Ã
†
0, we have that

H̃
(1)
cd (t) = ih̄

∑
n,m,l,p

|ñ0(t)〉〈n| ˙̃m1(t)〉〈m|l〉〈l̃1(t)|p〉〈p̃0(t)|.

Using now 〈m|l〉 = δml , |ñ0(t)〉 = |n0(t)〉, |n〉 = u0|n0(0)〉,
and |ñ1(t)〉 = u0|n1(t)〉, it follows that H̃

(1)
cd = H

(1)
cd . Also,

K̃1 = Ã
†
0A0K1A

†
0Ã0 = u0K1u

†
0.

Repeating these steps for j � 1, H̃j = uj−1Hju
†
j−1 and

K̃j = uj−1Kju
†
j−1, where

uj = Ã
†
juj−1Aj =

∑
n

|n〉〈nj (0)|,

u̇j = 0.

This leads to Ẽ
(j )
n (t) = E

(j )
n (t), |ñj (t)〉 = uj−1|nj (t)〉, and

|n〉 = uj−1|nj−1(0)〉. Thus, for all j � 0,

H̃
(j )
cd = H

(j )
cd .

The boundary conditions to achieve shortcuts to adiabaticity
take the same form as for the original framework in the
previous section. Since K̃0 = K0 and K̃j = uj−1Kju

†
j−1 for
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j � 1, for the j th iteration, with j > 1, we need that
K̃0(0) = K̃1(0) = · · · = K̃j−2(0) = 0 and K̃0(tf ) = K̃1(tf ) =
· · · = K̃j−2(tf ) = 0. Let us recall that no conditions were
required for j = 1, although, as shown in the next section,
using a convenient (constant or initial adiabatic) basis for
specific Hamiltonians may also lead to conditions for j = 1.

IV. TWO-LEVEL ATOM

The general formalism will now be applied to the two-level
atom. Assuming a semiclassical interaction between a laser
electric field and the atom, the electric dipole, and the rotating
wave approximations, the Hamiltonian of the system in a laser-
adapted IP (that plays the role of the Schrödinger picture of
the previous section) is

H0(t) = h̄

2

(
−�(t) �R(t)

�R(t) �(t)

)
, (16)

where �R(t) is the Rabi frequency, assumed real, and �(t)
is the detuning, in the “bare basis” of the two-level system,
|1〉 = ( 1

0 ), |2〉 = ( 0
1 ). The Hamiltonians of the consecutive

interaction pictures can be written as [7]

H̃j (t) =
(

Zj (t) Xj (t) − iYj (t)

Xj (t) + iYj (t) −Zj (t)

)
, (17)

or H̃j = Xjσx + Yjσy + Zjσz [4]. Then, X0(t) = h̄�R(t)/2,
Y0(t) = 0, and Z0(t) = −h̄�(t)/2. Xj , Yj , and Zj are the
Cartesian coordinates of the “trajectory” of H̃j (t). It is also
useful to consider the corresponding polar, azimuthal, and
radial spherical coordinates, �j (t), 	j (t), and Rj (t) [4,7],
that satisfy

cos(�j ) = Zj

Rj

, sin(�j ) = Pj

Rj

, 0 � �j � π,

(18)

cos(	j ) = Xj

Pj

, sin(	j ) = Yj

Pj

, 0 � 	j � 2π,

with Rj =
√
X2

j + Y 2
j + Z2

j and Pj =
√
X2

j + Y 2
j , where the

positive branch is taken. The eigenvalues of H̃j (t) are
E

(j )
1 = −Rj and E

(j )
2 = Rj , and the corresponding eigenstates

{|ñj (t)〉} are

|1̃j 〉 = eiεj

[
e−i	j /2 sin

(
�j

2

)
|1〉 − ei	j /2 cos

(
�j

2

)
|2〉

]
,

|2̃j 〉 = e−iεj

[
e−i	j /2 cos

(
�j

2

)
|1〉 + ei	j /2 sin

(
�j

2

)
|2〉

]
,

(19)

where the phase

εj (t) = −1

2

∫ t

0
	̇j (t ′) cos [�j (t ′)]dt ′ (20)

is introduced to fulfill the parallel transport condition
〈ñj | ˙̃nj 〉 = 0. We define Ãj = |1̃j (t)〉〈1| + |2̃j (t)〉〈2|. The ma-
trix Ãj (t) under these conditions is

Ãj =
(

sin
(�j

2

)
eiεj −i	j /2 cos

(�j

2

)
e−iεj −i	j /2

− cos
(�j

2

)
eiεj +i	j /2 sin

(�j

2

)
e−iεj +i	j /2

)
. (21)

Then, from Eq. (8),

K̃j = h̄

2

[
−�̇j sin (	j ) − 	̇j

2
cos (	j ) sin (2�j )

]
σx

+ h̄

2

[
�̇j cos (	j ) − 	̇j

2
sin (	j ) sin (2�j )

]
σy

+ h̄	̇j

2
sin2 (�j )σz. (22)

Note that Ã
†
j K̃j Ãj = Ã

†
j

˙̃Aj has only nondiagonal elements in
the bare basis {|1〉,|2〉} [7].

From Eq. (7), the Cartesian coordinates of H̃j+1(t) are

Xj+1 = h̄

2
[�̇j sin (2εj ) − 	̇j sin (�j ) cos (2εj )],

Yj+1 = h̄

2
[−�̇j cos (2εj ) − 	̇j sin (�j ) sin (2εj )],

Zj+1 = −Rj . (23)

In general, if 	j (t) is constant for a particular j =
J , then 	̇J (t) = 0, and from Eq. (20), εJ (t) = 0. Thus,
taking into account Eq. (23), we have that XJ+1(t) = 0
and YJ+1(t) = −h̄�̇J /2. Equation (18) leads to 	J+1(t) =
{π/2,3π/2}, with π/2 when YJ+1 > 0 (�̇J < 0), and 3π/2
when YJ+1 < 0 (�̇J > 0). If YJ+1 = 0, 	J+1 is discontinu-
ous and �J+1 = π . Therefore, εJ+1(t) = {0, ± π/2}. From
here, several general conditions can be deduced for j ′ > J :
	j ′>J (t) = {π/2,3π/2}, εj ′>J (t) = {0, ± π/2}, Xj ′>J (t) =
0, and YJ+1(t) = −h̄�̇J /2 or Yj ′>J+1(t) = ±h̄�̇j ′−1/2. More-
over, from Eq. (22), K̃j ′>J = ±(h̄�̇j ′/2)σx with positive
sign if 	j ′ (t) = 3π/2 and negative sign if 	j ′ (t) = π/2.
Equation (18) and Y0(t) = 0 imply 	0(t) = 0 if X0(t) > 0 and
	0(t) = π if X0(t) < 0. We may thus take J = 0 and apply
the above relations, for example 	̇0(t) = 0 and ε0(t) = 0.2

As we mentioned before, the method fails as a shortcut
to adiabaticity when the boundary conditions are not well
fulfilled. To have a shortcut generated by the iteration j , we
require that �(t) and �R(t) are such that

|1̃j ′ (0)〉 ≈ |1〉, |2̃j ′ (0)〉 ≈ |2〉, (24)

|1̃j ′(tf )〉 ≈ |1〉, |2̃j ′ (tf )〉 ≈ |2〉 (25)

for 0 < j ′ < j , up to phase factors. For j ′ = 0, a natural and
simple assumption is that the bare basis coincides initially with
the adiabatic basis, i.e., Eq. (24); at tf we assume that the bare
and adiabatic bases also coincide, allowing for permutations
in the indices and phase factors.

At t = 0, using Eq. (19), taking into account that, from
Eq. (20), εj ′ (0) = 0, and that 	0(t) = 0, sin [�j ′(0)/2] = 1
and cos [�j ′(0)/2] = 0 are required, or �j ′(0) = π . Then,
cos [�j ′(0)] = Zj ′ (0)/Rj ′(0) = −1. This condition is fulfilled
if

Z2
j ′ (0) � X2

j ′ (0) + Y 2
j ′(0) (26)

as long as Zj ′=0(0) < 0, and knowing that Zj ′>0(t) =
−Rj ′−1(t) < 0. The condition (26) can be simplified for

2The analysis in this paragraph follows closely [7], but some of the
results differ, in particular the values allowed for the phases εj ′>J .
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specific j ′ values as

|Z0(0)| � |X0(0)|, (27)

|Zj ′>0(0)| � |Yj ′>0(0)|. (28)

At t = tf ,

Z2
j ′ (tf ) � X2

j ′ (tf ) + Y 2
j ′ (tf ) (29)

should be satisfied, where now, �0(tf ) can be either 0 if
Z0(tf ) > 0 or π if Z0(tf ) < 0, and �j ′>0(tf ) = π . As before,
this condition splits into

|Z0(tf )| � |X0(tf )|, (30)

|Zj ′>0(tf )| � |Yj ′>0(tf )|. (31)

As an example, we consider now a Landau-Zener scheme
for H0 (for the Allen-Eberly scheme we have found similar
results), and we study the behavior of H

(j )
0 with j = 1, 2, 3,

and 4, and the populations of the bare states driven by these
Hamiltonians.

For the Landau-Zener model, �(t) is linear in time and
�R(t) is constant,

�lz(t) = α(t − tf /2),
(32)

�R,lz(t) = �0,lz,

where α is the chirp and �0,lz is a constant Rabi frequency.
Condition (27) can be restated as

tf � 2

∣∣∣∣�0,lz

α

∣∣∣∣ . (33)

We consider the parameters α = −20 MHz2, �0,lz =
0.2 MHz, and tf = 0.2 μs for which the dynamics with H0

is nonadiabatic, see the Appendix A. Figure 1 shows X, Y ,
and Z components of H0 and H

(j )
0 , with j = 1, 2, 3, and

4. In Figs. 1(a) and 1(b) and in Table I we see that H
(2)
0

(corresponding to the first superadiabatic iteration) is optimal
with respect to applied intensities. Moreover, it cancels the
Y component completely, which is a simplifying practical
advantage in some realizations of the two-level system [4,11].
From the second superadiabatic iteration, both intensities start
to increase again. For the parameters above, condition (33)
is satisfied since tf = 20 × |�0,lz/α|, but not so condition
(28). Figure 1 shows the disagreement between H

(j )
0 and

H0, at t = 0 and t = tf for j > 1. Figure 2 shows that only
H

(1)
0 = H0 + H

(0)
cd inverts the population of |1〉, P1(t), whereas

the rest of the Hamiltonians fail to do so.

TABLE I. Maxima of the X and Y components of H0 and H
(j )
0

for j = 1, 2, 3, 4, and 5. Parameters: α = −20 MHz2, �0,lz = 0.2
MHz, and tf = 0.2 μs.

Hamiltonian |Xmax|/h̄ (MHz) |Ymax|/h̄ (MHz)

H0/h̄ 0.1 0
H

(1)
0 /h̄ 0.1 49.9

H
(2)
0 /h̄ 10 0

H
(3)
0 /h̄ 8.4 2.8

H
(4)
0 /h̄ 46.8 28.1

H
(5)
0 /h̄ 56.2 62.8

(a)

0 0.1 0.2
45

30

15

0

15

t s

X
M

H
z

(b)

0 0.1 0.2
50

25

0

25

t s

Y
M

H
z

(c)

0 0.1 0.2
30

15

0

15

30

t s
Z

M
H

z

FIG. 1. (Color online) The (a) X, (b) Y , and (c) Z components for
the Landau-Zener scheme, of H0(t) (black dots), H

(1)
0 (purple solid

line), H (2)
0 (orange dotted line), H (3)

0 (red dashed line), and H
(4)
0 (blue

dot-dashed line). In (a) and (c) the black dots and the purple solid line
coincide and in (b) the black dots coincide with the orange dotted line.
Parameters: α = −20 MHz2, �0,lz = 0.2 MHz, and tf = 0.2 μs.

V. DISCUSSION

In this paper, we have investigated the use of quantum
superadiabatic iterations (a nonconvergent sequence of nested
interaction pictures) to produce shortcuts to adiabaticity. Each
superadiabatic iteration may be used in two ways: (i) to
generate a superadiabatic approximation to the dynamics, or
(ii) to generate a counterdiabatic term that, when added to
the original Hamiltonian, makes the approximate dynamics

0 0.1 0.20

0.5

1

t s

P 1

FIG. 2. (Color online) Population of the state |1〉, P1(t), for the
Hamiltonians H0(t) (black solid line with dots), H

(1)
0 (purple solid

line), H (2)
0 (orange dotted line), H (3)

0 (red dashed line), and H
(4)
0 (blue

dot-dashed line), with the Landau-Zener scheme. Parameters as in
Fig. 1: α = −20 MHz2, �0,lz = 0.2 MHz, and tf = 0.2 μs.
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exact. The second approach, however, does not automatically
generate shortcuts to adiabaticity, namely a Hamiltonian that
produces in a finite time the same final populations as the
adiabatic dynamics. The boundary conditions needed for the
second approach to generate a shortcut have been spelled out.
This work is parallel to the investigation by Garrido to establish
conditions so that the approach (i) provides an adiabatic-like
approximation [10]. We have also described an alternative
framework to the usual set of superadiabatic equations which
offers some computational advantages, and we have applied
the general formalism to the particular case of a two-level
system. An optimal superadiabatic iteration with respect to
the norm of the counterdiabatic term is not necessarily the
best shortcut, or in fact a shortcut at all, because of the possible
failure of the boundary conditions.

We end by mentioning further questions worth investigating
on the superadiabatic framework as a shortcut-to-adiabaticity
generator. For example, other operations different from the
population control of two-level systems (such as transport
or expansions of cold atoms) have to be studied. Unitary
transformations may also be applied to simplify the Hamil-
tonian structure making use of symmetries [4]. They have
been discussed before as a way to modify the first (adiabatic)
iteration [4,14] and applied to perform a fast population
inversion of a condensate in the bands of an optical lattice
[11]. However, a systematic application and study, e.g., of
the order with respect to the small (slowness) parameter, in
particular for higher superadiabatic iterations, are still pending.
A comparison with other methods to get shortcuts, at formal
and practical levels, would be useful too. A preliminary step
in this direction, relating and comparing the invariant-based
inverse engineering approach to the counterdiabatic approach
of the first (adiabatic) iteration, was presented in [22]; see also
the Appendix B. Finally, comparisons among superadiabatic
iterations themselves have to be performed, in particular
regarding practical aspects such as the transient excitations
involved [23].

ACKNOWLEDGMENTS

We are grateful to O. Morsch and M. Berry for dis-
cussions. We acknowledge funding by Projects No. IT472-
10, No. FIS2009-12773-C02-01, No. FIS2012-36673-C03-01,
and the UPV/EHU program UFI 11/55. S.I. acknowledges
Basque Government Grant No. BFI09.39. X.C. thanks the
National Natural Science Foundation of China (Grant No.
61176118) and the Shanghai Rising-Star Program (Grant No.
12QH1400800).

APPENDIX A: ADIABATICITY AND BOUNDARY
CONDITIONS FOR THE LANDAU-ZENER PROTOCOL

The adiabaticity condition for a two-level atom driven by
the Hamiltonian (16) is [24]

1
2 |�a(t)| � |�(t)|, (A1)

where �a(t) ≡ [�R(t)�̇(t) − �̇R(t)�(t)]/�2(t) and � =√
�2 + �2

R . For the Landau-Zener scheme, this condition takes
the form

|α| � 2�2
0,lz. (A2)

0 100 2000

2000

4000

R MHz

20
R
t f
,0
.2

R2
M
H
z

FIG. 3. (Color online) 0.2�2
0,lz (red dashed line) and 20|�0,lz|/tf

(blue dashed line for tf = 2 μs and black dot-dashed line for tf =
0.2 μs). The shaded (green) area corresponds to values of α satisfying
20|�0,lz|/tf < |α| < 0.2�2

0,lz, namely, the process is adiabatic and
the eigenstates at the boundary times are essentially the bare states.
No such area exists for tf = 0.2 μs in the domain shown.

The inequalities that α must satisfy so that the system is
adiabatic and also fulfills the boundary condition (33) are

2|�0,lz|/tf � |α| � 2�2
0,lz. (A3)

Figure 3 shows the (shaded area) region for which α satisfies
20|�0,lz|/tf < |α| < 0.2�2

0,lz when tf = 2 μs. No such area
exists in the depicted domain for tf = 0.2 μs. For this shorter
time, the critical point where 1/tf = �0,lz/100 corresponds
to �0,lz = 500 MHz and detunings of up to 5 GHz. Both may
be problematic, as very large laser intensities and detunings
could excite other transitions.

APPENDIX B: INVARIANTS

The superadiabatic sequence may be pictured as an attempt
to find a higher-order frame for which a coupling term Kj is
zero in the dynamical equation so that there are no transitions in
some basis. This would mean that the states that the system fol-
lows exactly have been found, in other words, the eigenvectors
of a dynamical invariant I (t) [22,25,26]. When counterdiabatic
terms are added, it is easy to construct invariants for H

(j )
0 from

the instantaneous eigenstates of H0(t). However, quite gener-
ally this is not enough to generate a shortcut to adiabaticity
because the boundary conditions to perform a quasiadiabatic
process (one that ends up with the same populations than the
adiabatic one) may not be satisfied. A way out is to design the
invariant first, and then H (t) from it, satisfying the boundary
conditions [I (t),H (t)] = 0 at t = 0 and t = tf , and such that

0 0.1 0.2
12

6

0

6

12

t s

X
,Z

M
H
z

FIG. 4. (Color online) X (red solid line) and Z (blue dashed line)
components of the Hamiltonian obtained using the invariant-based
inverse engineering method. tf = 0.2 μs.
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150

t s

X
,Y

,Z
M
H
z

FIG. 5. (Color online) The components X0(t) (red solid line) and
Z0(t) (blue dashed line) of H0(t), the Y (t) component of H

(1)
0 (t)

(orange dot-dashed line), and the X(t) (purple dotted line) and Z(t)
(black solid line with dots) components of H

(2)
0 , for the Landau-Zener

scheme. Parameters: α = −2800 MHz2, �0,lz = 30 MHz, and tf =
0.2 μs.

H (0) = H0(0) and H (tf ) = H0(tf ) [1,22]. For the general
Hamiltonian in Eq. (16), a dynamical invariant of the corre-
sponding Schrödinger equation may be parametrized as [22]

I (t) = h̄

2
ν

(
cos γ (t) sin γ (t)eiβ(t)

sin γ (t)e−iβ(t) − cos γ (t)

)
, (B1)

where ν is an arbitrary constant with units of frequency to
keep I (t) with dimensions of energy. From the invariance
condition for I ,

dI (t)

dt
≡ ∂I (t)

∂t
− i

h̄
[I (t),H0(t)] = 0, (B2)

the functions γ (t) and β(t) must satisfy the differential
equations

γ̇ = �R sin β,
(B3)

β̇ = � + �R cos β cot γ.

To achieve a population inversion, the boundary values for γ

should be γ (0) = 0 and γ (tf ) = π . Assuming a polynomial
ansatz [22,27] for γ (t) and β(t), as γ (t) = ∑3

n=0 ant
n with the

boundary conditions γ (0) = π , γ (tf ) = γ̇ (0) = γ̇ (tf ) = 0,
and β(t) = ∑4

n=0 bnt
n with the boundary conditions

β(0) = β(tf /2) = β(tf ) = −π/2, β̇(tf ) = −π/(2tf ), and

0 0.1 0.2
0

0.5

1

t s

P 1

FIG. 6. (Color online) Population of |1〉, P1(t), for the Hamilto-
nians H0(t) (red dashed line), H

(1)
0 (blue solid line), and H

(2)
0 (black

dot-dashed line), with the Landau-Zener scheme. Parameters as in
Fig. 5: α = −2800 MHz2, �0,lz = 30 MHz, and tf = 0.2 μs.

β̇(0) = π/(2tf ), we can construct � and �R [22]. These two
functions are shown in Fig. 4, for tf = 0.2 μs (�R = 2X/h̄

and � = −2Z/h̄). For the same process time tf we also plot
in Fig. 5 X0(t) and Z0(t) for a Landau-Zener protocol in
which the Rabi frequency is slightly larger than the maximum
required for the invariant-based protocol: �0,lz = 30 MHz.
As explained in the Appendix A, an unreasonably high
laser intensity would be required to make it adiabatic while
satisfying the bare-state condition at the edges, and �0,lz =
30 MHz is still too small to satisfy Eq. (A3). This is evident
in the failure to invert the population, see Fig. 6. We use
α = −2800 MHz2 to have the bare states as eigenvectors at
the time edges which implies a rather large detuning. Figure 5
also depicts the Y (t) component of H

(1)
0 and the X(t) and Z(t)

components of H
(2)
0 for tf = 0.2 μs. With these parameters

these Hamiltonians provide shortcuts to adiabaticity, see Fig. 6,
but they use very high detunings compared to those of the
invariant-based protocol. This example does not mean, how-
ever, that invariant-based engineering is systematically more
efficient. Invariant-based engineering and the counterdiabatic
approach provide families of protocols that depend on the
chosen interpolating auxiliary functions in the first case and
on the reference Hamiltonian H0 in the second. Their potential
equivalence was studied in [22].
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