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In previous papers [Bhatia, Phys. Rev. A 85, 052708 (2012); 86, 032709 (2012)] electron-hydrogen and
electron-He+ P -wave scattering phase shifts were calculated using the hybrid theory. This method is extended to
the singlet and triplet electron-Li2+ P -wave scattering in the elastic region, where the correlation functions are of
Hylleraas type. The short-range and long-range correlations are included in the Schrödinger equation at the same
time, by using a combination of a modified method of polarized orbitals and the optical potential formalism. Phase
shifts are compared to those obtained by other methods. The present calculation requires very few correlation
functions to obtain accurate results which are rigorous lower bounds to the exact phase shifts. The continuum
functions obtained in this method are used to calculate photodetachment and photoionization cross sections
of two-electron systems H−, He, and Li+. Cross sections of the metastable 1,3S states of He, and Li+ are also
calculated. These cross sections are calculated in the elastic region and compared with previous calculations. Using
these cross sections, the Maxwellian-averaged radiative-recombination rates at various electron temperatures are
also calculated.
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I. INTRODUCTION

Collision between an electron and atom or ion is a
many-body problem. The incident electron perturbs the target,
inducing in it electric multipole moments. Accurate results,
which are always useful for comparisons with results obtained
from different approaches, can be obtained for single-electron
targets because the wave function for the target is known
exactly. In general, no scaling is possible to infer phase
shifts, resonance parameters, photoabsorption cross sections,
and radiative-attachment cross sections as the nuclear charge
is increased. Therefore, it becomes necessary to carry out
calculations in each case.

At low incident energies, the distortion of the target
produced by the incident electron is important in addition to
the exchange of the electrons. One of the methods to take into
account this distortion is the method of polarized orbitals [1,2]
which includes the effect of polarization in the ansatz of the
wave function of the target. Various other approximations have
been used: Kohn-Feshbach variational method [3], Kohn vari-
ational method [4], R-matrix method [5], and the finite element
method [6]. The electron-Li2+ phase shifts in the elastic region
have been calculated using the method of polarized orbitals
by Khan et al. [7] and by Gien [8] using the Harris-Nesbet
method. The electron-H scattering [9] and electron-He+ [10]
elastic phase shifts were calculated by using a hybrid method
in which both the long-range potential proportional to −1/r4

and the short-range correlations via an optical potential were
included in the scattering equation at the same time. In this
approach, the many-body Schrödinger equation is reduced to
a single-particle Schrödinger equation. The present calculation
requires very few correlation functions to obtain accurate
results which are rigorous lower bounds to the exact phase
shifts, provided the incident electron energy is insufficient to
excite the target. Then the optical potential is negative definite
and therefore corresponds to an attractive potential. Now we
apply this approach to calculate phase shifts for the scattering
of electrons from the doubly ionized lithium atoms, Li2+.

We use the continuum functions obtained in the present
formalism to calculate the photodetachment of the hydrogen
ion H−, and photoionization cross sections of He and Li+ in
the ground and metastable states at various photon energies.
Using these cross sections, the Maxwellian-averaged radiative-
recombination rates at various electron temperatures are also
calculated. We use Rydberg units: energy in Rydbergs and
length in Bohr radius a0. The phase shifts, throughout, are in
radians.

II. THEORY

We briefly describe the formalism already presented in
[9,10]. In order to replace the many-body Schrödinger equation
with a single-body Schrödinger equation, the total spatial
wave function for electron-target partial wave (denoted by L)
problem is written as

�L(�r1,�r2) =
[
u(r1)

r1
YL0(

�

r1)�pol(r1,r2) ± (1 ↔ 2)

]

+
∑

λ

Cλ�
λ
L(�r1,�r2), (1)

where L = 1 in this case, and Cλ are the unknown coefficients.
The summation over λ is from 1 to N , the number of terms in
the expansion. The (±) above refers to singlet (upper sign) or
triplet (lower sign) scattering, respectively. In order to include
the polarization of the target, the effective target function can
be written as

�pol(�r1,�r2) = φ0(�r2) − χβ(r1)

r2
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, (4)
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and θ12 is the angle between �r1 and �r2. We have replaced the
step function ε(r1,r2) used in [2] by a smooth cutoff function
χβ(r1), which is of the form

χβ(r1) = (1 − e−βr1 )n, (5)

where n � 3. Now the polarization takes place whether
the scattered electron is inside or outside the orbital electron.
The polarization function given in Eq. (2) is valid throughout
the range. This is unlike the step function ε(r1,r2) used
in [2] which ensures that the polarization takes place when
the scattered electron r1 is outside the orbital electron r2.
Furthermore, the function in Eq. (5) gives us another parameter
β, which is a function of k, the incident electron momentum.
This term guarantees that χβ(r1)/r2

1 → 0 when r1 → 0 and it
also contributes to the short-range correlations in addition to
those obtained from the correlation function �L, and therefore,
is useful to optimize the results.

Beyond the terms containing u(r1) explicitly (those are the
terms giving rise to the exchange approximation), the function
�L is the correlation function. For arbitrary L this function is
most efficiently written in terms of the Euler angles [11]:

�L = [
f

κ,+1
L (r1,r2,r12)Dκ,+1

L (θ,φ,ψ)

+ f
κ,−1
L (r1,r2,r12)Dκ,−1

L (θ,φ,ψ)
]
. (6)

The D
κ,ε
L functions (ε = +1, −1) are called rotational

harmonics [11]. The f ’s above are the generalized “radial”
functions, which depend on the three residual coordinates that
are required (beyond the Euler angles) to define the two vectors
r1 and r2. The distance between the two electrons is given by
r12 = |�r1 − �r2|.

The radial functions f 1±
1 for L = 1 are defined as follows:

f 1+
1 = cos(θ12/2)[f (r1,r2,r12) ± f (r2,r1,r12)], (7)

f 1−
1 = sin(θ12/2)[f (r1,r2,r12) ∓ f (r2,r1,r12)], (8)

and

f (r1,r2,r12) =
∑
lmn

Clmnr
l
1r

m
2 rn

12e
−γ r1−δr2 . (9)

The upper sign in Eqs. (7) and (8) refers to the singlet state and
the lower sign refers to the triplet state. The minimum value of
l is equal to 1, while that of m and n is 0. The wave function
of the scattered electron is given implicitly by∫

[YL0(�1)�pol(�r1,�r2)(H − E)�L]d�r2 d�1 = 0, (10)

where H is the Hamiltonian and E is the total energy of the
electron target. We have, in Rydberg units,

H = −∇2
1 − ∇2

2 − 2Z

r1
− 2Z

r2
+ 2

r12
, (11)

E = k2 − Z2, (12)

where k2 is the kinetic energy of the incident electron
and Z is the nuclear charge, which is three for Li2+. The
integrodifferential equation, obtained from Eq. (10) for the
scattering function u(r1), has been given in the previous
publication [9] and is not repeated here. The phase shifts are
obtained from u(r1) for r1 approaching infinity.

TABLE I. Comparison of phase shifts η (radians) for e-Li2+

scattering without correlations with those obtained by the method
of polarized orbitals [7].

3P 1P

k Present η ηPO [7] Present η ηPO [7]

0.1 0.16323 −0.049083
0.2 0.16334 −0.048990
0.3 0.16341 −0.048934
0.4 0.16351 0.1685 −0.048828 −0.05055
0.5 0.16369 0.1685 −0.048565 −0.05025
0.6 0.16379 0.1695 −0.048306 −0.04987
0.7 0.16382 0.1684 −0.047972 −0.04940
0.8 0.16374 0.1682 −0.047547 −0.04883
0.9 0.16399 0.1681 −0.046746 −0.04814
1.0 0.16409 0.1677 −0.045966 −0.04733
1.1 0.16399 0.1675 −0.045029 −0.04638
1.2 0.16378 0.1670 −0.043932 −0.04529
1.3 0.16345 0.1665 −0.042670 −0.04404
1.4 0.16299 0.1659 −0.041251 −0.04263
1.5 0.16237 0.1651 −0.039689 −0.04105
1.6 0.16158 0.1642 −0.037973 −0.03931

III. CALCULATIONS AND RESULTS

The phase shifts for 3P and 1P states, given in Table I,
obtained without correlations are compared with those
obtained in [7] using the method of polarized orbitals [2]. For
the triplet states, the present phase shifts are lower than those
obtained in [7], while for the singlet states they are higher.
In the previous calculations for e-H and e-He+, phase shifts
obtained by the method of polarized orbitals were always
higher compared to those obtained by the present method.
The present results for e-Li2+ are lower bounds to the exact
phase shifts, while those obtained by the method of polarized
orbitals have no bounds.

The phase shifts for 3P and 1P states, given in Table II,
obtained with correlations, are compared with those obtained
in [8] by using the Harris-Nesbet method. The present phase
shifts are higher than those obtained in [8]. Only ten correlation
functions are required for 1P states and only four correlation
functions are required for 3P states. In the 3P states, the
two electrons stay away from each other because of the
Pauli principle and therefore correlations are less important.
Moreover, the Coulomb potential dominates, making the
correlations even less important in this case. The present phase
shifts are, in general, higher than those obtained in [8] using
the Harris-Nesbet method.

IV. PHOTOABSORPTION IN H−, He, AND Li+

In a previous paper [10], it was shown that the present
approach for calculating the scattering functions can be used
to calculate resonance parameters to a very high accuracy
and the resonance parameters obtained for the Feshbach
resonances in He and H− agreed well with those obtained in the
previous calculations using the Feshbach formalism. Now we
use the continuum functions obtained by the present method
to calculate photoabsorption cross sections. Photodetachment
and photoionization cross sections are required to calculate
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TABLE II. Phase shifts (radians) for e-Li2+ scattering various
k for N = 4 for 3P and 10 for 1P states. N = 20 for 1P states,
k = 1.2–1.6.

3P 1P

k Present η (Gien)a Present η (Gien)a

0.1 0.17106 −0.042229
0.2 0.17135 −0.041929
0.3 0.17158 −0.041825
0.4 0.17155 −0.041737
0.5 0.17166 0.17176 −0.041407 −0.04317
0.6 0.17193 0.17167 −0.041017 −0.04205
0.7 0.17190 0.17155 −0.040686 −0.04201
0.8 0.17172 0.17141 −0.039782 −0.04125
0.9 0.17266 0.17124 −0.038966 −0.04036
1.0 0.17180 0.17105 −0.037977 −0.03932
1.1 0.17168 0.17082 −0.035725 −0.03813
1.2 0.17145 0.17056 −0.035220 −0.03676
1.3 0.17100 0.17026 −0.033851 −0.03521
1.4 0.17041 0.16991 −0.031925 −0.03345
1.5 0.16972 0.16951 −0.029898 −0.03146
1.6 0.16879 0.16906 −0.027414 −0.02923

aReference [8].

radiative-attachment cross sections. The photoionization and
recombination rates are needed to compute the ionization
balance in astrophysical plasmas. They are also useful to probe
the electron interactions with the atomic structure, and to study
reactions in upper atmosphere and planetary nebulae. Atomic
helium is of interest due to its high relative abundance in astro-
physical plasmas. Bound-free transitions or photodetachment
of H− are required to account for the continuous absorption in
the solar atmosphere. The departures of the continuous of the
solar spectrum from the blackbody curves were first ascribed
by Wildt [12] to the continuous absorption of radiation in
H− ions in the sun. The opacity in the sun is due to the
photodetachment and free-free absorption of the radiation:

hν + H− → H + e, (13)

hν + e + H → e + H. (14)

In the first process, the bound electron in the initial state
absorbs the radiation and becomes a free electron in the final
state, while in the free-free transition, the electron in the con-
tinuum state absorbs the radiation and the electron in the final
state is again in a continuum state. This is the inverse process
of bremsstrahlung of an electron in the vicinity of hydrogen
atoms. This process was investigated by Chandrasekhar and
Breen [13]. The photodetachment of H− ions by Ar-ion laser
has been used to simulate the effects of thermal and superther-
mal ground states of hydrogen atoms on dust grains [14].

The photodetachment or photoionization cross section (in
length form and in units of a2

0) for a transition from an initial
state i to the final state f are given by

σ = 4παkω|〈�f |z1 + z2|�i〉|2, (15)

where α is the fine-structure constant, k is the momentum
of the outgoing electron, and ω is the energy of the incident

photon:

ω = I + k2, (16)

where I is the ionization potential of the system absorbing the
photon, and k2 is the energy of the ejected electron, and they
are in Rydberg units. We use here the length form for the cross
section because this form is most suitable when the long-range
correlations are included in the final-state wave function and
most of the contribution to the matrix element in Eq. (15)
comes from outer regions rather than the region close to the
nucleus. �i , the ground-state wave function of the (1S) state
as well as for metastable states (1S and 3S) of the two-electron
system, is of the Hylleraas form and is given by

�i = 1√
8π2

Nω∑
lmn

Clmn

[
e−ar1−br2rl

1r
m
2 ± (1 ↔ 2)

]
rn

12. (17)

The upper sign refers to the singlet states and the lower sign
refers to the triplet states. The nonlinear parameters a and
b, and energies for a various number of terms are given in
Table XI in the Appendix for H−, He, and Li+. The final-state
wave function �f is given by Eq. (1). The expression for the
cross section in Eq. (15) is obtained under the assumption that

u(r) ∝ 1/k for r → ∞. (18)

In Table III, we give the photodetachment of H−, calculated
without the correlation functions in Eq. (1). The cross sections
have been calculated for 220, 286, and 364 terms in the bound-
state wave function given in Eq. (17). Except at very low energy
of the outgoing electron, the cross sections have converged in
the third decimal place. The photodetachment cross section

TABLE III. Photodetachment cross sections (Mb) for the ground
state of H− without correlations and comparison with those obtained
by Bell and Kingston. Momentum of the out electron is k.

k Nω = 220 286 364 Ref. [15]

0.01 0.0243 0.0244 0.0245
0.02 0.1914 0.1927 0.1959
0.03 0.6306 0.6345 0.6444
0.04 1.4449 1.4530 1.4736
0.05 2.7015 2.7148 2.7480
0.06 4.4275 4.4462 4.4914
0.07 6.6082 6.6310 6.6844
0.1 15.2147 15.2324 15.2465 12.34
0.2 38.3763 38.3675 38.3688 40.48
0.23 39.3755 39.3917 39.4354
0.24 39.2152 39.2359 39.2882
0.25 38.8565 38.8790 38.9121
0.26 38.3294 38.3510 38.3850
0.3 34.9783 34.9806 34.9684 36.40
0.4 24.2498 24.2472 24.2537 25.296
0.5 15.8663 15.8699 15.8692 16.43
0.6 10.4972 10.4942 10.4924 11.29
0.7 7.1234 7.1243 7.1258
0.74 6.1508 6.1521 6.1530
0.8 4.9762 4.9769 4.9768 5.31
0.8544 4.1423 4.1425 4.1421
0.8631 4.0230 4.0228 4.0224
0.8660 3.9852 3.9851 3.9846
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TABLE IV. Photodetachment cross sections (Mb) of the ground
state of H−. The outgoing electron has momentum k. The short-range
correlations are included in the final state. Nω is the number of terms
in the bound-state function given in Eq. (17).

k Nω = 220 286 364 PHQa Ref. [25]

0.04 1.4464 1.4545 1.4750
0.05 2.7050 2.7185 2.7517
0.06 4.4347 4.4534 4.4988
0.1 15.2526 15.2704 15.3024 15.400 15.937
0.2 38.5516 38.5429 38.5443 39.411 37.870
0.23 39.5764 39.5927 39.6366 38.707
0.25 39.0699 39.0925 39.1350 38.116
0.3 35.2420 35.2443 35.2318 36.639 34.239
0.4 24.4734 24.4709 24.4774 25.296 23.858
0.5 16.0830 16.0866 16.0858 16.473 15.720
0.6 10.7459 10.7428 10.7410 11.601 10.431
0.7 7.4837 7.4847 7.4862 7.587 7.101
0.74 6.6050 6.6063 6.6072 6.139
0.8 5.6506 5.6514 5.6512 6.456 4.978
0.8544 4.1426 4.1425 4.1421
0.8631 6.8980 6.8984 6.8976
0.8660 7.6229 7.6230 7.6223

aReference [16].

approaches zero for k → 0 because the normalized scattering
function behaves like the spherical Bessel function j1(kr1),
which goes to zero for k → 0. These results are compared
with those of Bell and Kingston [15] who used the method of
polarized orbitals. Their results are higher than the present
results. This could be due to the fact that the method of
polarized orbitals is not a variational one.

In Table IV, the cross sections are calculated when 35 short-
range correlations are also included in the final state. The
present results are compared with those obtained earlier [16]
using the projection operator formalism [17], but without the
polarization potential in the scattering equation. These results,
though converged, are higher than the present results which
include the effects of the long-range correlations as well as of
the short-range correlations.

We find that at low energies the cross sections obtained
by including the long-range and short-range correlations do
not change significantly when compared to those obtained by
including only the long-range correlations. This shows that at
low energies the long-range correlations contribute the most.
The two sets of cross sections are given in Fig. 1, and the
deviation when k is greater than 0.6 can be seen clearly.
This is due to the fact that at higher energies the electron
penetrates closer to the nucleus. Beyond k = 0.8, the cross
sections calculated by including the short-range correlations
start rising because of the resonance region, which has not
been investigated in this work. Therefore, the cross sections
given in the figure are in the nonresonant region only.

We find that the maximum of the cross section (with or
without correlations) occurs at k = 0.23, which corresponds to
a photon of wavelength 8406.3 Å, (using λ = 911.267/ω Å).
This agrees closely with the result obtained by Chandrasekhar
[18]. There are a number of other calculations. The R-matrix
results of Zhang et al. [19] are given only as curves and
it is difficult to give a meaningful comparison with their
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FIG. 1. (Color online) Photodetachment of a hydrogen negative
ion. The lowest curve is obtained when only the long-range correla-
tions are included; the middle curve is obtained when the short-range
and long-range correlations are included. The top curve is obtained
using Eq. (19).

calculations. Broad and Reinhardt [20] have carried out the
calculations using the J -matrix technique. Their result at
k = 0.2, the common point, is very close to the present results.
Ohmura and Ohmura [21], using the effective range theory and
the loosely bound structure of hydrogen ion, obtained

σ = 6.8475 × 10−18γ k3

(1 − γρ)(γ 2 + k2)3
cm2, (19)

where γ = 0.235 588 3, the square root of the binding energy,
and ρ = 2.646 ± 0.004 is the effective range. The cross
sections, obtained from (19), are generally higher than the
present results except at low energies where they are close to
the present results. Their results are also given in Fig. 1 and the
maximum in these cross sections occurs at a slightly higher
incident electron momentum k = 0.236 or at 8195 Å.

A calculation similar to one carried out in [10], using
the projection operator formalism, has also been carried out
by Ajmera and Chung [22]. Their results are close to those
obtained in [10], given again in Table IV. Their results were
given in [10] and are not repeated here. A close-coupling
calculation using pseudostates, similar to those carried out
by Norcross [23] and Jacobs [24] for the metastable states in
He, has been carried out by Wishart [25]. A fitting formula,
given below, to these results has been obtained by Chuzhoy
et al. [26]:

σ (ε) = 2.1 × 10−16(ε − 0.75)1.5

ε3.11
cm2, (20)

where ε is the photon energy in units of eV. The cross sections
obtained using this expression are also given in Table IV for
the incident momentum k = 0.1–0.8. These cross sections are
in good agreement with the present results. However, they
are slightly lower than the present results, except at k =
0.1–0.4. The present calculations are expected to be fairly
accurate because they include the essential physics of the
problem by having an ansatz for the wave function which
gives the exact polarizability of the target and also includes
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TABLE V. Photoionization cross sections (Mb) of the ground
state of He with outgoing electron having momentum k, without
correlations in the scattering state. Nω is the number of terms in the
bound-state function given in Eq. (17).

k Nω = 120 165 220 Ref. [30]a

0.1 7.2634 7.2627 7.2621 7.560
0.2 7.0902 7.0888 7.0883 7.386
0.3 6.8111 6.8098 6.8094 7.083
0.4 6.4396 6.4384 6.4382 6.685
0.5 5.9948 5.9938 5.9938 6.220
0.6 5.4996 5.4989 5.4990 5.713
0.7 4.9752 4.9750 4.9751 5.185
0.8 4.4466 4.4466 4.4467 4.651
0.9 3.9294 3.9295 3.9296 4.127
1.0 3.4426 3.4428 3.4428 3.614
1.1 2.9919 2.9920 2.9920 3.152
1.2 2.5833 2.5834 2.5834 2.712
1.3 2.2191 2.2192 2.2191 2.335
1.4 1.8991 1.8991 1.8991 2.002
1.5 1.6200 1.6200 1.6200
1.6 1.3783 1.3783 1.3783
1.7 1.1728 1.1729 1.1729
1.8 0.9960 0.9960 0.9960
1.9 0.8455 0.8455 0.8455
2.0 0.7215 0.7215 0.7215

aInterpolated.

the short-range correlations. Furthermore, the calculations are
variational, which results in phase shifts which have lower
bounds to the exact phase shifts. In the present approach,
there is no need to include pseudostates to obtain the exact
polarizability of the target.

Miyska et al. [27] have obtained accurate results for the
photodetachment of H− using the R-matrix approach. A
comparison of the present results in the nonresonant region
with the R-matrix results given in Fig. 1 of [27] shows very

good agreement between the two calculations. Even the shape
of the present curve agrees with that of Fig. 1 [27], when plotted
against the photon energy. A more definite comparison would
have been possible if numerical results had been provided in
addition to Fig. 1 [27].

There are experimental results [28,29] for photodetach-
ment, given in the form of curves, and again it is not possible
to make an accurate comparison with the present results.
However, they appear to be close to the present results and
the maximum in [28] is around 8000 Å. This is close to the
calculated value, considering the resolution in the experiment
is approximately 300 Å.

In Table V, the photoionization cross sections of He
obtained without the short-range correlations are given for
various momenta of the outgoing electron. They are given for
120, 165, and 220 terms in the ground-state wave function
of the He atom. The cross sections have converged in the
fourth decimal place in this case. They are compared to those
obtained by Bell and Kingston [30] using the method of
polarized orbitals. The cross section has a finite value for
k → 0, which is due to the fact the final-state wave function
is a Coulomb function and u(r) ∝ 1/

√
k, and the expression

for the cross sections become independent of k, the outgoing
electron momentum.

In Table VI, the cross sections are obtained by including
20 short-range correlations in the wave function for scattering.
They have converged to the third decimal place. The agreement
between the present results obtained using 220-term bound-
state functions with the R-matrix results [31] is very good. If
plotted, they can hardly be distinguished from each other. The
present results are also compared with those obtained by Burke
and McVicar [32] using the close-coupling approximation
and the experimental results of West and Marr [33]. The
experimental results, which have an accuracy of 3%, are lower
than the calculated ones for k = 0.1–0.3, the same at k = 0.4,
and then they are higher for k = 0.5–1.6. The experimental
results of Samson et al. [34] have an accuracy of 0.1% and

TABLE VI. Photoionization cross sections (Mb) for the ground state of He obtained with correlations. The outgoing
electron has momentum k.

k Nω = 120 165 220 R matrixa Ref. [32]b Ref. [33]b Ref. [34]b

0.1 7.3319 7.3305 7.3300 7.295 7.51 7.44
0.2 7.1563 7.1549 7.1544 7.115 7.28 7.13
0.3 6.8733 6.8720 6.8716 6.838 6.93 6.83
0.4 6.4965 6.4953 6.4951 6.474 6.49 6.46
0.5 6.0471 6.0461 6.0461 6.006 5.598 5.99 6.02
0.6 5.5929 5.5924 5.5925 5.535 5.449 5.46 5.55
0.7 5.0121 5.0118 5.0120 4.985 5.103 4.92 5.04
0.8 4.4738 4.4738 4.4740 4.482 4.570 4.38 4.51
0.9 3.9647 3.9648 3.9649
1.0 3.4652 3.4654 3.4654 3.476 3.511 3.38 3.48
1.1 3.0205 3.0206 3.0206 3.023 3.021 2.93 3.00
1.3 2.2560 2.2561 2.2561 2.271 2.293 2.17 2.19
1.4 1.9820 1.9821 1.9821 1.943 2.010 1.87 1.89
1.5 1.6816 1.6817 1.6817
1.6 1.6324 1.6329 1.6329

aReference [31].
bInterpolated.
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TABLE VII. Photoionization cross sections (Mb) for the ground
state of Li+ obtained with correlations. The outgoing electron has
momentum k.

k Nω = 84 120 165 Ref. [35]a Ref. [36]a

0.2 2.5684 2.5679 2.5677 2.569 2.501
0.3 2.5237 2.5233 2.5231 2.520 2.432
0.4 2.4379 2.4375 2.4373 2.457 2.355
0.5 2.3875 2.3872 2.3870 2.384 2.271
0.6 2.2992 2.2989 2.2988 2.993 2.182
0.7 2.2008 2.2006 2.0005 2.206 2.087
0.8 2.0926 2.0925 2.0925 2.105 1.988
0.9 1.9792 1.9792 1.9792 1.998 1.885
1.0 1.8612 1.8612 1.8613 1.886 1.780
1.1 1.7395 1.7396 1.7396 1.770 1.674
1.2 1.6218 1.6219 1.6219 1.652 1.566
1.3 1.5033 1.5034 1.5035 1.533 1.459
1.4 1.3877 1.3878 1.3879 1.414 1.353
1.5 1.2766 1.2767 1.2768 1.297 1.248
1.6 1.1704 1.1706 1.1706 1.183 1.146

aInterpolated.

they are also given in Table VI. The agreement between the
present results and the experimental results is fairly good.

The photoionization of positive ions is common in stellar
environment. In Table VII, the photoionization cross sections
of Li+, calculated by including the long-range and short-range
correlations, are given. The present results are compared with
those obtained by Bell and Kingston [35] using the method
of polarized orbitals. In their calculations, �pol terms were
not included in the calculations of the cross sections. Daskhan
and Ghosh [36] repeated these calculations by including these
terms, and their results, which are lower than those of [35],
are also given in the table. We have used (2πa0)2/α = 8.062
Mb, while it is 8.067 Mb in [35] and 8.078 Mb in [36]. Their
results, given in Table VII, have been corrected by using the
present value, 8.062 Mb.

Photoionization of metastable states can be a significant
mechanism for depopulating such states in the interplanetary
nebulae. Cross sections of the (1s2s)1,3S states of He and Li+,
leaving the target in the (1s)2S state, are calculated using the
presently calculated continuum functions for the singlet and
triplet P states and they are given in Table VIII. The present
results are compared with those of Norcross [23] who used
the method of coupled equations for calculating the scattering
functions. The present results are also compared with those
of Jacobs [24] who used pseudostates (2s̄,2p̄) in the coupled
equations for calculating the continuum functions. His results
are closer to the present results.

V. RADIATIVE ATTACHMENT

The radiative attachment plays an important role in the
solar and astrophysical problems. The molecular formation
takes place through such processes:

e + H → H− + hν, (21)

H− + H → H2 + e. (22)

TABLE VIII. Photoionization cross sections (Mb) for the
metastable states of He and Li+ with outgoing electron with
momentum k.

(1s2s) 1S state of He

k Nω = 220 364 455 Ref. [23]a Ref. [24]a

0.1 8.7281 8.7652 8.7724 8.973
0.2 7.5454 7.4972 7.5894 7.344
0.3 6.0386 6.0563 6.0523 5.885
0.4 4.5541 4.5424 4.5403 4.595
0.5 3.2880 3.2752 3.2766 3.467 3.260
0.6 2.2116 2.2119 2.2123 2.515 2.357
0.7 1.6003 1.6052 1.6047 1.725 1.661
0.8 1.1216 1.1234 1.1230 1.104 1.141
0.9 0.7871 0.7862 0.7863 0.647 0.771
1.0 0.5483 0.5473 0.5474 0.360 0.521
1.1 0.3800 0.3796 0.3796 0.240 0.364
1.3 0.1857 0.1858 0.1858 0.212
1.4 0.1278 0.1279 0.1279 0.162
1.5 0.06998 0.07002 0.07001 0.090

(1s2s) 3S state of He
k Nω = 220 286 364
0.1 5.2600 5.2633 5.2629 4.749
0.2 5.0773 5.0798 5.0795 4.564
0.3 4.2004 4.2004 4.2004 4.112
0.4 3.4430 3.4418 3.4403 3.537
0.5 2.7194 2.1719 2.7189 2.912
0.6 2.1527 2.1532 2.1531 2.295
0.7 1.4561 1.4565 1.4564 1.733
0.8 1.3540 1.3539 1.3539 1.256
0.9 0.8729 0.8727 0.8728 0.885
1.0 0.6552 0.6551 0.6551 0.623
1.1 0.5577 0.5577 0.5577 0.463
1.2 0.3743 0.3744 0.3744 0.383
1.3 0.2898 0.2898 0.2898 0.347
1.5 0.2218 0.2218 0.2218

(1s2s) 1S state of Li+

k Nω = 56 84 120
0.1 2.4241 2.4228 2.4225
0.2 2.2312 2.3749 2.3742
0.3 2.2247 2.2298 2.2287

(1s2s) 3S state of Li+

k Nω = 120 165 220
0.1 2.9795 3.0071 2.9889
0.2 2.8444 2.8722 2.8570
0.3 2.6274 2.6533 2.6434
0.4 2.3559 2.3764 2.3733
0.5 2.0712 2.0832 2.0865
0.6 1.7864 1.7894 1.7962
0.7 1.5153 1.5115 1.5182
0.8 1.2699 1.2627 1.2627
0.9 1.0520 1.0449 1.0462
1.0 0.8619 0.8569 0.8560
1.1 0.7046 0.7022 0.7003
1.2 0.5713 0.5710 0.5693
1.3 0.4609 0.4619 0.4607
1.4 0.3711 0.3725 0.3721
1.5 0.3006 0.3020 0.3020
1.6 0.2413 0.2424 0.2427

aInterpolated.
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Such recombination processes took place in the early Universe
when the temperature of matter and radiation came down close
to a few thousand degrees. In Eq. (21), H can be replaced by
He+ and Li2+ to give a He atom and Li+ ion in the final
state. These processes are exothermal processes and have
a small radiative-attachment cross section compared to the
photodetachment or photoionization cross sections σ . The
attachment cross section σa is given by

σa =
(

hν

cpe

)2
g(f )

g(i)
σ =

(
hv

c

)2 1

2mE

g(f )

g(i)
σ, (23)

which follows from the principle of detailed balance. In the
above equation, pe ≡ k is the electron momentum. The attach-
ment cross sections are much smaller than the photoabsorption
cross sections. The radiative rate coefficient averaged over the
Maxwellian velocity distribution f (E) is given by

αR(T ) = 〈σavef (E)〉 , (24)

where ve is the electron velocity, and the rate is given by

αR(T ) =
√

2/π
c

(mc2kBT )1.5

g(f )

g(i)

×
∫ ∞

0
dE(E + I )2σe−E/kBT , (25)

where E = k2 is the energy of the electron in Eq. (21), kB

is the Boltzmann constant, T is the electron temperature,
and we have used hν = E + I , where I is the threshold
for photodetachment or photoionization. Considering the
spin states of the electron, the angular momentum, and the
polarization directions of the electromagnetic field, we find
g(i) = 12, the statistical weight of the initial state, and g(f ) =
6(2S + 1), the statistical weight of the final state where S is
the spin of the final state of the recombined ion. The above
equation has units of cm3/s and can be written as

αR(T ) = (2S + 1)10.2509 × 1010

(T )1.5

×
∫ ∞

0
dE(E + I )2σe−E/kBT . (26)

TABLE IX. Recombination rate coefficients (cm3/s) for (1s1s)
1S states of H−, He, and Li+.

T αR(T ) × 1015, H− αR(T ) × 1013, He αR(T ) × 1013, Li+

1000 0.99 2.50 0.12
2000 1.28 2.39 1.04
5000 2.40 1.87 2.62
7000 2.82 1.66 2.92
10000 3.20 1.45 3.03
12000 3.37 1.35 3.02
15000 3.56 1.23 2.95
17000 3.65 1.17 2.89
20000 3.75 1.10 2.79
22000 3.79 1.05 2.73
25000 3.83 0.99 2.63
30000 3.83 0.92 2.49
35000 3.77 0.87 2.36
40000 3.67 0.82 2.25

TABLE X. Recombination rate coefficients (cm3/s) of metastable
states (1s2s) 3S,1S states of He and Li+.

He Li+

(1s2s)3S (1s2s)1S (1s2s)3S (1s2s)1S

T αR(T ) × 1014 αR(T ) × 1015 αR(T ) × 1014 αR(T ) × 1014

1000 2.13 8.27 4.68 2.99
2000 2.08 7.97 4.47 2.87
5000 1.71 7.30 3.48 2.27
7000 1.56 5.71 3.09 2.03
10000 1.40 5.05 2.68 1.78
12000 1.32 4.73 2.49 1.66
15000 1.23 4.35 2.26 1.52
17000 1.18 4.15 2.14 1.45
20000 1.12 3.90 1.98 1.36
22000 1.09 3.75 1.90 1.31
25000 1.04 3.57 1.79 1.24
30000 0.98 3.31 1.64 1.15
35000 0.93 3.10 1.52 1.08
40000 0.89 2.93 3.143 1.02

The photoionization cross section σ in Eq. (26) is in units of
Mb. The rate coefficients, Table IX, for H, He+, and Li2+ have
been calculated using the cross sections given in Tables IV,
VI, and VII. Most of the contribution to the integrals is from
the first few energy points. The present results are based on
accurate photodetachment and photoionization cross sections,
and therefore should be fairly accurate. They increase as
the electron temperature increases, attain a maximum value,
and then decrease with the increase of the temperature. The
radiative rate coefficients for attachment to metastable states
(1s2s) 3,1S states of He and Li+ are given in Table X.

VI. CONCLUSIONS

We have applied the hybrid theory, in the presence of the
optical potential, in which the long-range and short-range
correlations have been taken into account at the same time.
The present results have been calculated variationally and
therefore have lower bounds to the exact phase shifts. Very few
correlation terms are required to obtain accurate phase shifts.
The present approach is applied to calculate photodetachment
cross sections of the negative hydrogen ion and photoioniza-
tion cross sections of the He atom and of the Li positive ion.
The present results are in good agreement with the previous
results. The photoionization cross section of He agrees very
well with those obtained from R-matrix calculations. It is not
possible to infer any scaling of these cross sections with the
nuclear charge Z. These cross sections are used to calculate
the Maxwellian-averaged radiative-attachment cross sections
at various electron temperatures, the recombined states being
H−, He, and Li+.

As for accuracy of the calculations, all phase shifts and
cross sections are converged to better than the third decimal
place. Perhaps the present approach, which includes the long-
range and short-range correlations, will be extended to more
complicated systems.
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TABLE XI. Ground and excited state energies of H−, He, and Li+

for a various number of terms.

System State a b Nω E (Ry)

H− (1s1s) 1S 1.27 0.58 165 −1.05550175
1.27 0.58 220 −1.05550191
1.27 0.58 286 −1.05550200
1.27 0.58 364 −1.05550200

He (1s1s)1S 1.71 3.08 84 −5.80744477
3.17 2.01 120 −5.80744840
3.17 2.01 165 −5.80744866
3.22 2.17 220 −5.80744872

He (1s2s)3S 2.10 0.95 165 −4.35045875
2.10 0.95 220 −4.35045875
2.10 0.95 286 −4.35045875
2.10 0.95 364 −4.35045875

He (1s2s)1S 2.00 1.00 165 −4.29194713
2.00 1.00 220 −4.29194762
2.00 1.00 364 −4.29194796
2.00 1.00 455 −4.29194802

Li (1s1s)1S 4.40 3.04 84 −14.5598257
4.32 3.40 120 −14.5598265
4.32 3.40 165 −14.5598267

Li (1s2s)3S 1.78 2.16 56 −10.2214544
1.78 2.16 84 −10.2214547
1.78 2.17 120 −10.2214547

Li (1s2s)1S 1.38 3.50 120 −10.0817479
1.38 3.50 165 −10.0817509
1.38 3.50 220 −10.0817219

TABLE XII. Comparison of the present 1P and 3P phase shifts
(radians) for electron-hydrogen scattering with those obtained by
Sloan using the method polarized orbitals.

1P 3P

k Present η ηPO Present η ηPO

0.1 0.006091 0.0067 0.009834 0.0109
0.2 0.013545 0.0171 0.041470 0.0486
0.3 0.011028 0.0210 0.095360 0.1151
0.4 0.003160 0.0163 0.164279a 0.2005
0.5 −0.011738 0.0064 0.234784 0.2867
0.6 −0.026733 −0.0039 0.294633 0.3574
0.7 −0.037740 −0.0100 0.33820 0.4063

aThe phase shift for k = 0.4 in [9] should have been 0.148 instead of
0.0148.
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APPENDIX

In Table XI, we give the nonlinear parameters and ground-
state energies of the H− ion and He and Li+ atoms for a various
number of terms in the Hylleraas function, Eq. (15).

In [9], electron-hydrogen phase shifts were given using the
cutoff function of Shertzer and Temkin [37]. Improved phase
shifts are obtained when the cutoff given in Eq. (5) is used.
The present phase shifts are given in Table XII.
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