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Threshold behavior of positronium formation in positron–alkali-metal scattering
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We consider positron scattering on the alkali-metal atoms of Li, Na, and K at very low energies, where only the
elastic scattering and positronium formation in the ground state are the two open channels. Utilizing the recently
developed two-center convergent close-coupling method [Lugovskoy, Kadyrov, Bray, and Stelbovics, Phys. Rev.
A 82, 062708 (2010)] we investigate the behavior of the cross sections as the impact energy goes to zero and
demonstrate their convergence. The study sets quantitative benchmarks for any rigorous theoretical treatment of
the collision problems.
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I. INTRODUCTION

In 1948 Wigner showed that the cross-section energy
dependence near the threshold energy does not depend on
the particular reaction mechanism, but is governed only
by the long-range interaction of the reacting particles [1]. For
the case of a final state with two fragments Wigner gave a
solution for three typical cases of long-range potentials. The
derived threshold laws were found to be applicable for the
description of a rich variety of collision processes [2]. Ini-
tially, studies of threshold effects utilized collisions involving
electrons [3] and positrons [4–7]. Their longer wavelengths
allowed characterization of the scattering process using few
parameters over a substantial energy range. More recently
experimental techniques have evolved for direct study of
threshold effects in ultracold collisions with heavier particles
such as atomic nuclei [8], fermionic atoms [9], and molecular
fragments [10].

In the case of positron–alkali-metal scattering the positro-
nium (Ps) formation threshold lies at zero energy. For such
exothermic reactions the Wigner law predicts that the s-wave
cross sections behave as 1/k0, where k0 is the wave number
of the incident positron, and hence be infinite at threshold.
For elastic scattering the cross section should converge to
a constant. Watts and Humberston [11] and Humberston
and Watts [12] conducted Kohn variational calculations for
positron-lithium collisions and observed the rise in the s-wave
cross section for Ps formation with decreasing momentum
of the incident positron. They interpreted this observation in
terms of the Wigner threshold law.

Similar exothermic reaction systems occur elsewhere.
Using the Kohn variational method Armour and Chamberlain
[13] have found such results for the elastic and rearrangement
cross sections in hydrogen-antihydrogen scattering. A similar
1/k0 dependence of the cross section for H formation in
Ps collisions with protons was reported by Mitroy [14]. A
simple explanation of such behavior was given by McAlinden
et al. [5] in their paper on positron-lithium scattering. But
the argument is of general character. They point out that the
observed regularities are due to the dominating kinematic 1/k0

factor in the expression for the cross section in the absence
of amplitude dependence on k0. However, this needs to be
established in a fully convergent formalism.

There are several theoretical studies of positron scattering
from alkali-metal targets at energies above 1 eV [15–21],

where they could be tested against experiment [22–24].
Threshold behavior in positron scattering from lithium was
studied in Refs. [5,11,12,25]. It was shown that both elastic
and Ps(1s) formation cross sections obey Wigner threshold
laws. In Kohn variational calculations, up to 220 short-range
correlation terms were used for the trial wave functions
[12]. However, the absolute values of the Ps-formation cross
sections differ by orders of magnitude depending on the
chosen model parameters [11,12]. In the case of close-coupling
calculations up to 14 states were used and no convergence
was established for these quantities which also varied in wide
limits [5,25]. Recently, Ward and Shertzer [20] and Ward
et al. [21] applied the hyperspherical hidden crossing method
to Ps formation in positron-lithium scattering and found a rise
in the s-wave cross section for Ps formation as the momentum
of the incident positron was decreased. A similar result was
also obtained for positron-sodium scattering [26].

In this work we present the results of the convergent close-
coupling (CCC) calculations for positron scattering from the
alkali-metal atoms of Li, Na, and K, at very low projectile
energies. The first two atoms are able to weakly bind a positron
while the third atom, K, is not [27]. The existence of these states
was shown theoretically with the use of variational calculations
[28]. Our goal is to present convergent Ps-formation and elastic
cross sections at the very low incident positron energies, as
well as to confirm Wigner’s threshold law for Ps(1s) formation
utilizing a fully convergent formalism.

II. THEORY

The details of the two-center CCC formalism for positron
scattering are given in Refs. [29,30]. The lighter alkali-metal
atoms are readily treated by the frozen-core Hartree-Fock
model of one valence electron above a relatively inert core
[31]. Core polarizability is treated using phenomenological
polarization potentials. To incorporate explicit Ps formation,
it is convenient to replace the nonlocal exchange part of
the core potential by a local approximation [30,32]. Another
approximation is to neglect electron exchange between the Ps
electron and the target core electrons. Given the relatively inert
closed shell core we expect the effect of these approximations
to be small.

The one-electron target (T) Hamiltonian HT is diagonalized
for each orbital angular momentum l � lmax to obtain target
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pseudostates using〈
φ

(T)
f

∣∣HT

∣∣φ(T)
i

〉 = ε
(T)
f δf i, (1)

where the φ(T)
n (r) are linear combinations of the complete

Laguerre basis functions

ξ
(λ)
n,l (r) =

(
λ(n− 1)!

(2l + 1 + n)!

)1/2

(λr)l+1 exp[−λr/2] L2l+2
n−1 (−λr),

(2)

and where L2l+2
n−1 (x) is the associated Laguerre polynomial and

n ranges from 1 to the basis size N . With increasing N the
negative-energy states converge to the true discrete eigenstates,
while the positive-energy states yield an increasingly dense
discretization of the target continuum. Explicit inclusion of
Ps (pseudo)states also requires diagonalization of the Ps
Hamiltonian in a Laguerre basis:〈

φ
(Ps)
f

∣∣HPs

∣∣φ(Ps)
i

〉 = ε
(Ps)
f δf i . (3)

To get the scattering cross sections we solve the set of
momentum-space coupled-channel equations for transition
matrix elements (γ ′ = 1, . . . ,N (T) + N (Ps)):

Tγ ′,γ (qγ ′ ,qγ ) = Vγ ′,γ (qγ ′ ,qγ ) +
N (T)+N (Ps)∑

γ ′′

∫
dqγ ′′

× Vγ ′,γ ′′ (qγ ′ ,qγ ′′)Tγ ′′,γ (qγ ′′ ,qγ )

E + i0 − εγ ′′ − q2
γ ′′/(2Mγ ′′ )

, (4)

where E is the total energy, qγ is the momentum of the free
particle γ relative to the c.m. of the bound pair in channel
γ (T or Ps), εγ is the corresponding pseudoenergy of the
bound pair, Mγ is its reduced mass, and Vγ ′,γ are the effective
potentials [30].

One of the strengths of the two-center CCC formalism is
the ability to check for internal consistency. Both expansions
approach completeness with increasing N , but are not or-
thogonal to each other. The unitarity of the close-coupling
formalism ensures that double-counting cannot occur, but
the potential overcompleteness manifests itself through ill-
conditioned linear equations when solving Eq. (4). Thus, we
cannot arbitrarily increase our basis sizes, but need to be
particularly careful in demonstrating convergence. At the very
low energies considered here we only have two open states, the
target ground state and Ps(1s). All other states are closed, and
represent virtual excitation, ionization, and Ps formation (in
excited states). These virtual effects can be very large, and due
to the completeness of the Laguerre basis, can be treated by
either center. Internal consistency is established when widely
varying choices of expansions on the two centers yield much
the same results.

The critical aspect of the CCC approach is to demonstrate
convergence at each energy of the projectile with increasing
basis size parameters N and lmax, for specified exponential
falloff λ. We are free to vary N and λ for each l, for both
the target and the Ps. This creates considerable flexibility, but
for the purpose of a clear presentation of the convergence
we take λ

(Ps)
l = 1 (yields exact Ps(1s) with N (Ps) = 1) and

λ
(T)
l = 4 in all presented calculations. Furthermore, following

a series of calculations we have chosen the N
(T)
l = 25 − l to

ensure a sufficiently large number of states to yield an accurate
alkali-metal target structure and convergence in the scattering
calculations. We demonstrate convergence by variation of lmax

and the number of Ps states.

III. RESULTS

For the three alkali-metal targets considered we perform
calculations over the energy range from 10−5 to 1 eV. The lower
limit was chosen to clearly demonstrate the threshold behavior
of Ps formation. The upper limit is somewhat arbitrary, but
ensures that only elastic scattering and Ps(1s) formation
remain the only open channels over the entire energy range.
The emphasis on Ps formation at the very low energies allows
us to consider only the zeroth partial wave. Our calculations
show that the next partial wave has a contribution that begins to
be commensurate with the zeroth partial wave above 10−3 eV.

As a starting point we obtained convergence by taking
only the Ps(1s) state and increasing the lmax of the target.
Given that explicit Ps(1s) formation is already included,
surprisingly we found that a large lmax = 8 was necessary.
These calculations are labeled CCC(258,1). In the case of
lithium, sodium, and potassium the total number of atomic
states included in the close-coupling expansion is 188, 186, and
184, respectively. These calculations serve as the benchmark
results for the zeroth partial wave since all of the required
boundary conditions are satisfied, and the effects of virtual Ps
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FIG. 1. (Color online) σel (lower panel) and k0 σPs (upper panel)
for positron-lithium scattering, as a function of the incident positron
energy (13.6k2

0). For the zeroth partial wave calculated with the
indicated CCC (N (Li)
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(Ps)
lmax

) Laguerre basis parameters, see text.
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formation and target excitation and ionization are incorporated
by the closed large-l target states.

In Fig. 1 the positron-lithium results are presented. The
upper panel shows the very low energy behavior of the Ps(1s)
cross section σPs multiplied by the positron momentum k0,
while the lower panel presents the elastic cross section σel.
As expected, both k0σPs and σel tend to constant values as the
positron energy goes to zero. To demonstrate the remarkable
nature of the convergence with increasing l of the lithium
states, we also present the CCC(254,1) calculations, which are
roughly an order of magnitude above the converged results.
This is rather extraordinary, as it says that the inclusion of
the closed lithium states with 5 � l � 8 has such a dramatic
reduction of the Ps(1s) cross sections, though almost no effect
on the elastic ones. The presented CCC(254,2) calculations
show that most of the very large effect of the large-l lithium
states can be taken into account by the addition of just
the single closed Ps(2s) state. In other words, the large-l
atomic states are essentially taking into account the effect
of virtual Ps(2s) formation on the Ps(1s) cross section.
For completeness, though not presented, the addition of
Ps(3s) yields barely distinguishable results from CCC(258,1),
confirming the required internal consistency.

Figure 2 shows k0σPs (upper panel) and σel (lower panel)
for positron-sodium scattering. Once again the CCC(258,1)
calculations represent the benchmark results for the zeroth
partial wave, and again a clear linear dependence of σPs on
k0 at the very low energies is established. Unlike the case of
lithium, the CCC(254,1) results (not shown) are already not far
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FIG. 2. (Color online) The same as Fig. 1 but for positron-sodium
scattering.
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FIG. 3. (Color online) The same as Fig. 1 but for positron-
potassium scattering.

from the convergent ones. So instead, to demonstrate internal
consistency, we start from the much smaller CCC(251,1)
calculations, which yield results almost an order of magnitude
too large for the Ps(1s) cross section and substantially smaller
for elastic scattering. Given that the atomic states with 2 �
l � 8 have been dropped it is not surprising to see such a
difference. An interesting question is whether the convergent
results can be recovered by just adding more Ps states. We
found that indeed this can be achieved by setting l(Ps)

max = 1
and increasing N

(Ps)
l to convergence around N

(Ps)
l = 10 − l.

These calculations are labeled CCC(251,101) and include
10 Ps s states and 9 Ps p states of both negative and positive
energies.

In Figure 3 similar results for positron-potassium scattering
are presented. Again, it is the CCC(258,1) calculations that are
convergent and demonstrate the linear behavior of σPs at the
lowest energies. Here, as for lithium, we demonstrate internal
consistency by starting with the CCC(254,1) results. These are
an order of magnitude above the convergent results for the
Ps(1s) cross sections, though hardly different for the elastic
cross sections. This time just adding the closed Ps(2s) state (not
shown) has little effect on the results. However, taking l(Ps)

max = 1
and setting the Laguerre basis size to N

(Ps)
l = 5 − l, we find

that the CCC(254,51) calculations yield the converged results.
So in this case considerably more Ps states were necessary to
recover the convergent results than for lithium.

It is the complex interplay of atomic and core polarizability,
which varies substantially for each alkali-metal atom, that
leads to such a variety of convergence behavior. It is also
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interesting to observe other variations. For example, for both
Li and Na there is a minimum in the elastic cross section
around 0.001 eV, yet for K it moves to around 0.04 eV. The
magnitude of the energy elastic cross section (determines the
scattering length) rises rapidly from Li to K, as does k0 σPs.

IV. CONCLUSION

In conclusion, we have established convergent elastic and
Ps-formation cross sections at very low energy positron
scattering on the considered alkali-metal targets. Utilizing the
interplay between states on either the atomic or the Ps center,
internal consistency has been demonstrated. Much larger
calculations were required for convergence than previously
reported [5,25], with the smaller calculations yielding results in
error by as much as an order of magnitude. The 1/k0 threshold
behavior for the Ps-formation cross section has been clearly
observed. It is interesting to note that this threshold behavior
is the same in the present smallest nonconvergent calculations,
as well as in the much smaller ones performed earlier [5,25].

Clearly, establishing the functional behavior is much easier
than establishing the absolute cross sections.

Last, we have demonstrated the internal consistency of the
calculations. The fact that the atomic and Ps states are not
orthogonal, and yet both form (near) complete expansions,
ensures that the two-center close-coupling approach is fun-
damentally ill-conditioned. Consequently, this does not allow
for an arbitrary increase in the number of expansion states
used, not only in the problems considered but also more
generally wherever multicenter collision problems appear.
Hence considerable care needs to be undertaken to demonstrate
convergence, as has been done here.
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